14. If BN, ACB, and N=<X A, then A~ N.

Proof. Denote
B ={by,by, -}

Then we hope to construct a sequence representing A, i.e. A ={y1,y2, -}
Let ny be the smallest integer n such that b, € A, and write A; = A\ {n}.
Let ny be the smallest integer n>n; such that b, € A, and write Ay = A; \ {na}.
Let n3 be the smallest integer n>ny such that b, € Ay, and write A3 = Ay \ {n3}.

The process can repeat permanently because N < A; for all j € N (Why?). Since A; # &,
nj41 can be chosen (from A;). Next, to show

A= BO = {bnlabnza"'}

By C Ais trivial. Let a € A C B. Then a = b, for some m € N. Because 1 < ni<ng,<---,
we know m € (n;,njq]. It follows that a = b,,,,. Hence A C By. Therefore A = By, and
then A ~ N. O

The following two propositions are prepared for the third proposition.

15. If A< C, then A~ B for some B C C. The reason is that, if f is one-to-one from A to
C, then f is from A onto B := f(A) C C.

16. If A < B; and By =~ By, then A < By. We derive this as follow: If f is one-to-one from
A to By and g is a bijection from By to By, then g o f is injective from A to Bs.

17. N~ Q™.

Proof. We know that Q < N x N. Then Q* ~ N for some N C N x N. The result is
immediate from preceding examples. O

18. We can now show equinumerosity between Z and Q. Since we already have a one-to-one
function f from N onto Qt. Let F : Z — Q, by

f(x), if n e Ny
F(z) =<0, if v =0; (3)
—f(=x), ifxe —N.

Then F' is bijective.

We're going to show a more astonishing property, that Q contains (strictly) less elements
than R. Before reaching a precise proof, we need some preparation.

19. I[f A= B, BxC, then A~ C. A simple proof is: Suppose that f, g are bijections between
A, B and C. Then go f is bijective from A to C.



20. Rt = R because, the functions f(x) :=e* and

r+1, ifx>0;

glx) =4 .
i Zf17<0

are one-to-one from R to RT.

21. N< R*.

Proof. Tt’s clear that N < R™. Assume that R™ = {fy, f1, f2, - - }, written in a sequence. We
list the elements below in decimal expression.

Jo = foo-fo1fo2fo3 fos - - -
J1=fio-fufrizfizfra---
J2 = fao-forfozfazfoa -
f3 = fs0-f31f32f33 34" -

The main idea is to construct a decimal number which is none of the f;’s. Denote fo =

foo0-foorfoo2 foos - - -, where
7, if fj; = 3;
Joci {3, Otherwise. ()

Then fo, € R*. Tt is some fi, but foor # fex, a contradiction. Hence N % R*. This means
N < R*. O

22. We can now show that Q < R. It’s well-known that Q < R. Assume that Q ~ R. Since
N~ Q and R =~ R*, it follows that N =~ R™, a contradiction.

The last thing we hope to verify is that R ~ C. Similarly as before, for convenience, we
divid it into several parts.

23. (0,1) ~ (0,1) x (0,1).

To give a precise proof, we need the help of Schroder-Bernstein Theorem, ie. if A X B
and B < A then A ~ B.
Proof. The map x — (, 3) is an injection. Define f: (0,1) x (0,1) — (0,1) by

(a, b) = (O.a1a2a3 ety O.blbgbg cee ) — O.alblagbgagbg s

where none of a, b has consecutive 9’s, i.e. neither a nor b is in the form 0.dds - - - d;9999 - - -.
Then if a = 0.ajay -+, b=0.byby- -+, ¢ = 0.cica - -+ and d = 0.dydy - - - are such that f(a,b) =
f(e,d), we write

O.alblagbz v = O.CldlchQ s

According to uniqueness of decimal expression, it follows that a; = ¢; and b; = d;. Hence f
is an injection. The property is then proved by Schroder-Bernstein Theorem. O
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Note that the function f is not onto. In fact, we can find no pair mapping to the number
0.010191919191 - - - in (0, 1), hence we need to show double injectivity.
The following is a slight modification to our final goal.

24. For (a,b) C R, (a,b) =~ (0,1). The map can be chosen as f(x) = (b —a)x + a.

25. (0,1) = R. A bijection between them can be chosen as

T
J(@) = 1+ |z|
from R onto (—=1,1) or
g(x) =tanz

from (=5,%) to R.
26. (0,1) x (0,1) ~ R x R.

Proof. Let f:(0,1) — R be bijective. Then

F(a,b) = (f(a), f(b)) on(0,1) x (0,1)
is a bijection that we desire. O
27. Since R ~ (0,1), (0,1) = (0,1)x(0,1), (0,1)x(0,1) =~ RxR, we conclude that R ~ RxR.

28. R x R =~ C, because we have the function k(x,y) = x + iy. Therefore we obtain the final
equinumerosity

R~ C.

Although we’ve shown that the five famous sets N, Z, Q, R, C have only 2 "levels” about
numbers of elements, yet we even have no idea about what an infinite set really is. Our
intuition might tell us that a finite set must contain some n elements. That means, it must
be equinumerous to some standard set which we consider to have n elements. In the following
discussion, this standard set will naturally be chosen as I,, := {1,2,3,--- ,n}.

Except for the notion of an infinite set, we have another notion called countable sets. The
difference from countability depends on whether the given set can be listed in a (finite of
infinite) sequence.

29. We now make a convention that W means the whole number set. i.e. W = N U {0}.
Define I, := {1,2,---,n} ={k e N : 1 <k <n}, and Iy = &, for convenience of later
consideration.



30. A set S is called finite if S ~ I,, for some n € W. If S is not finite, then S is called
infinite. Note that the "new” notion leads to no contradiction about what are discussed before
because we did not mention the word “infinite” previously.

31. A set K is called countable if all elements of K are in a (finite or infinite) sequence, i.e.
if K = I, for somen € W or K = N. In the later case, K is also called denumerable. So K 1is
countable if K is either finite or denumerable. If K is not countable, we say K is uncountable.

There are many "trivial” statements concerning infinite sets, but not all of them is easy
to prove.

32. If S is an infinite set, and T C S, then either T or S\ T is infinite.

Proof. Assume that S and S\ T are both finite. Let f : [, — S and g : I, — S\ T be
bijections. Then define ¢ : I,,,+, — S as follow:

(p@):{f(x), ifr=1,2,3---,n; (6)

glx—mn), fz=n+1n+2-- n+m.
Then ¢ is one-to-one from I, onto S, a contradiction to the fact that S is infinite. Ll

33. The union of a finite set and a denumerable set is denumerable because, if the finite set s
expressed as {ay,as, - -+ ,a,} while the other {by, by, - - - }, then the union {ay, -+ ,a,, by, by, -}
is equinumerous to a subset (why not exactly ?) of {{a,1),---{(a,n), (b,1),(b,2),---}. More-
over, N < the union, we conclude that N is equinumerous to the union.

34. The disjoint union of two denumerable sets are denumerable. Therefore, the disjoint union
of n denumerable sets are also denumerable.

Proof. Tt easy to check that N is equinumerous to 2N and 2N+1 (We define 2N = {2,4,6,8,---}
and 2N+1 = {1,3,5,---}.). Let A, B be two disjoint sets. Choose f : 2N — A ¢g:2N+1 — B
as bijections. Define G : N — AU B by

f(z), if z is even;
G(z) = . (7)
g(x), if zis odd.
Then G shows that AU B is denumerable. O

35. How about the union of n denumerable sets?
How about a denumerable union of denumerable sets?

For the second assertion, we need some observation.
36. The denumerable union of pairwise disjoint denumerable sets are denumerable.
Proof. Denote these sets by 5,95, -+, where
S) = {311, 812, 813, " }
Sy = {821, 522,823, * }

Sz = {3317 532,533, " * }

are their elements. Then the mapping (i, j) < s;; is bijective. Hence N ~ |J,, o Sn- O
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37. A set S is countable if and only if S < N.

Proof. 1f S is denumerable, then S ~ N and hence S <X N. If S if finite, then S < N because
I, < N. Conversly, Let f be one-to-one from S into N. Let T'= I'm(f). Then

(a) If T contains no maximum, then N < 7" (why?). Since 7" C N, we obtain that N ~ 7.
Since f is onto 7', it follows that S ~ T

(b) If T contains a maximum, say no € N. Then 7" C I,,. Hence T is equinumerous to
some I, (why? This might be proved by induction.). Similarly, the assertion is proved
by S~T =~ I,,.

O

38. The denumerable union of pairwise disjoint countable sets are countable.



