Where to go ??

The Essense of Schröder-Bernstein Theorem

2016/12/28

A significant question is that: Whether when $A \prec B$ and $B \prec A$, it is necessary that $A \approx B$?? Before handling this, we firstly consider a practical example.

Example 1. To consider whether $[0,1] \approx [0,1)^1$, we ask if there's a bijective $f:[0,1] \rightarrow [0,1)$. Suppose it exists, who is the images of 1? It may be chosen, say $f(1) = \frac{1}{2}$, and then, since f should be injective, who is $f(\frac{1}{2})$? If we set for example that $f(\frac{1}{2}) = \frac{1}{4}$, we still have define $f(\frac{1}{4}), f(\frac{1}{8})$ and so on. Now, the idea emerges.

Define

$$f(x) = \begin{cases} \frac{x}{2}, & \text{if } x \in \{\frac{1}{2^k} : k = 0, 1, 2, \cdots\};\\ x, & \text{otherwise.} \end{cases}$$
(1)

We will confirm ourselves their equinumerousity.

Example 2 (Schröder-Bernstein Theorem). If $A \prec B$ and $B \prec A$, then $A \approx B$.

Draw two lines, by which we represent A and B. Then pick up an injection f from A onto $f(A) \subset B$ (We assume $f(A) \neq B$). The key point is that we will pretend f(A) and A are the same. (At least we say they are closely related, indistinguishable, or essentially the same.)

Now we only focus on B because A is viewed as a subset of B. Let

$$B_0 = B \setminus f(A).$$

The one-to-one function $h: B \to A$ is now viewed from B onto the "subset" A, as in the previous example that $\frac{x}{2}$ sends [0,1] injectively into [0,1). The where to go question occurs on the function h and we are looking for it. So we want to answer where B_0 (In Example 1 case, it is = $[0,1] \setminus [0,1) = \{1\}$) is sent, and who plays a role as x/2 in Example 1?

But don't forget we already have such an one-to-one function $h: B \to A$ by condition, so everything is well-prepared and we should focus on a precise proof. From now on, since we are going to operate f and h, we should write down the embedding function $f: A \to B$ when we "iterally apply" h on B_0 .

Define

$$B_1 = f(h(B_0))$$
$$B_2 = f(h(B_1))$$
$$:$$

¹This is changed from previous version that there is only one added point

Then the following is a bijection g from B onto A. Choose

$$g(x) = \begin{cases} h(x), & \text{if } x \in B_j; \\ f^{-1}(x), & \text{otherwise.} \end{cases}$$
(2)

Then all above is the same as Example 1.

Example 3. This is another theorem about the method: If $X \supset Y \supset X_1$, and $X \approx X_1$, then $X \approx Y$.

The way we solve it is like this: Since we have an f, one-to-one from X onto X_1 , yet $f(Y) \subset X_1$ (Assume that $f(Y) \neq X_1$), denoted by Y_1 . It's clear that f is one-to-one from Y onto Y_1 , so $X_2 := f(X_1)$ is a proper subset of Y_1 . Continually repeat this process, we obtain the family of sets

$$X = X_0 \supset Y = Y_0 \supset X_1 \supset Y_1 \supset X_2 \supset Y_2 \supset \cdots$$

All we perform above are natural. We might now start our "where-to-go" method. Eventually we find an F from X to Y (Note that F is from X to Y.), by

$$F(x) = \begin{cases} f(x), & \text{if } x \in X_j \setminus Y_j; \\ x, & \text{otherwise.} \end{cases}$$
(3)

Finally, we ought to show that F(x) indeed works.

An important remark is:

Example 4. The last two examples are equivalent.