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Example 1. The set {∅, {∅}} ∪ {{∅, {∅}}} contains only 3 elements. So it has 23 subsets.

Example 2. Two sets X and Y are called identified, denoted by X = Y , provided that for
each x ∈ X, x ∈ Y , and for each y ∈ Y , y ∈ X. Use it to show that whenever {a, b} = {c, d},
we must have either a = c, b = d, or, a = d, b = c.

Proof. Divid the statement according to whether a = b and c = d, into 4 cases, we might step
by step get the conclusion.

Example 3. A = B if and only if ℘A = ℘B.

Proof. Assume that A = B, we want to show ℘A = ℘B. Let K ∈ ℘A. Then K ⊂ A. Since
A ⊂ B, yet we have K ⊂ A ⊂ B. We get K ⊂ B, i.e. K ∈ ℘B. Hence ℘A ⊂ ℘B. Similarly
we have ℘B ⊂ ℘A. Therefore ℘A = ℘B.

Conversely, assume that ℘A = ℘B, we ought to show that A = B. Let x ∈ A. Then
{x} ⊂ A, and we obtain {x} ∈ ℘A. Because ℘A = ℘B, {x} ∈ ℘B. Hence {x} ⊂ B, so we get
that x ∈ B. Hence A ⊂ B. Similarly we have B ⊂ A. Therefore A = B.

Example 4. T × (∪a∈ASa) = ∪a∈AT × Sa.

Proof. Let x ∈ T × (∪a∈ASa). Then x = (t, s) for some t ∈ T, s ∈ ∪a∈ASa. Accordingly we
know that s ∈ Sa0 for some a0 ∈ A. Hence the ordered pair (t, s) is such that t ∈ T and s ∈ Sa0 ,
and then (t, s) ∈ T×Sa0 . Then we find that x ∈ ∪a∈AT×Sa. Hence T×(∪a∈ASa) ⊂ ∪a∈AT×Sa.

Conversely, given y ∈ ∪a∈AT × Sa, then y ∈ T × Sa0 for some a0 ∈ A. We can write
y = (t, s) for some t ∈ T and s ∈ Sa0 . It follows that s ∈ ∪a∈ASa, and y = (t, s) is in fact in
T ×∪a∈ASa. Hence T × (∪a∈ASa) ⊃ ∪a∈AT ×Sa. Therefore, T × (∪a∈ASa) = ∪a∈AT ×Sa.

Example 5. ∩∞j=1[0,
1
j
) = {0}.

Proof. Let x ∈ ∩∞j=1[0,
1
j
). We ought to show that x ∈ {0}. i.e. x = 0. Assume not. If x<0,

then x /∈ [0, 1
1
), which is not permitted. Else if x>0, then we choose an N ∈ N such that

1
N
<x. Since x is in the intersection, x must be in [0, 1

N
), a contradiction. Therefore, x = 0,

and ∩∞j=1[0,
1
j
) ⊂ {0}.

Conversely, given y ∈ {0}, then y = 0. Since we know that 0 ≤ 0<1
j

for each j ∈ N,

y ∈ ∩∞j=1[0,
1
j
). Hence ∩∞j=1[0,

1
j
) ⊃ {0}. Therefore ∩∞j=1[0,

1
j
) = {0}.

Example 6. Let cn be a strictly decreasing sequence of positive real numbers. If limn→∞ cn = 0
then ∩∞j=1[0, cn) = {0}.
Proof. Let x ∈ ∩∞j=1[0, cn). We have to show that x = 0. It is clear that x ≥ 0. It remains to
show that x>0 would never occur. Assume that x>0, then because of the limit of the sequence
there is an N ∈ N such that for each n ≥ N , we have cn<x. For this N , we can observe that
x>cN , but according to the intersection, x ∈ [0, cN), a contradiction. Hence x = 0.

The converse direction follows from the last example, which is not hard to prove. Hence
∩∞j=1[0, cn) = {0}.
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Example 7. The way to negate a statement is to exchange the quantifiers, and then negate
the pattern forms. If we hope to negate that ”for each ε>0, there is an N ∈ N, such that for
every n ∈ N, if n>N then |an− a|<ε”, we will write down the result: ”There is an ε0>0 such
that for each N ∈ N, there is an nN ∈ N, such that nN>N but |an − a| ≥ ε0 ”.

Example 8. A way to express an ordered pair by means of an unordered pair is that: we may
define 〈a, b〉 = {{a}, {a, b}}. We ought to show that if 〈a, b〉 = 〈c, d〉, then a = c and b = d.

Proof. By example 3 we find that either (I) {a} = {c} and {a, b} = {c, d} or (II) {a} = {c, d}
and {a, b} = {c}.

In case (II) we obtain that c = d = a and c = d = b because we know that c ∈ {c, d} and
c will consequencely belong to {a}, so that a = c and similarly a = d. The later case is alike.
Hence a = c = b = d.

In case (I), we know by {a} = {c} that a = c. we firstly assume that a = b, then similarly
we have a = c = b = d. If a 6= b, we hope to show that c 6= d. Aussume the contrary, that
c = d, then the same case that a = b = c = d would again occur, a contradiction. So c 6= d.
Since b ∈ {a, b}, b ∈ {c, d}. If b = c then a = b = c, which is excluded, so b = d.

Example 9. Let x ≥ 0, n ∈ N. Show that

[x] + [x +
1

n
] + · · ·+ [x +

n− 1

n
] = [nx]

where [x] denotes the Gaussian Notation.

Proof. Define Ik = [k−1
n
, k
n
). Then for each x ≥ 0, there is a k such that x ∈ Ik. We hope to

perform induction on k. i.e. When x ∈ Ik, the equality holds.

(1) If k = 1, then 0 ≤ x< 1
n
. We find that 0 ≤ x + j

n
<x + n−1

n
= 1 for j = 0, 1, 2, · · · , n− 1.

So that [x + j
n
] = 0. On the other hand, since 0 ≤ nx<n · 1

n
= 1, [nx] = 0. Hence the

equality holds.

(2) Assume that when x0 ∈ Ik, [x0] + · · ·+ [x0 + n−1
n

] = [nx0]. Let x ∈ Ik+1. Then we know
that x− 1

n
∈ Ik. By induction hypothesis we obtain

[x− 1

n
] + [x] + · · ·+ [x− 1

n
+

n− 1

n
] = [n · (n− 1

n
)]

= [nx− 1]

= [nx]− 1

So that

[x] + · · ·+ [x− 1

n
+

n− 1

n
] + [x +

n− 1

n
] = [nx]− 1 + [x +

n− 1

n
]− [x− 1

n
]

= [nx]− 1 + 1

= [nx]

(3) By M.I, the equality holds for each natural number k, and then it holds no matter which
inteval Ik x belongs to. Hence the equality holds for all x ≥ 0.
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