14. If $B \approx \mathbb{N}$, $A \subset B$, and $\mathbb{N} \leq A$, then $A \approx \mathbb{N}$.

Proof. Denote

$$B = \{b_1, b_2, \cdots\}$$

Then we hope to construct a sequence representing A, i.e. $A = \{y_1, y_2, \dots\}$.

Let n_1 be the smallest integer n such that $b_n \in A$, and write $A_1 = A \setminus \{n_1\}$.

Let n_2 be the smallest integer $n > n_1$ such that $b_n \in A_1$, and write $A_2 = A_1 \setminus \{n_2\}$.

Let n_3 be the smallest integer $n > n_2$ such that $b_n \in A_2$, and write $A_3 = A_2 \setminus \{n_3\}$.

:

The process can repeat permanently because $\mathbb{N} \leq A_j$ for all $j \in \mathbb{N}$ (Why?). Since $A_j \neq \emptyset$, n_{j+1} can be chosen (from A_j). Next, to show

$$A = B_0 := \{b_{n_1}, b_{n_2}, \cdots\}$$

 $B_0 \subset A$ is trivial. Let $a \in A \subset B$. Then $a = b_m$ for some $m \in \mathbb{N}$. Because $1 \le n_1 < n_2 < \cdots$, we know $m \in (n_j, n_{j+1}]$. It follows that $a = b_{n_{n+1}}$. Hence $A \subset B_0$. Therefore $A = B_0$, and then $A \approx \mathbb{N}$.

The following two propositions are prepared for the third proposition.

- **15.** If $A \leq C$, then $A \approx B$ for some $B \subset C$. The reason is that, if f is one-to-one from A to C, then f is from A onto $B := f(A) \subset C$.
- **16.** If $A \leq B_1$ and $B_1 \approx B_2$, then $A \leq B_2$. We derive this as follow: If f is one-to-one from A to B_1 and g is a bijection from B_1 to B_2 , then $g \circ f$ is injective from A to B_2 .
- 17. $\mathbb{N} \approx \mathbb{Q}^+$.

Proof. We know that $\mathbb{Q}^+ \leq \mathbb{N} \times \mathbb{N}$. Then $\mathbb{Q}^+ \approx N$ for some $N \subset \mathbb{N} \times \mathbb{N}$. The result is immediate from preceding examples.

18. We can now show equinumerosity between \mathbb{Z} and \mathbb{Q} . Since we already have a one-to-one function f from \mathbb{N} onto \mathbb{Q}^+ . Let $F: \mathbb{Z} \to \mathbb{Q}$, by

$$F(x) = \begin{cases} f(x), & \text{if } n \in \mathbb{N}; \\ 0, & \text{if } x = 0; \\ -f(-x), & \text{if } x \in -\mathbb{N}. \end{cases}$$
 (3)

Then F is bijective.

We're going to show a more astonishing property, that \mathbb{Q} contains (strictly) less elements than \mathbb{R} . Before reaching a precise proof, we need some preparation.

19. If $A \approx B$, $B \approx C$, then $A \approx C$. A simple proof is: Suppose that f, g are bijections between A, B and C. Then $g \circ f$ is bijective from A to C.

20. $\mathbb{R}^+ \approx \mathbb{R}$ because, the functions $f(x) := e^x$ and

$$g(x) = \begin{cases} x+1, & \text{if } x \ge 0; \\ \frac{-x}{1-x}, & \text{if } x < 0. \end{cases}$$
 (4)

are one-to-one from \mathbb{R} to \mathbb{R}^+ .

21. $\mathbb{N} \prec \mathbb{R}^+$.

Proof. It's clear that $\mathbb{N} \leq \mathbb{R}^+$. Assume that $\mathbb{R}^+ = \{f_0, f_1, f_2, \cdots\}$, written in a sequence. We list the elements below in decimal expression.

$$f_0 = f_{00} \cdot f_{01} f_{02} f_{03} f_{04} \cdots$$

$$f_1 = f_{10} \cdot f_{11} f_{12} f_{13} f_{14} \cdots$$

$$f_2 = f_{20} \cdot f_{21} f_{22} f_{23} f_{24} \cdots$$

$$f_3 = f_{30} \cdot f_{31} f_{32} f_{33} f_{34} \cdots$$

$$\vdots$$

The main idea is to construct a decimal number which is none of the f_j 's. Denote $f_{\infty} = f_{\infty 0} \cdot f_{\infty 1} f_{\infty 2} f_{\infty 3} \cdots$, where

$$f_{\infty j} = \begin{cases} 7, & \text{if } f_{jj} = 3; \\ 3, & \text{Otherwise.} \end{cases}$$
 (5)

Then $f_{\infty} \in \mathbb{R}^+$. It is some f_k , but $f_{\infty k} \neq f_{kk}$, a contradiction. Hence $\mathbb{N} \not\approx \mathbb{R}^+$. This means $\mathbb{N} \prec \mathbb{R}^+$.

22. We can now show that $\mathbb{Q} \prec \mathbb{R}$. It's well-known that $\mathbb{Q} \preceq \mathbb{R}$. Assume that $\mathbb{Q} \approx \mathbb{R}$. Since $\mathbb{N} \approx \mathbb{Q}$ and $\mathbb{R} \approx \mathbb{R}^+$, it follows that $\mathbb{N} \approx \mathbb{R}^+$, a contradiction.

The last thing we hope to verify is that $\mathbb{R} \approx \mathbb{C}$. Similarly as before, for convenience, we divid it into several parts.

23.
$$(0,1) \approx (0,1) \times (0,1)$$
.

To give a precise proof, we need the help of Schröder-Bernstein Theorem, i.e. if $A \leq B$ and $B \leq A$ then $A \approx B$.

Proof. The map $x \mapsto (x, \frac{1}{2})$ is an injection. Define $f:(0,1)\times(0,1)\to(0,1)$ by

$$(a,b) := (0.a_1a_2a_3\cdots, 0.b_1b_2b_3\cdots) \mapsto 0.a_1b_1a_2b_2a_3b_3\cdots$$

where none of a, b has consecutive 9's, i.e. neither a nor b is in the form $0.d_1d_2\cdots d_j$ 9999 \cdots . Then if $a = 0.a_1a_2\cdots$, $b = 0.b_1b_2\cdots$, $c = 0.c_1c_2\cdots$ and $d = 0.d_1d_2\cdots$ are such that f(a, b) = f(c, d), we write

$$0.a_1b_1a_2b_2\cdots = 0.c_1d_1c_2d_2\cdots$$

According to uniqueness of decimal expression, it follows that $a_j = c_j$ and $b_j = d_j$. Hence f is an injection. The property is then proved by Schröder-Bernstein Theorem.

Note that the function f is not onto. In fact, we can find no pair mapping to the number $0.0101919191 \cdots$ in (0,1), hence we need to show *double injectivity*.

The following is a slight modification to our final goal.

24. For $(a,b) \subset \mathbb{R}$, $(a,b) \approx (0,1)$. The map can be chosen as f(x) = (b-a)x + a.

25. $(0,1) \approx \mathbb{R}$. A bijection between them can be chosen as

$$f(x) = \frac{x}{1 + |x|}$$

from \mathbb{R} onto (-1,1) or

$$q(x) = \tan x$$

from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ to \mathbb{R} .

26. $(0,1) \times (0,1) \approx \mathbb{R} \times \mathbb{R}$.

Proof. Let $f:(0,1)\to\mathbb{R}$ be bijective. Then

$$F(a,b) = (f(a), f(b)) \quad on(0,1) \times (0,1)$$

is a bijection that we desire.

27. Since $\mathbb{R} \approx (0,1)$, $(0,1) \approx (0,1) \times (0,1)$, $(0,1) \times (0,1) \approx \mathbb{R} \times \mathbb{R}$, we conclude that $\mathbb{R} \approx \mathbb{R} \times \mathbb{R}$.

28. $\mathbb{R} \times \mathbb{R} \approx \mathbb{C}$, because we have the function k(x,y) = x + iy. Therefore we obtain the final equinumerosity

$$\mathbb{R} \approx \mathbb{C}$$
.

Although we've shown that the five famous sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ have only 2 "levels" about numbers of elements, yet we even have no idea about what an infinite set really is. Our intuition might tell us that a finite set must contain some n elements. That means, it must be equinumerous to some standardset which we consider to have n elements. In the following discussion, this standard set will naturally be chosen as $I_n := \{1, 2, 3, \dots, n\}$.

Except for the notion of an infinite set, we have another notion called countable sets. The difference from countability depends on whether the given set can be listed in a (finite of infinite) sequence.

29. We now make a convention that \mathbb{W} means the whole number set. i.e. $\mathbb{W} = \mathbb{N} \cup \{0\}$. Define $I_n := \{1, 2, \dots, n\} = \{k \in \mathbb{N} : 1 \leq k \leq n\}$, and $I_0 = \emptyset$, for convenience of later consideration.

- **30.** A set S is called finite if $S \approx I_n$ for some $n \in \mathbb{W}$. If S is not finite, then S is called infinite. Note that the "new" notion leads to no contradiction about what are discussed before because we did not mention the word "infinite" previously.
- **31.** A set K is called countable if all elements of K are in a (finite or infinite) sequence, i.e. if $K \approx I_n$ for some $n \in \mathbb{W}$ or $K \approx \mathbb{N}$. In the later case, K is also called denumerable. So K is countable if K is either finite or denumerable. If K is not countable, we say K is uncountable.

There are many "trivial" statements concerning infinite sets, but not all of them is easy to prove.

32. If S is an infinite set, and $T \subset S$, then either T or $S \setminus T$ is infinite.

Proof. Assume that S and $S \setminus T$ are both finite. Let $f: I_n \to S$ and $g: I_m \to S \setminus T$ be bijections. Then define $\varphi: I_{m+n} \to S$ as follow:

$$\varphi(x) = \begin{cases} f(x), & \text{if } x = 1, 2, 3 \dots, n; \\ g(x - n), & \text{if } x = n + 1, n + 2, \dots, n + m. \end{cases}$$
 (6)

Then φ is one-to-one from I_{n+m} onto S, a contradiction to the fact that S is infinite. \square

- **33.** The union of a finite set and a denumerable set is denumerable because, if the finite set is expressed as $\{a_1, a_2, \dots, a_n\}$ while the other $\{b_1, b_2, \dots\}$, then the union $\{a_1, \dots, a_n, b_1, b_2, \dots\}$ is equinumerous to a subset (why not exactly?) of $\{\langle a, 1 \rangle, \dots \langle a, n \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \dots\}$. Moreover, $\mathbb{N} \leq$ the union, we conclude that \mathbb{N} is equinumerous to the union.
- **34.** The disjoint union of two denumerable sets are denumerable. Therefore, the disjoint union of n denumerable sets are also denumerable.

Proof. It easy to check that \mathbb{N} is equinumerous to $2\mathbb{N}$ and $2\mathbb{N}+1$ (We define $2\mathbb{N}=\{2,4,6,8,\cdots\}$ and $2\mathbb{N}+1=\{1,3,5,\cdots\}$.). Let A,B be two disjoint sets. Choose $f:2\mathbb{N}\to A,g:2\mathbb{N}+1\to B$ as bijections. Define $G:\mathbb{N}\to A\sqcup B$ by

$$G(x) = \begin{cases} f(x), & \text{if } x \text{ is even;} \\ g(x), & \text{if } x \text{ is odd.} \end{cases}$$
 (7)

Then G shows that $A \sqcup B$ is denumerable.

35. How about the union of n denumerable sets? How about a denumerable union of denumerable sets?

For the second assertion, we need some observation.

36. The denumerable union of pairwise disjoint denumerable sets are denumerable.

Proof. Denote these sets by S_1, S_2, \dots , where

$$S_1 = \{s_{11}, s_{12}, s_{13}, \dots\}$$

$$S_2 = \{s_{21}, s_{22}, s_{23}, \dots\}$$

$$S_3 = \{s_{31}, s_{32}, s_{33}, \dots\}$$

$$\vdots$$

are their elements. Then the mapping $\langle i,j\rangle \leftrightarrow s_{ij}$ is bijective. Hence $\mathbb{N} \approx \bigcup_{n\in\mathbb{N}} S_n$.

37. A set S is countable if and only if $S \leq \mathbb{N}$.

Proof. If S is denumerable, then $S \approx \mathbb{N}$ and hence $S \leq \mathbb{N}$. If S if finite, then $S \leq \mathbb{N}$ because $I_n \leq \mathbb{N}$. Conversly, Let f be one-to-one from S into \mathbb{N} . Let T = Im(f). Then

- (a) If T contains no maximum, then $\mathbb{N} \leq T$ (why?). Since $T \subset \mathbb{N}$, we obtain that $\mathbb{N} \approx T$. Since f is onto T, it follows that $S \approx T$.
- (b) If T contains a maximum, say $n_0 \in \mathbb{N}$. Then $T \subset I_{n_0}$. Hence T is equinumerous to some I_m (why? This might be proved by induction.). Similarly, the assertion is proved by $S \approx T \approx I_m$.

38. The denumerable union of pairwise disjoint countable sets are countable.