Exercise

Wang-Shiuan Pahngerei

April 8, 2012

Example 1. The set $\{\emptyset, \{\emptyset\}\}\cup \{\{\emptyset, \{\emptyset\}\}\}\$ contains only 3 elements. So it has 2^3 subsets.

Example 2. Two sets X and Y are called identified, denoted by $X = Y$, provided that for each $x \in X$, $x \in Y$, and for each $y \in Y$, $y \in X$. Use it to show that whenever $\{a, b\} = \{c, d\}$, we must have either $a = c, b = d, or, a = d, b = c$.

Proof. Divid the statement according to whether $a = b$ and $c = d$, into 4 cases, we might step by step get the conclusion. \Box

Example 3. $A = B$ if and only if $\wp A = \wp B$.

Proof. Assume that $A = B$, we want to show $\wp A = \wp B$. Let $K \in \wp A$. Then $K \subset A$. Since $A \subset B$, yet we have $K \subset A \subset B$. We get $K \subset B$, i.e. $K \in \mathcal{P}B$. Hence $\mathcal{P}A \subset \mathcal{P}B$. Similarly we have $\wp B \subset \wp A$. Therefore $\wp A = \wp B$.

Conversely, assume that $\wp A = \wp B$, we ought to show that $A = B$. Let $x \in A$. Then ${x} \subset A$, and we obtain ${x} \in \wp A$. Because $\wp A = \wp B$, ${x} \in \wp B$. Hence ${x} \subset B$, so we get that $x \in B$. Hence $A \subset B$. Similarly we have $B \subset A$. Therefore $A = B$. \Box

Example 4. $T \times (\cup_{a \in A} S_a) = \cup_{a \in A} T \times S_a$.

Proof. Let $x \in T \times (\cup_{a \in A} S_a)$. Then $x = (t, s)$ for some $t \in T$, $s \in \cup_{a \in A} S_a$. Accordingly we know that $s \in S_{a_0}$ for some $a_0 \in A$. Hence the ordered pair (t, s) is such that $t \in T$ and $s \in S_{a_0}$, and then $(t, s) \in T \times S_{a_0}$. Then we find that $x \in \bigcup_{a \in A} T \times S_a$. Hence $T \times (\bigcup_{a \in A} S_a) \subset \bigcup_{a \in A} T \times S_a$.

Conversely, given $y \in \bigcup_{a \in A} T \times S_a$, then $y \in T \times S_{a_0}$ for some $a_0 \in A$. We can write $y = (t, s)$ for some $t \in T$ and $s \in S_{a_0}$. It follows that $s \in \bigcup_{a \in A} S_a$, and $y = (t, s)$ is in fact in $T \times \bigcup_{a \in A} S_a$. Hence $T \times (\bigcup_{a \in A} S_a) \supset \bigcup_{a \in A} T \times S_a$. Therefore, $T \times (\bigcup_{a \in A} S_a) = \bigcup_{a \in A} T \times S_a$. \Box

Example 5. $\bigcap_{j=1}^{\infty} [0, \frac{1}{j}]$ $\frac{1}{j}$) = {0}.

Proof. Let $x \in \bigcap_{j=1}^{\infty} [0, \frac{1}{j}]$ $\frac{1}{j}$). We ought to show that $x \in \{0\}$. i.e. $x = 0$. Assume not. If $x \leq 0$, then $x \notin [0, \frac{1}{1}]$ $\frac{1}{1}$, which is not permitted. Else if $x>0$, then we choose an $N \in \mathbb{N}$ such that $\frac{1}{N}$ < *x*. Since *x* is in the intersection, *x* must be in $[0, \frac{1}{N}]$ $\frac{1}{N}$), a contradiction. Therefore, $x = 0$, and $\bigcap_{j=1}^{\infty} [0, \frac{1}{j}]$ $\frac{1}{j}) \subset \{0\}.$

 $\frac{1}{j}$ for each $j \in \mathbb{N}$, Conversely, given $y \in \{0\}$, then $y = 0$. Since we know that $0 \leq 0 < \frac{1}{3}$ $y \in \bigcap_{j=1}^{\infty} [0, \frac{1}{j}]$ $\frac{1}{j}$). Hence $\bigcap_{j=1}^{\infty} [0, \frac{1}{j}]$ $(\frac{1}{j}) \supset \{0\}$. Therefore $\bigcap_{j=1}^{\infty} [0, \frac{1}{j}]$ $(\frac{1}{j}) = \{0\}.$ \Box

Example 6. Let c_n be a strictly decreasing sequence of positive real numbers. If $\lim_{n\to\infty} c_n = 0$ then $\bigcap_{j=1}^{\infty} [0, c_n) = \{0\}.$

Proof. Let $x \in \bigcap_{j=1}^{\infty} [0, c_n]$. We have to show that $x = 0$. It is clear that $x \geq 0$. It remains to show that $x>0$ would never occur. Assume that $x>0$, then because of the limit of the sequence there is an $N \in \mathbb{N}$ such that for each $n \geq N$, we have $c_n \leq x$. For this N, we can observe that $x>c_N$, but according to the intersection, $x \in [0, c_N)$, a contradiction. Hence $x = 0$.

The converse direction follows from the last example, which is not hard to prove. Hence $\bigcap_{j=1}^{\infty} [0, c_n) = \{0\}.$ \Box Example 7. The way to negate a statement is to exchange the quantifiers, and then negate the pattern forms. If we hope to negate that "for each $\epsilon > 0$, there is an $N \in \mathbb{N}$, such that for every $n \in \mathbb{N}$, if $n>N$ then $|a_n - a| \leq \varepsilon$ ", we will write down the result: "There is an $\varepsilon_0 > 0$ such that for each $N \in \mathbb{N}$, there is an $n_N \in \mathbb{N}$, such that $n_N > N$ but $|a_n - a| \geq \varepsilon_0$ ".

Example 8. A way to express an ordered pair by means of an unordered pair is that: we may define $\langle a, b \rangle = {\{a\}, \{a, b\}}.$ We ought to show that if $\langle a, b \rangle = \langle c, d \rangle$, then $a = c$ and $b = d$.

Proof. By example 3 we find that either (I) $\{a\} = \{c\}$ and $\{a, b\} = \{c, d\}$ or (II) $\{a\} = \{c, d\}$ and $\{a, b\} = \{c\}.$

In case (II) we obtain that $c = d = a$ and $c = d = b$ because we know that $c \in \{c, d\}$ and c will consequencely belong to $\{a\}$, so that $a = c$ and similarly $a = d$. The later case is alike. Hence $a = c = b = d$.

In case (I), we know by ${a} = {c}$ that $a = c$. we firstly assume that $a = b$, then similarly we have $a = c = b = d$. If $a \neq b$, we hope to show that $c \neq d$. Aussume the contrary, that $c = d$, then the same case that $a = b = c = d$ would again occur, a contradiction. So $c \neq d$. Since $b \in \{a, b\}, b \in \{c, d\}.$ If $b = c$ then $a = b = c$, which is excluded, so $b = d$. \Box

Example 9. Let $x \geq 0$, $n \in \mathbb{N}$. Show that

$$
[x] + [x + \frac{1}{n}] + \dots + [x + \frac{n-1}{n}] = [nx]
$$

where $\left|x\right|$ denotes the Gaussian Notation.

Proof. Define $I_k = \left[\frac{k-1}{n}, \frac{k}{n}\right]$ $\frac{k}{n}$). Then for each $x \geq 0$, there is a k such that $x \in I_k$. We hope to perform induction on k. i.e. When $x \in I_k$, the equality holds.

- (1) If $k = 1$, then $0 \le x < \frac{1}{n}$. We find that $0 \le x + \frac{i}{n} < x + \frac{n-1}{n} = 1$ for $j = 0, 1, 2, \dots, n-1$. So that $\left[x+\frac{j}{n}\right]$ $\frac{j}{n} = 0$. On the other hand, since $0 \le nx < n \cdot \frac{1}{n} = 1$, $[nx] = 0$. Hence the equality holds.
- (2) Assume that when $x_0 \in I_k$, $[x_0] + \cdots + [x_0 + \frac{n-1}{n}]$ $\frac{-1}{n}$] = [nx₀]. Let $x \in I_{k+1}$. Then we know that $x-\frac{1}{n}$ $\frac{1}{n} \in I_k$. By induction hypothesis we obtain

$$
[x - \frac{1}{n}] + [x] + \dots + [x - \frac{1}{n} + \frac{n-1}{n}] = [n \cdot (n - \frac{1}{n})]
$$

$$
= [nx - 1]
$$

$$
= [nx] - 1
$$

So that

$$
[x] + \dots + [x - \frac{1}{n} + \frac{n-1}{n}] + [x + \frac{n-1}{n}] = [nx] - 1 + [x + \frac{n-1}{n}] - [x - \frac{1}{n}]
$$

$$
= [nx] - 1 + 1
$$

$$
= [nx]
$$

(3) By M.I, the equality holds for each natural number k , and then it holds no matter which inteval I_k x belongs to. Hence the equality holds for all $x \geq 0$.

 \Box