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To consider the ”size” of a set, the most important notion is the ”functions”. If f : A → B

is a function, there are some thoughts that we ought to know:

1 (One-to-one). Supposely that whenever f(x) = f(y), it follows that x = y, then the function
f is called one-to-one from A to B.

2 (Onto). Supposely that for each b ∈ B, there is an a ∈ A such that f(a) = b, then this
function f is called from A onto B.

3. An Injection (injective function) is an one-to-one function; a surjection (surjective function)
is an onto function; a bijection (bijective function) is an injective and surjective function.

4 (Equinumerosity). The sets A, B are called equinumerous (of the same cardinality as)
(Denoted by A ≈ B) if there is a bijection from A to B; A � B (of weakly less cardinality
than) if there is an injection from A to B. A ≺ B (of (strickly) less cardinality than) if A � B

but A 6≈ B.

Now I think it is necessary to verify that if those elementary functions are one-to-one and
onto between each pair of given sets.

5. f : R → R with f(x) = πx is one-to-one and onto because,

(i) For x, y ∈ R, if f(x) = f(y), i.e. πx = πy, then x = y immediately.

(ii) For y0 ∈ R, choose x = y0

π
. Then f(x) = π · y0

π
= y0.

6. g : R
+ → R

+, x → x2 is a bijective.

(i) For a, b ∈ R
+, if a2 = b2 then (a− b)(a+ b) = 0. Because a+ b 6= 0, we obtain a− b = 0,

i.e. a = b.

(ii) For b0 ∈ R
+, we choose a =

√
b0. Then g(a) = (

√
b0)

2 = b0.

Hence, g is bijective.

7. The function u(x) = x3 in R is one-to-one and onto.
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Proof. For y ∈ R, choose x = 3
√

y. This implies that u is onto. If x, y ∈ R such that x3 = y3.
Then consider

0 = x3 − y3 = (x − y)(x2 + xy + y2)

= (x − y)

(
(x +

1

2
y)2 +

3

4
y2

)

If (x − y)
(
(x + 1

2
y)2 + 3

4
y2

)
= 0, then x = y. (= 0). If (x − y)

(
(x + 1

2
y)2 + 3

4
y2

)
6= 0, then

x − y = 0. Hence u is one-to-one.

Another way to show ”one-to-one” is that we have several cases according as x>0, x = 0,
or x<0 and, y>0, y = 0, or y<0. For example, if x, y both >0 (<0) then x2 + xy + y2>0.
Hence x3 − y3 = 0 implies x = y.

This division inspires us a helpful property.

8. If A ∩ B = C ∩ D = ∅, and f : A ∪ B → C ∪ D is

(i) one-to-one from A onto C and

(ii) one-to-one from B onto D,

then f is a bijection.
This is a trivial statement, so we omit the proof.

Still another example is a trigonometric function.

9. Show that G(x) = sin x, where x ∈ (−π
2
, π

2
) is one-to-one from (−π

2
, π

2
) to (−1, 1).

Proof.

(one-to-one) If x, y ∈ (−π
2
, π

2
) such that G(x) = G(y). Then

0 = sin x − sin y = 2 cos

(
x + y

2

)
sin

(
x − y

2

)
.

Since x+y

2
∈ (−π

2
, π

2
), cos

(
x+y

2

)
6= 0, it follows that

sin

(
x − y

2

)
= 0.

Hence x = y.

(onto) Let K ∈ (−1, 1). Since

(i) G(x) = sin x is continuous in [−π
2
, π

2
].

(ii) sin(−π
2
) = −1, sin(π

2
) = 1.

(iii) −1<K<1.
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Intermediate Value Theorem hence tell us that there is a c ∈ (−π
2
, π

2
) such that

G(c) = sin c = K.

Now our purpose is to show that N ≈ Z ≈ Q ≺ R ≈ C.

10. N ≈ Z

Proof. We ought to find a bijection. Let

f(n) =

{
n
2
, if n is even;

−n−1
2

, otherwise.
(1)

Then it is routine to show bijectivity.
For even natural numbers x, y, if f(x) = f(y), i.e. x

2
= y

2
, then x = y. Next, for p ∈ Z, p>0,

we find that f(2p) = 2p

2
= p; For odd natural numbers x, y, if f(x) = f(y), i.e. −x−1

2
= −y−1

2
,

then x = y. Similarly, if p ∈ Z, p ≤ 0, then f(−2p + 1) = − (−2p+1)−1
2

= p. By previous
example, f is bijective.

For the goal of the fact that Z ≈ Q, we need quite a few effort. Firstly, we embed a
significant property into our discussion.

11. Let Λ be an index set. Given f : ⊔j∈ΛAj → ⊔j∈ΛCj, if for any j ∈ Λ, f is one-to-one
from Aj onto Cj, then f is one-to-one and onto.

Note that the notation ⊔j∈ΛSj means disjoint union. If the sets Sj’s are pairwise disjoint,
we write ⊔j∈ΛSj for their union instead.

The statement is useful in the following property, by which we will show that N ≈ Q+.

12. N ≈ N × N.

Proof. Define

n̂ =

{
0, if n ≤ 0, n ∈ Z;

1 + 2 + 3 + · · · + n, if n ∈ N.
(2)

Let p(m, n) = ̂m + n − 2 + m. We’re going to show that p gives a bijection from N×N to
N. If m + n = k ∈ N, we hope to verify that f is bijective from

Ak := {〈m, n〉 : m + n = k}

to

Ck := (k̂ − 2, k̂ − 1] ∩ N.

Let k be given.
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(1) For 〈m, n〉 ∈ Ak = {〈1, k − 1〉, 〈2, k − 2〉, · · · , 〈k − 1, 1〉},

k̂ − 2 = ̂m + n − 2<p(m, n) = ̂m + n − 2 + m

= k̂ − 2 + m ≤ k̂ − 2 + (k − 1) = k̂ − 1

This means p maps Ak into Ck.

(2) Let 〈m1, n1〉, 〈m2, n2〉 ∈ Ak. Suppose that p(〈m1, n1〉) = p(〈m2, n2〉), then

k̂ − 2 + m1 = k̂ − 2 + m2

So m1 = m2, and n1 = n2. This indicates, that f is one-to-one from Ak to Ck.

(3) Let N ∈ Ck. Denote

N = k̂ − 2 + j

Choose 〈m, n〉 = 〈j, k − j〉. Then p(m, n) = N .

Since N × N = ⊔∞

k=2Ak, N = ⊔∞

k=2

(
(k̂ − 2, k̂ − 2] ∩ N

)
, which satisfies all conditions of

previous example. Hence p is bijective.

Our next mission is that Q+ � N × N. Since we already have N � Q+, we’ll show that
N ≈ Q+.

13. Q+ � N × N because, we may choose f : Q+ → N × N by

f(
q

p
) = 〈q, p〉 with gcd(p, q) = 1,

i.e.

f = {〈 a

b
, 〈a, b〉 〉 : a, b ∈ N, gcd(a, b) = 1}

i.e.

n

m
7→ 〈 n

gcd(n, m)
,

m

gcd(n, m)
〉 for m, n ∈ N.

To show that f is injective, given m1

n1
, m2

n2
∈ Q+ such that gcd(m1, n1) = gcd(m2, n2) = 1 and

f(m1

n1
) = f(m2

n2
). Since 〈m1, n1〉 = 〈m2, n2〉, it follows that m1 = m2 and n1 = n2.
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