Cardinality

W.S.P

May 2, 2012

To consider the "size" of a set, the most important notion is the "functions". If $f : A \rightarrow B$ is a function, there are some thoughts that we ought to know:

1 (One-to-one). Supposely that whenever $f(x) = f(y)$, it follows that $x = y$, then the function f *is called one-to-one from* A *to* B*.*

2 (Onto). Supposely that for each $b \in B$, there is an $a \in A$ such that $f(a) = b$, then this *function* f *is called from* A *onto* B*.*

3. *An Injection (injective function) is an one-to-one function; a* surjection *(surjective function) is an onto function; a* bijection *(bijective function) is an injective and surjective function.*

4 (Equinumerosity). *The sets* A*,* B *are called equinumerous (of the same cardinality as) (Denoted by* $A \approx B$) *if there is a bijection from* A *to* B; $A \preceq B$ *(of weakly less cardinality than) if there is an injection from* A *to* B. $A \prec B$ *(of (strickly) less cardinality than) if* $A \prec B$ *but* $A \not\approx B$.

Now I think it is necessary to verify that if those elementary functions are one-to-one and onto between each pair of given sets.

5. $f : \mathbb{R} \to \mathbb{R}$ *with* $f(x) = \pi x$ *is one-to-one and onto because,*

- *(i)* For $x, y \in \mathbb{R}$, if $f(x) = f(y)$, i.e. $\pi x = \pi y$, then $x = y$ immediately.
- *(ii)* For $y_0 \in \mathbb{R}$, choose $x = \frac{y_0}{\pi}$ $\frac{y_0}{\pi}$. Then $f(x) = \pi \cdot \frac{y_0}{\pi} = y_0$.

6. $g: \mathbb{R}^+ \to \mathbb{R}^+, x \to x^2$ is a bijective.

(i) For $a, b \in \mathbb{R}^+$, if $a^2 = b^2$ then $(a - b)(a + b) = 0$. Because $a + b \neq 0$, we obtain $a - b = 0$, $i.e. a = b.$

(ii) For $b_0 \in \mathbb{R}^+$, we choose $a = \sqrt{b_0}$. Then $g(a) = (\sqrt{b_0})^2 = b_0$.

Hence, g *is bijective.*

7. The function $u(x) = x^3$ in $\mathbb R$ is one-to-one and onto.

Proof. For $y \in \mathbb{R}$, choose $x = \sqrt[3]{y}$. This implies that u is onto. If $x, y \in \mathbb{R}$ such that $x^3 = y^3$. Then consider

$$
0 = x3 - y3 = (x - y)(x2 + xy + y2)
$$

= (x - y) ((x + $\frac{1}{2}$ y)² + $\frac{3}{4}$ y²)

If $(x - y)$ $\left(\frac{x + \frac{1}{2}}{x}\right)$ $(\frac{1}{2}y)^2 + \frac{3}{4}$ $\frac{3}{4}y^2$ = 0, then $x = y$. (= 0). If $(x - y) ((x + \frac{1}{2})$ $(\frac{1}{2}y)^2 + \frac{3}{4}$ $\frac{3}{4}y^2$ \neq 0, then $x - y = 0$. Hence u is one-to-one.

Another way to show "one-to-one" is that we have several cases according as $x>0$, $x=0$, or $x < 0$ and, $y > 0$, $y = 0$, or $y < 0$. For example, if x, y both > 0 (< 0) then $x^2 + xy + y^2 > 0$. Hence $x^3 - y^3 = 0$ implies $x = y$.

This division inspires us a helpful property.

- 8. *If* $A \cap B = C \cap D = \emptyset$, and $f : A \cup B \rightarrow C \cup D$ *is*
	- *(i) one-to-one from* A *onto* C *and*
	- *(ii) one-to-one from* B *onto* D*,*

then f *is a bijection.*

This is a trivial statement, so we omit the proof.

Still another example is a trigonometric function.

9. *Show that* $G(x) = \sin x$ *, where* $x \in \left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}, \frac{\pi}{2}$ $(\frac{\pi}{2})$ *is one-to-one from* $(-\frac{\pi}{2})$ $\frac{\pi}{2}$, $\frac{\pi}{2}$ $(\frac{\pi}{2})$ *to* $(-1, 1)$ *.*

Proof.

(one-to-one) If $x, y \in \left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}$, $\frac{\pi}{2}$ $\frac{\pi}{2}$) such that $G(x) = G(y)$. Then

$$
0 = \sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right).
$$

Since $\frac{x+y}{2} \in \left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}$, $\frac{\pi}{2}$ $\frac{\pi}{2}$, cos $\left(\frac{x+y}{2}\right)$ $\frac{+y}{2}$ \neq 0, it follows that

$$
\sin\left(\frac{x-y}{2}\right) = 0.
$$

Hence $x = y$.

(onto) Let $K \in (-1,1)$. Since

\n- (i)
$$
G(x) = \sin x
$$
 is continuous in $[-\frac{\pi}{2}, \frac{\pi}{2}].$
\n- (ii) $\sin(-\frac{\pi}{2}) = -1$, $\sin(\frac{\pi}{2}) = 1$.
\n- (iii) $-1 < K < 1$.
\n

Intermediate Value Theorem hence tell us that there is a $c \in \left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}, \frac{\pi}{2}$ $\frac{\pi}{2}$) such that

$$
G(c) = \sin c = K.
$$

Now our purpose is to show that $\mathbb{N} \approx \mathbb{Z} \approx \mathbb{Q} \prec \mathbb{R} \approx \mathbb{C}$.

10. $\mathbb{N} \approx \mathbb{Z}$

Proof. We ought to find a bijection. Let

$$
f(n) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even;}\\ -\frac{n-1}{2}, & \text{otherwise.} \end{cases}
$$
 (1)

Then it is routine to show bijectivity.

For even natural numbers x, y, if $f(x) = f(y)$, i.e. $\frac{x}{2} = \frac{y}{2}$ $\frac{y}{2}$, then $x = y$. Next, for $p \in \mathbb{Z}$, $p > 0$, we find that $f(2p) = \frac{2p}{2} = p$; For odd natural numbers x, y, if $f(x) = f(y)$, i.e. $-\frac{x-1}{2} = -\frac{y-1}{2}$ $\frac{-1}{2}$, then $x = y$. Similarly, if $p \in \mathbb{Z}$, $p \le 0$, then $f(-2p + 1) = -\frac{(-2p+1)-1}{2} = p$. By previous example, f is bijective.

For the goal of the fact that $\mathbb{Z} \approx \mathbb{Q}$, we need quite a few effort. Firstly, we embed a significant property into our discussion.

11. Let Λ be an index set. Given $f : \sqcup_{j \in \Lambda} A_j \to \sqcup_{j \in \Lambda} C_j$, if for any $j \in \Lambda$, f is one-to-one *from* A^j *onto* C^j *, then* f *is one-to-one and onto.*

Note that the notation $\sqcup_{j\in\Lambda} S_j$ *means disjoint union. If the sets* S_j 's are pairwise disjoint, *we write* $\sqcup_{j \in \Lambda} S_j$ *for their union instead.*

The statement is useful in the following property, by which we will show that $\mathbb{N} \approx \mathbb{Q}^+$. 12. $N \approx N \times N$.

Proof. Define

$$
\widehat{n} = \begin{cases}\n0, & \text{if } n \le 0, n \in \mathbb{Z}; \\
1 + 2 + 3 + \dots + n, & \text{if } n \in \mathbb{N}.\n\end{cases}
$$
\n(2)

Let $p(m, n) = m+n-2+m$. We're going to show that p gives a bijection from $\mathbb{N} \times \mathbb{N}$ to N. If $m + n = k \in \mathbb{N}$, we hope to verify that f is bijective from

$$
A_k := \{ \langle m, n \rangle : m + n = k \}
$$

to

$$
C_k := (\widehat{k-2}, \widehat{k-1}] \cap \mathbb{N}.
$$

Let k be given.

(1) For $\langle m, n \rangle \in A_k = {\langle 1, k - 1 \rangle, \langle 2, k - 2 \rangle, \cdots, \langle k - 1, 1 \rangle },$ $k-2 = m + n - 2 < p(m, n) = m + n - 2 + m$ $=\widehat{k-2} + m \leq \widehat{k-2} + (k-1) = \widehat{k-1}$

This means p maps A_k into C_k .

(2) Let $\langle m_1, n_1 \rangle$, $\langle m_2, n_2 \rangle \in A_k$. Suppose that $p(\langle m_1, n_1 \rangle) = p(\langle m_2, n_2 \rangle)$, then

$$
\widehat{k-2} + m_1 = \widehat{k-2} + m_2
$$

So $m_1 = m_2$, and $n_1 = n_2$. This indicates, that f is one-to-one from A_k to C_k .

(3) Let $N \in C_k$. Denote

$$
N = \widehat{k-2} + j
$$

Choose $\langle m, n \rangle = \langle j, k - j \rangle$. Then $p(m, n) = N$.

Since $\mathbb{N} \times \mathbb{N} = \sqcup_{k=2}^{\infty} A_k$, $\mathbb{N} = \sqcup_{k=2}^{\infty} ((\widehat{k-2}, \widehat{k-2}) \cap \mathbb{N})$, which satisfies all conditions of previous example. Hence p is bijective. \Box

Our next mission is that $\mathbb{Q}^+ \preceq \mathbb{N} \times \mathbb{N}$. Since we already have $\mathbb{N} \preceq \mathbb{Q}^+$, we'll show that $\mathbb{N} \approx \mathbb{Q}^+$.

13. $\mathbb{Q}^+ \leq \mathbb{N} \times \mathbb{N}$ *because, we may choose* $f : \mathbb{Q}^+ \to \mathbb{N} \times \mathbb{N}$ *by*

$$
f(\frac{q}{p}) = \langle q, p \rangle \quad \text{with } gcd(p, q) = 1,
$$

i.e.

$$
f = \{ \langle \frac{a}{b}, \langle a, b \rangle \rangle : a, b \in \mathbb{N}, \ gcd(a, b) = 1 \}
$$

i.e.

$$
\frac{n}{m} \mapsto \langle \frac{n}{gcd(n,m)}, \frac{m}{gcd(n,m)} \rangle \qquad for \ m, n \in \mathbb{N}.
$$

To show that f is injective, given $\frac{m_1}{n_1}$, $\frac{m_2}{n_2}$ $\frac{m_2}{n_2} \in \mathbb{Q}^+$ *such that* $gcd(m_1, n_1) = gcd(m_2, n_2) = 1$ *and* $f(\frac{m_1}{n_1})$ $\binom{m_1}{n_1} = f(\frac{m_2}{n_2})$ $\binom{m_2}{n_2}$ *. Since* $\langle m_1, n_1 \rangle = \langle m_2, n_2 \rangle$ *, it follows that* $m_1 = m_2$ *and* $n_1 = n_2$ *.*