Cardinality

W.S.P

May 2, 2012

To consider the "size" of a set, the most important notion is the "functions". If $f : A \to B$ is a function, there are some thoughts that we ought to know:

1 (One-to-one). Supposely that whenever f(x) = f(y), it follows that x = y, then the function f is called one-to-one from A to B.

2 (Onto). Supposely that for each $b \in B$, there is an $a \in A$ such that f(a) = b, then this function f is called from A onto B.

3. An Injection (injective function) is an one-to-one function; a surjection (surjective function) is an onto function; a bijection (bijective function) is an injective and surjective function.

4 (Equinumerosity). The sets A, B are called equinumerous (of the same cardinality as) (Denoted by $A \approx B$) if there is a bijection from A to B; $A \preceq B$ (of weakly less cardinality than) if there is an injection from A to B. $A \prec B$ (of (strickly) less cardinality than) if $A \preceq B$ but $A \not\approx B$.

Now I think it is necessary to verify that if those elementary functions are one-to-one and onto between each pair of given sets.

5. $f : \mathbb{R} \to \mathbb{R}$ with $f(x) = \pi x$ is one-to-one and onto because,

- (i) For $x, y \in \mathbb{R}$, if f(x) = f(y), i.e. $\pi x = \pi y$, then x = y immediately.
- (ii) For $y_0 \in \mathbb{R}$, choose $x = \frac{y_0}{\pi}$. Then $f(x) = \pi \cdot \frac{y_0}{\pi} = y_0$.

6. $g: \mathbb{R}^+ \to \mathbb{R}^+, x \to x^2$ is a bijective.

(i) For $a, b \in \mathbb{R}^+$, if $a^2 = b^2$ then (a-b)(a+b) = 0. Because $a+b \neq 0$, we obtain a-b = 0, *i.e.* a = b.

(ii) For $b_0 \in \mathbb{R}^+$, we choose $a = \sqrt{b_0}$. Then $g(a) = (\sqrt{b_0})^2 = b_0$.

Hence, g is bijective.

7. The function $u(x) = x^3$ in \mathbb{R} is one-to-one and onto.

Proof. For $y \in \mathbb{R}$, choose $x = \sqrt[3]{y}$. This implies that u is onto. If $x, y \in \mathbb{R}$ such that $x^3 = y^3$. Then consider

$$0 = x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$
$$= (x - y)\left((x + \frac{1}{2}y)^{2} + \frac{3}{4}y^{2}\right)$$

If $(x - y)\left((x + \frac{1}{2}y)^2 + \frac{3}{4}y^2\right) = 0$, then x = y. (= 0). If $(x - y)\left((x + \frac{1}{2}y)^2 + \frac{3}{4}y^2\right) \neq 0$, then x - y = 0. Hence u is one-to-one.

Another way to show "one-to-one" is that we have several cases according as x>0, x = 0, or x<0 and, y>0, y = 0, or y<0. For example, if x, y both >0 (<0) then $x^2 + xy + y^2>0$. Hence $x^3 - y^3 = 0$ implies x = y.

This division inspires us a helpful property.

- 8. If $A \cap B = C \cap D = \emptyset$, and $f : A \cup B \to C \cup D$ is
 - (i) one-to-one from A onto C and
 - (ii) one-to-one from B onto D,

then f is a bijection.

This is a trivial statement, so we omit the proof.

Still another example is a trigonometric function.

9. Show that $G(x) = \sin x$, where $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is one-to-one from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ to (-1, 1).

Proof.

(one-to-one) If $x, y \in (-\frac{\pi}{2}, \frac{\pi}{2})$ such that G(x) = G(y). Then

$$0 = \sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right).$$

Since $\frac{x+y}{2} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $\cos\left(\frac{x+y}{2}\right) \neq 0$, it follows that

$$\sin\left(\frac{x-y}{2}\right) = 0$$

Hence x = y.

(onto) Let $K \in (-1, 1)$. Since

(i)
$$G(x) = \sin x$$
 is continuous in $[-\frac{\pi}{2}, \frac{\pi}{2}]$.
(ii) $\sin(-\frac{\pi}{2}) = -1$, $\sin(\frac{\pi}{2}) = 1$.
(iii) $-1 < K < 1$.

Intermediate Value Theorem hence tell us that there is a $c \in (-\frac{\pi}{2}, \frac{\pi}{2})$ such that

$$G(c) = \sin c = K.$$

r		1
		I

Now our purpose is to show that $\mathbb{N} \approx \mathbb{Z} \approx \mathbb{Q} \prec \mathbb{R} \approx \mathbb{C}$.

10. $\mathbb{N} \approx \mathbb{Z}$

Proof. We ought to find a bijection. Let

$$f(n) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even;} \\ -\frac{n-1}{2}, & \text{otherwise.} \end{cases}$$
(1)

Then it is routine to show bijectivity.

For even natural numbers x, y, if f(x) = f(y), i.e. $\frac{x}{2} = \frac{y}{2}$, then x = y. Next, for $p \in \mathbb{Z}, p > 0$, we find that $f(2p) = \frac{2p}{2} = p$; For odd natural numbers x, y, if f(x) = f(y), i.e. $-\frac{x-1}{2} = -\frac{y-1}{2}$, then x = y. Similarly, if $p \in \mathbb{Z}, p \leq 0$, then $f(-2p+1) = -\frac{(-2p+1)-1}{2} = p$. By previous example, f is bijective.

For the goal of the fact that $\mathbb{Z} \approx \mathbb{Q}$, we need quite a few effort. Firstly, we embed a significant property into our discussion.

11. Let Λ be an index set. Given $f : \sqcup_{j \in \Lambda} A_j \to \sqcup_{j \in \Lambda} C_j$, if for any $j \in \Lambda$, f is one-to-one from A_j onto C_j , then f is one-to-one and onto.

Note that the notation $\sqcup_{j \in \Lambda} S_j$ means disjoint union. If the sets S_j 's are pairwise disjoint, we write $\sqcup_{j \in \Lambda} S_j$ for their union instead.

The statement is useful in the following property, by which we will show that $\mathbb{N} \approx \mathbb{Q}^+$. 12. $\mathbb{N} \approx \mathbb{N} \times \mathbb{N}$.

Proof. Define

$$\widehat{n} = \begin{cases} 0, & \text{if } n \le 0, \, n \in \mathbb{Z}; \\ 1 + 2 + 3 + \dots + n, & \text{if } n \in \mathbb{N}. \end{cases}$$
(2)

Let p(m,n) = m + n - 2 + m. We're going to show that p gives a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} . If $m + n = k \in \mathbb{N}$, we hope to verify that f is bijective from

$$A_k := \{ \langle m, n \rangle : m + n = k \}$$

to

$$C_k := (\widehat{k-2}, \widehat{k-1}] \cap \mathbb{N}.$$

Let k be given.

(1) For $\langle m, n \rangle \in A_k = \{ \langle 1, k - 1 \rangle, \langle 2, k - 2 \rangle, \cdots, \langle k - 1, 1 \rangle \},$ $\widehat{k-2} = \widehat{m+n-2} < p(m,n) = \widehat{m+n-2} + m$ $= \widehat{k-2} + m \le \widehat{k-2} + (k-1) = \widehat{k-1}$

This means p maps A_k into C_k .

(2) Let $\langle m_1, n_1 \rangle$, $\langle m_2, n_2 \rangle \in A_k$. Suppose that $p(\langle m_1, n_1 \rangle) = p(\langle m_2, n_2 \rangle)$, then

$$\widehat{k-2} + m_1 = \widehat{k-2} + m_2$$

So $m_1 = m_2$, and $n_1 = n_2$. This indicates, that f is one-to-one from A_k to C_k .

(3) Let $N \in C_k$. Denote

$$N = \widehat{k - 2} + j$$

Choose $\langle m, n \rangle = \langle j, k - j \rangle$. Then p(m, n) = N.

Since $\mathbb{N} \times \mathbb{N} = \bigsqcup_{k=2}^{\infty} A_k$, $\mathbb{N} = \bigsqcup_{k=2}^{\infty} \left(\widehat{(k-2, k-2]} \cap \mathbb{N} \right)$, which satisfies all conditions of previous example. Hence p is bijective.

Our next mission is that $\mathbb{Q}^+ \preceq \mathbb{N} \times \mathbb{N}$. Since we already have $\mathbb{N} \preceq \mathbb{Q}^+$, we'll show that $\mathbb{N} \approx \mathbb{Q}^+$.

13. $\mathbb{Q}^+ \preceq \mathbb{N} \times \mathbb{N}$ because, we may choose $f : \mathbb{Q}^+ \to \mathbb{N} \times \mathbb{N}$ by

$$f(\frac{q}{p}) = \langle q, p \rangle$$
 with $gcd(p,q) = 1$,

i.e.

$$f = \{ \langle \frac{a}{b}, \langle a, b \rangle \rangle : a, b \in \mathbb{N}, \ gcd(a, b) = 1 \}$$

i.e.

$$\frac{n}{m} \mapsto \langle \frac{n}{\gcd(n,m)}, \frac{m}{\gcd(n,m)} \rangle \qquad for \, m, n \in \mathbb{N}$$

To show that f is injective, given $\frac{m_1}{n_1}, \frac{m_2}{n_2} \in \mathbb{Q}^+$ such that $gcd(m_1, n_1) = gcd(m_2, n_2) = 1$ and $f(\frac{m_1}{n_1}) = f(\frac{m_2}{n_2})$. Since $\langle m_1, n_1 \rangle = \langle m_2, n_2 \rangle$, it follows that $m_1 = m_2$ and $n_1 = n_2$.