Where to go ??

April 30, 2012

A significant question is that: Whether when $A \prec B$ and $B \prec A$, it is necessary that $A \approx B$?? Before handling this, we firstly consider a practical example.

Example 1. To consider the two sets: [-1,1] and (-1,1). To ask whether there's a bijective $f: [-1,1] \rightarrow (-1,1)$? If it exists, who are the images of $-\frac{1}{2}$ and $\frac{1}{2}$? It may be chosen, say, $f(-1) = \frac{1}{2}$, and $f(1) = \frac{1}{2}$, and then, since f is convented to be one-to-one, so where will $f(-\frac{1}{2})$ and $f(\frac{1}{2})$ go afterward? We might imagine, for example, $f(-\frac{1}{2}) = -\frac{1}{4}$ and $f(\frac{1}{2}) = \frac{1}{4}$. Now, the idea emerges.

Define

$$f(x) = \begin{cases} \frac{x}{2}, & \text{if } x \in \{\pm \frac{1}{2^k} : k = 0, 1, 2, \cdots\};\\ x, & \text{otherwise.} \end{cases}$$
(1)

We will confirm ourselves their equinumerousity.

Example 2 (Schröder-Bernstein Theorem). If $A \prec B$ and $B \prec A$, then $A \approx B$.

Draw two lines, by which we hope to represent the sets A and B. Then we pick up an injection f from A onto $f(A) \subset B$ (We assume that $f(A) \neq B$). The key point we keep in mind is that we will pretend that f(A) and A itself are "the same". (At least wemay say that they are closely related, or almost the same.)

Now we only focus on B. Let

$$B_0 = B \setminus f(A)$$

Imagine that g is such an one-to-one function from B onto A, which we "view" as a function from B onto the part f(A), of B. (Remeber we always "tell", meanwhile we have "convinced" ourselves that A and f(A) are indistinguishable.) Then we will soon ask where B_0 does map to? It is $g(B_0)$, which we "agreed" to "be" $f(g(B_0))$, which we call B_1 . So where will B_1 map to?

We denote B_2 for $f(g(B_1))$, B_3 for $f(g(B_2))$, ...

What is remarkable is that, from B to A, g plays a role as an injection. This inspires us that if we have a injection from B to A then everything is done. Fortunately we do, by condition! Let h be one-to-one from B to A. Define

$$B_1 = f(h(B_0))$$
$$B_2 = f(h(B_1))$$
$$\vdots$$

Then the following is a bijection g from B onto A. Choose

$$g(x) = \begin{cases} h(x), & \text{if } x \in B_j; \\ f^{-1}(x), & \text{otherwise.} \end{cases}$$
(2)

Note that we have to distinguish f(A) from A itself when we come to a precise proof. So above is a necessary modification, and the last step is to show bijectiveness.

Example 3. This is another theorem about the method: If $X \supset Y \supset X_1$, and $X \approx X_1$, then $X \approx Y$.

The way we solve it is like this: Since we have an f, one-to-one from X onto X_1 , yet $f(Y) \subset X_1$ (Assume that $f(Y) \neq X_1$), denoted by Y_1 . It's clear that f is one-to-one from Y onto Y_1 , so $X_2 := f(X_1)$ is a proper subset of Y_1 . Continually repeat this process, we obtain the family of sets

$$X = X_0 \supset Y = Y_0 \supset X_1 \supset Y_1 \supset X_2 \supset Y_2 \supset \cdots$$

All we perform above are natural. We might now start our "where-to-go" method. Eventually we find an F from X to Y (Note that F is from X to Y.), by

$$F(x) = \begin{cases} f(x), & \text{if } x \in X_j \setminus Y_j; \\ x, & \text{otherwise.} \end{cases}$$
(3)

Finally, we ought to show that F(x) indeed works.

An important remark is:

Example 4. The last two examples are equivalent.