Exercise

Wang-Shiuan Pahngerei

April 8, 2012

Example 1. The set $\{\emptyset, \{\emptyset\}\} \cup \{\{\emptyset, \{\emptyset\}\}\}\$ contains only 3 elements. So it has 2^3 subsets.

Example 2. Two sets X and Y are called identified, denoted by X = Y, provided that for each $x \in X$, $x \in Y$, and for each $y \in Y$, $y \in X$. Use it to show that whenever $\{a, b\} = \{c, d\}$, we must have either a = c, b = d, or, a = d, b = c.

Proof. Divid the statement according to whether a = b and c = d, into 4 cases, we might step by step get the conclusion.

Example 3. A = B if and only if $\wp A = \wp B$.

Proof. Assume that A = B, we want to show $\wp A = \wp B$. Let $K \in \wp A$. Then $K \subset A$. Since $A \subset B$, yet we have $K \subset A \subset B$. We get $K \subset B$, i.e. $K \in \wp B$. Hence $\wp A \subset \wp B$. Similarly we have $\wp B \subset \wp A$. Therefore $\wp A = \wp B$.

Conversely, assume that $\wp A = \wp B$, we ought to show that A = B. Let $x \in A$. Then $\{x\} \subset A$, and we obtain $\{x\} \in \wp A$. Because $\wp A = \wp B$, $\{x\} \in \wp B$. Hence $\{x\} \subset B$, so we get that $x \in B$. Hence $A \subset B$. Similarly we have $B \subset A$. Therefore A = B.

Example 4. $T \times (\bigcup_{a \in A} S_a) = \bigcup_{a \in A} T \times S_a$.

Proof. Let $x \in T \times (\bigcup_{a \in A} S_a)$. Then x = (t, s) for some $t \in T, s \in \bigcup_{a \in A} S_a$. Accordingly we know that $s \in S_{a_0}$ for some $a_0 \in A$. Hence the ordered pair (t, s) is such that $t \in T$ and $s \in S_{a_0}$, and then $(t, s) \in T \times S_{a_0}$. Then we find that $x \in \bigcup_{a \in A} T \times S_a$. Hence $T \times (\bigcup_{a \in A} S_a) \subset \bigcup_{a \in A} T \times S_a$.

Conversely, given $y \in \bigcup_{a \in A} T \times S_a$, then $y \in T \times S_{a_0}$ for some $a_0 \in A$. We can write y = (t, s) for some $t \in T$ and $s \in S_{a_0}$. It follows that $s \in \bigcup_{a \in A} S_a$, and y = (t, s) is in fact in $T \times \bigcup_{a \in A} S_a$. Hence $T \times (\bigcup_{a \in A} S_a) \supset \bigcup_{a \in A} T \times S_a$. Therefore, $T \times (\bigcup_{a \in A} S_a) = \bigcup_{a \in A} T \times S_a$. \Box

Example 5. $\bigcap_{j=1}^{\infty} [0, \frac{1}{j}) = \{0\}.$

Proof. Let $x \in \bigcap_{j=1}^{\infty} [0, \frac{1}{j})$. We ought to show that $x \in \{0\}$. i.e. x = 0. Assume not. If x < 0, then $x \notin [0, \frac{1}{1})$, which is not permitted. Else if x > 0, then we choose an $N \in \mathbb{N}$ such that $\frac{1}{N} < x$. Since x is in the intersection, x must be in $[0, \frac{1}{N})$, a contradiction. Therefore, x = 0, and $\bigcap_{j=1}^{\infty} [0, \frac{1}{j}) \subset \{0\}$.

Conversely, given $y \in \{0\}$, then y = 0. Since we know that $0 \le 0 < \frac{1}{j}$ for each $j \in \mathbb{N}$, $y \in \bigcap_{j=1}^{\infty} [0, \frac{1}{j})$. Hence $\bigcap_{j=1}^{\infty} [0, \frac{1}{j}) \supset \{0\}$. Therefore $\bigcap_{j=1}^{\infty} [0, \frac{1}{j}) = \{0\}$.

Example 6. Let c_n be a strictly decreasing sequence of positive real numbers. If $\lim_{n\to\infty} c_n = 0$ then $\bigcap_{j=1}^{\infty} [0, c_n) = \{0\}$.

Proof. Let $x \in \bigcap_{j=1}^{\infty} [0, c_n)$. We have to show that x = 0. It is clear that $x \ge 0$. It remains to show that x>0 would never occur. Assume that x>0, then because of the limit of the sequence there is an $N \in \mathbb{N}$ such that for each $n \ge N$, we have $c_n < x$. For this N, we can observe that $x>c_N$, but according to the intersection, $x \in [0, c_N)$, a contradiction. Hence x = 0.

The converse direction follows from the last example, which is not hard to prove. Hence $\bigcap_{i=1}^{\infty} [0, c_n) = \{0\}.$

Example 7. The way to negate a statement is to exchange the quantifiers, and then negate the pattern forms. If we hope to negate that "for each $\varepsilon > 0$, there is an $N \in \mathbb{N}$, such that for every $n \in \mathbb{N}$, if n > N then $|a_n - a| < \varepsilon$ ", we will write down the result: "There is an $\varepsilon_0 > 0$ such that for each $N \in \mathbb{N}$, there is an $n_N \in \mathbb{N}$, such that $n_N > N$ but $|a_n - a| \ge \varepsilon_0$ ".

Example 8. A way to express an ordered pair by means of an unordered pair is that: we may define $\langle a, b \rangle = \{\{a\}, \{a, b\}\}$. We ought to show that if $\langle a, b \rangle = \langle c, d \rangle$, then a = c and b = d.

Proof. By example 3 we find that either (I) $\{a\} = \{c\}$ and $\{a, b\} = \{c, d\}$ or (II) $\{a\} = \{c, d\}$ and $\{a, b\} = \{c\}$.

In case (II) we obtain that c = d = a and c = d = b because we know that $c \in \{c, d\}$ and c will consequencely belong to $\{a\}$, so that a = c and similarly a = d. The later case is alike. Hence a = c = b = d.

In case (I), we know by $\{a\} = \{c\}$ that a = c. we firstly assume that a = b, then similarly we have a = c = b = d. If $a \neq b$, we hope to show that $c \neq d$. Aussume the contrary, that c = d, then the same case that a = b = c = d would again occur, a contradiction. So $c \neq d$. Since $b \in \{a, b\}$, $b \in \{c, d\}$. If b = c then a = b = c, which is excluded, so b = d.

Example 9. Let $x \ge 0$, $n \in \mathbb{N}$. Show that

$$[x] + [x + \frac{1}{n}] + \dots + [x + \frac{n-1}{n}] = [nx]$$

where [x] denotes the Gaussian Notation.

Proof. Define $I_k = \left[\frac{k-1}{n}, \frac{k}{n}\right]$. Then for each $x \ge 0$, there is a k such that $x \in I_k$. We hope to perform induction on k. i.e. When $x \in I_k$, the equality holds.

- (1) If k = 1, then $0 \le x < \frac{1}{n}$. We find that $0 \le x + \frac{j}{n} < x + \frac{n-1}{n} = 1$ for $j = 0, 1, 2, \dots, n-1$. So that $[x + \frac{j}{n}] = 0$. On the other hand, since $0 \le nx < n \cdot \frac{1}{n} = 1$, [nx] = 0. Hence the equality holds.
- (2) Assume that when $x_0 \in I_k$, $[x_0] + \cdots + [x_0 + \frac{n-1}{n}] = [nx_0]$. Let $x \in I_{k+1}$. Then we know that $x \frac{1}{n} \in I_k$. By induction hypothesis we obtain

$$[x - \frac{1}{n}] + [x] + \dots + [x - \frac{1}{n} + \frac{n-1}{n}] = [n \cdot (n - \frac{1}{n})]$$
$$= [nx - 1]$$
$$= [nx] - 1$$

So that

$$[x] + \dots + [x - \frac{1}{n} + \frac{n-1}{n}] + [x + \frac{n-1}{n}] = [nx] - 1 + [x + \frac{n-1}{n}] - [x - \frac{1}{n}]$$
$$= [nx] - 1 + 1$$
$$= [nx]$$

(3) By M.I, the equality holds for each natural number k, and then it holds no matter which inteval $I_k x$ belongs to. Hence the equality holds for all $x \ge 0$.