
14. If B ≈ N, A ⊂ B, and N � A, then A ≈ N.

Proof. Denote

B = {b1, b2, · · · }

Then we hope to construct a sequence representing A, i.e. A = {y1, y2, · · · }.
Let n1 be the smallest integer n such that bn ∈ A, and write A1 = A \ {n1}.
Let n2 be the smallest integer n>n1 such that bn ∈ A1, and write A2 = A1 \ {n2}.
Let n3 be the smallest integer n>n2 such that bn ∈ A2, and write A3 = A2 \ {n3}.
...

The process can repeat permanently because N � Aj for all j ∈ N (Why?). Since Aj 6= ∅,
nj+1 can be chosen (from Aj). Next, to show

A = B0 := {bn1
, bn2

, · · · }

B0 ⊂ A is trivial. Let a ∈ A ⊂ B. Then a = bm for some m ∈ N. Because 1 ≤ n1<n2< · · · ,
we know m ∈ (nj , nj+1]. It follows that a = bnn+1

. Hence A ⊂ B0. Therefore A = B0, and
then A ≈ N.

The following two propositions are prepared for the third proposition.

15. If A � C, then A ≈ B for some B ⊂ C. The reason is that, if f is one-to-one from A to
C, then f is from A onto B := f(A) ⊂ C.

16. If A � B1 and B1 ≈ B2, then A � B2. We derive this as follow: If f is one-to-one from
A to B1 and g is a bijection from B1 to B2, then g ◦ f is injective from A to B2.

17. N ≈ Q+.

Proof. We know that Q+ � N × N. Then Q+ ≈ N for some N ⊂ N × N. The result is
immediate from preceding examples.

18. We can now show equinumerosity between Z and Q. Since we already have a one-to-one
function f from N onto Q+. Let F : Z → Q, by

F (x) =






f(x), if n ∈ N;

0, if x = 0;

−f(−x), if x ∈ −N.

(3)

Then F is bijective.

We’re going to show a more astonishing property, that Q contains (strictly) less elements
than R. Before reaching a precise proof, we need some preparation.

19. If A ≈ B, B ≈ C, then A ≈ C. A simple proof is: Suppose that f, g are bijections between
A, B and C. Then g ◦ f is bijective from A to C.
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20. R+ ≈ R because, the functions f(x) := ex and

g(x) =

{
x + 1, if x ≥ 0;
−x
1−x

, if x<0.
(4)

are one-to-one from R to R+.

21. N ≺ R+.

Proof. It’s clear that N � R+. Assume that R+ = {f0, f1, f2, · · · }, written in a sequence. We
list the elements below in decimal expression.

f0 = f00.f01f02f03f04 · · ·
f1 = f10.f11f12f13f14 · · ·
f2 = f20.f21f22f23f24 · · ·
f3 = f30.f31f32f33f34 · · ·

...

The main idea is to construct a decimal number which is none of the fj’s. Denote f∞ =
f∞0.f∞1f∞2f∞3 · · · , where

f∞j =

{
7, if fjj = 3;

3, Otherwise.
(5)

Then f∞ ∈ R+. It is some fk, but f∞k 6= fkk, a contradiction. Hence N 6≈ R+. This means
N ≺ R+.

22. We can now show that Q ≺ R. It’s well-known that Q � R. Assume that Q ≈ R. Since
N ≈ Q and R ≈ R+, it follows that N ≈ R+, a contradiction.

The last thing we hope to verify is that R ≈ C. Similarly as before, for convenience, we
divid it into several parts.

23. (0, 1) ≈ (0, 1) × (0, 1).

To give a precise proof, we need the help of Schröder-Bernstein Theorem, i.e. if A � B

and B � A then A ≈ B.

Proof. The map x 7→ (x, 1
2
) is an injection. Define f : (0, 1) × (0, 1) → (0, 1) by

(a, b) := (0.a1a2a3 · · · , 0.b1b2b3 · · · ) 7→ 0.a1b1a2b2a3b3 · · ·

where none of a, b has consecutive 9’s, i.e. neither a nor b is in the form 0.d1d2 · · · dj9999 · · · .
Then if a = 0.a1a2 · · · , b = 0.b1b2 · · · , c = 0.c1c2 · · · and d = 0.d1d2 · · · are such that f(a, b) =
f(c, d), we write

0.a1b1a2b2 · · · = 0.c1d1c2d2 · · ·

According to uniqueness of decimal expression, it follows that aj = cj and bj = dj. Hence f

is an injection. The property is then proved by Schröder-Bernstein Theorem.
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Note that the function f is not onto. In fact, we can find no pair mapping to the number
0.010191919191 · · · in (0, 1), hence we need to show double injectivity.

The following is a slight modification to our final goal.

24. For (a, b) ⊂ R, (a, b) ≈ (0, 1). The map can be chosen as f(x) = (b − a)x + a.

25. (0, 1) ≈ R. A bijection between them can be chosen as

f(x) =
x

1 + |x|

from R onto (−1, 1) or

g(x) = tanx

from (−π
2
, π

2
) to R.

26. (0, 1) × (0, 1) ≈ R × R.

Proof. Let f : (0, 1) → R be bijective. Then

F (a, b) = (f(a), f(b)) on (0, 1) × (0, 1)

is a bijection that we desire.

27. Since R ≈ (0, 1), (0, 1) ≈ (0, 1)×(0, 1), (0, 1)×(0, 1) ≈ R×R, we conclude that R ≈ R×R.

28. R × R ≈ C, because we have the function k(x, y) = x + iy. Therefore we obtain the final
equinumerosity

R ≈ C.

Although we’ve shown that the five famous sets N, Z, Q, R, C have only 2 ”levels” about
numbers of elements, yet we even have no idea about what an infinite set really is. Our
intuition might tell us that a finite set must contain some n elements. That means, it must
be equinumerous to some standard set which we consider to have n elements. In the following
discussion, this standard set will naturally be chosen as In := {1, 2, 3, · · · , n}.

Except for the notion of an infinite set, we have another notion called countable sets. The
difference from countability depends on whether the given set can be listed in a (finite of
infinite) sequence.

29. We now make a convention that W means the whole number set. i.e. W = N ∪ {0}.
Define In := {1, 2, · · · , n} = {k ∈ N : 1 ≤ k ≤ n}, and I0 = ∅, for convenience of later
consideration.
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30. A set S is called finite if S ≈ In for some n ∈ W. If S is not finite, then S is called
infinite. Note that the ”new” notion leads to no contradiction about what are discussed before
because we did not mention the word ”infinite” previously.

31. A set K is called countable if all elements of K are in a (finite or infinite) sequence, i.e.
if K ≈ In for some n ∈ W or K ≈ N. In the later case, K is also called denumerable. So K is
countable if K is either finite or denumerable. If K is not countable, we say K is uncountable.

There are many ”trivial” statements concerning infinite sets, but not all of them is easy
to prove.

32. If S is an infinite set, and T ⊂ S, then either T or S \ T is infinite.

Proof. Assume that S and S \ T are both finite. Let f : In → S and g : Im → S \ T be
bijections. Then define ϕ : Im+n → S as follow:

ϕ(x) =

{
f(x), if x = 1, 2, 3 · · · , n;

g(x − n), if x = n + 1, n + 2, · · · , n + m.
(6)

Then ϕ is one-to-one from In+m onto S, a contradiction to the fact that S is infinite.

33. The union of a finite set and a denumerable set is denumerable because, if the finite set is
expressed as {a1, a2, · · · , an} while the other {b1, b2, · · · }, then the union {a1, · · · , an, b1, b2, · · · }
is equinumerous to a subset (why not exactly ?) of {〈a, 1〉, · · · 〈a, n〉, 〈b, 1〉, 〈b, 2〉, · · · }. More-
over, N � the union, we conclude that N is equinumerous to the union.

34. The disjoint union of two denumerable sets are denumerable. Therefore, the disjoint union
of n denumerable sets are also denumerable.

Proof. It easy to check that N is equinumerous to 2N and 2N+1 (We define 2N = {2, 4, 6, 8, · · · }
and 2N+1 = {1, 3, 5, · · · }.). Let A, B be two disjoint sets. Choose f : 2N → A, g : 2N+1 → B

as bijections. Define G : N → A ⊔ B by

G(x) =

{
f(x), if x is even;

g(x), if x is odd.
(7)

Then G shows that A ⊔ B is denumerable.

35. How about the union of n denumerable sets?
How about a denumerable union of denumerable sets?

For the second assertion, we need some observation.

36. The denumerable union of pairwise disjoint denumerable sets are denumerable.

Proof. Denote these sets by S1, S2, · · · , where

S1 = {s11, s12, s13, · · · }
S2 = {s21, s22, s23, · · · }
S3 = {s31, s32, s33, · · · }

...

are their elements. Then the mapping 〈i, j〉 ↔ sij is bijective. Hence N ≈
⋃

n∈N
Sn.
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37. A set S is countable if and only if S � N.

Proof. If S is denumerable, then S ≈ N and hence S � N. If S if finite, then S � N because
In � N. Conversly, Let f be one-to-one from S into N. Let T = Im(f). Then

(a) If T contains no maximum, then N � T (why?). Since T ⊂ N, we obtain that N ≈ T .
Since f is onto T , it follows that S ≈ T .

(b) If T contains a maximum, say n0 ∈ N. Then T ⊂ In0
. Hence T is equinumerous to

some Im (why? This might be proved by induction.). Similarly, the assertion is proved
by S ≈ T ≈ Im.

38. The denumerable union of pairwise disjoint countable sets are countable.
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