Equivalence Relations, Partitions, and Rationals

April 5, 2012

(Recall that) An equivalence relation " \sim " on A is a relation satisfying the following conditions:

- (i) $x \sim x$ for all $x \in A$. [Reflexivity]
- (ii) If $x \sim y$ then $y \sim x$ for all $x, y \in A$. [Symmetry]
- (iii) If $x \sim y$ and $y \sim z$ then $x \sim z$ for all $x, y, z \in A$. [Transitivity]

Example 1. In \mathbb{Z} , we define $p \sim q$ if and only if 5|p-q. Then \sim is an equivalence relation on \mathbb{Z} . (In fact, $p \sim q$ means $p \equiv q \pmod{5}$.)

Proof. It clear that 5|0 = p - p, so $p \sim p$ for all p. If 5|p - q then 5|(p - q)(-q) = q - p, so $p \sim q$ implies $q \sim p$. If 5|p - q and 5|q - r then 5|(p - q) + (q - r) = p - r, so $p \sim q$ and $q \sim r$ implies $p \sim r$. Hence \sim is an equivalence relation on \mathbb{Z} .

Example 2. Let L denote all triangles in Euclidean plane. Then similarity of graphs decides an equivalence on L.

Proof. By proportion on lengths for corresponding edges, it's clear.

An important purpose for defining equivalence relations is their *equivalence classes*. With the properties of them, we might deal with complicated objects with a simple way.

Let A, \sim as above, and $x \in A$. Define the equivalence class of x by

$$[x]_{\sim} = \{ y \in A : y \sim x \}$$

and the quotient set is defined by

$$A/\sim=\{[x]_\sim \ \colon \ x\in A\,\}$$

Then we have a property:

Proposition 1. Let $A, \sim as$ above. Then

(a) For $x, y \in A$, if $x \sim y$ then $[x]_{\sim} = [y]_{\sim}$; if $x \nsim y$ then $[x]_{\sim} \cap [y]_{\sim} = \emptyset$.

$$(b) \cup_{x \in A} [x]_{\sim} = A.$$

In fact, this leads us to what is called a partition on a set.

Let A be a set, and Π be a collection of subsets of A. Π is called a partition on A if

(i) Whenever $P_1 \neq P_2$, $\in \Pi$, it follows that $P_1 \cap P_2 = \emptyset$.

(ii) $\bigcup \Pi (= \bigcup_{P \in \Pi} P) = A.$

Example 3. If $A := \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, then $\Pi := \{\{1, 4, 7\}, \{2, 5, 8\}, \{3, 6, 9\}\}$ is a partition on A.

Example 4. A/\sim is a partition on A (Why?). Sometimes, it is called the partition from \sim , and denoted Π_{\sim} .

Moreover, we wonder whether we can produce a equivalence relation from a given partition? We define

 $\sim_{\Pi} = \{(x, y): x, y \in P, \text{ for some } P \in \Pi\}$

Then we have to properties to show:

Proposition 2. \sim_{Π} is an equivalence relation on A. Π_{\sim} is a partition on A.

Proof. Verification for the three condition is quite direct. We only show the later assertion. For $p \in \Pi_{\sim}$. Let $P = [x]_{\sim}$ then $P \subset A$. If $P_1 \neq P_2$, choose $P_1 = [x_1]_{\sim}$ and $P_2 = [x_2]_{\sim}$. Let (Why can we let?) $x_0 \in [x_1]_{\sim} \cap [x_2]_{\sim}$. Then $x_0 \sim x_1$ and x_2 . Hence $x_1 \sim x_2$. Hence

$$P_1 = [x_1]_{\sim} \stackrel{Why?}{=} [x_2]_{\sim} = P_2,$$

a contradiction. Hence $P_1 \cap P_2 = \emptyset$. Let $a \in A$. Choose $[a]_{\sim} \in \Pi_{\sim}$, then $a \in [a]_{\sim}$. Hence $\bigcup \Pi = A$.

Theorem 1. Let A, \sim , and Π be as before. Then

- (1) $\sim_{\Pi_{\sim}} = \sim$.
- (2) $\Pi_{\sim_{\Pi}} = \Pi$.

Proof. For (1), if $(a, b) \in \sim_{\Pi_{\sim}}$, then $a, b \in P$ for some $P \in \Pi$. By definition of Π_{\sim} , $P = [x]_{\sim}$ for some $x \in A$. So we find that $a \sim x$ and $b \sim x$. Hence $a \sim b$ and then $(a, b) \in \sim$.

Conversely, given $(a, b) \in \sim$, then $a \sim b$ and $a, b \in [a]_{\sim}$. Since $[a]_{\sim} \in \Pi$, we obtain that $a, b \in \sim_{\Pi_{\sim}}$. Hence we have the equality.

For (2), Let $P \in \prod_{\sim \Pi}$. Then $P = [x]_{\sim \Pi}$ for some $x \in A$. Then $x \in P$. Since $x \in [x]_{\sim \Pi}$, $x \in P'$ for some $P' \in \Pi$. Then P and P' has a common element x, so $P = P' \in \Pi$.

Conversely, for $P \in \Pi$, we can find $x \in P$. Because $x \sim_{\Pi} x$, $[x]_{\sim_{\Pi}} \in \Pi_{\sim_{\Pi}}$. We are going to show that

$$P = [x]_{\sim \Pi}$$

Let $y \in [x]_{\sim_{\Pi}}$. Then $y \sim_{\Pi} x$. It follows that $x, y \in P'$ for some $P' \in \Pi$. Since $x \in P$, P' = P. This yields that $y \in P$. Let $y \in P$. By $x \in P$ and $P \in \Pi$ we obtain $x \sim_{\Pi} y$. So $y \in [x]_{\sim_{\Pi}}$. Hence $P = [x]_{\sim_{\Pi}}$, and then $P \in \Pi_{\sim_{\Pi}}$.

A little proposition afterward is:

Proposition 3. As all assumptions above, one has that

- (a) If $\Pi_{\sim_1} = \Pi_{\sim_2}$, then $\sim_1 = \sim_2$.
- (b) If $\sim_{\Pi_1} = \sim_{\Pi_2}$, then $\Pi_1 = \Pi_2$.

Proof. We simply have $\sim_1 = \sim_{\Pi_{\sim_1}} = \sim_{\Pi_{\sim_2}} = \sim_2$, and $\Pi_1 = \Pi_{\sim_{\Pi_1}} = \Pi_{\sim_{\Pi_2}} = \Pi_2$.

Finally I shall mention some important senses for application of equivalence relations for pure mathematics. One example is the *rationalization* for \mathbb{N} (or for an *Integral Domain*). In fact, in many other fields of mathematics such as the notion *homotopy* in *algebraic topology*, *textitp – adic numbers* in *algebraic number theory*, and so on.

Example 5. On $\mathbb{N} \times \mathbb{N}$, define

 $\langle a, b \rangle \sim \langle c, d \rangle$ if and only if ad = bc

Then we must have that \sim is an equivalence relation on $\mathbb{N} \times \mathbb{N}$. Further, the quotient set $\mathbb{N} \times \mathbb{N} / \sim$ will become the set of rationals (In intuitive sense, it means all positive rational numbers).

Proof. Reflexivity and symmetry are clear. We only show transitivity. If $\langle a, b \rangle \sim \langle c, d \rangle$ and $\langle c, d \rangle \sim \langle e, f \rangle$, then we have ad = bc and cf = de. It follows that

$$daf = adf = bcf = bde = dbe$$

Hence af = be, and then \sim is an equivalence relation.

Example 6. Define $\mathfrak{Q} = \mathbb{N} \times \mathbb{N} / \sim$. Then we hope to construct its operations. Intuitively, if $X, Y \in \mathfrak{Q}$, expressed as $[\langle x_1, x_2 \rangle]$ and $[\langle y_1, y_2 \rangle]$ respectively (We omit the subscription \sim since it contains no vagueness.), we may define

$$X + Y = [\langle x_1y_2 + x_2y_1, x_2y_2 \rangle]$$
$$Y \cdot Y = [\langle x_1y_1, x_2y_2 \rangle]$$

We then ought to show that this definition is well-defined. i.e. When X expressed as both $[\langle x_1, x_2 \rangle]$ and $[\langle r_1, r_2 \rangle]$, and Y both $[\langle y_1, y_2 \rangle]$ and $[\langle s_1, s_2 \rangle]$, then we must have $[\langle x_1y_2 + x_2y_1, x_2y_2 \rangle] = [\langle r_1s_2 + r_2s_1, r_2s_2 \rangle]$ and $[\langle x_1y_1, x_2y_2 \rangle] = [\langle r_1s_1, r_2s_2 \rangle]$. i.e.

$$\langle x_1 y_2 + x_2 y_1, x_2 y_2 \rangle \sim \langle r_1 s_2 + r_2 s_1, r_2 s_2 \rangle \langle x_1 y_1, x_2 y_2 \rangle \sim \langle r_1 s_1, r_2 s_2 \rangle$$

Proof. Assume $\langle x_1, x_2 \rangle \sim \langle r_1, r_2 \rangle$ and $\langle y_1, y_2 \rangle \sim \langle s_1, s_2 \rangle$. Then

$$(x_1y_2 + y_1x_2) \cdot r_2s_2$$

= $x_1r_2y_2s_2 + y_1s_2x_2r_2$
= $x_2r_1y_2s_2 + y_2s_1x_2r_2$
= $(r_1s_2 + r_2s_1) \cdot x_2y_2$

and

$$(x_1y_1) \cdot (r_2s_2) = x_1r_2y_1s_2 = x_2r_1s_1y_2 = (r_1s_1) \cdot (x_2y_2)$$

Hence the two equivalence holds.

Note that for $x \in \mathbb{N}$, we define $\bar{x} = [\langle x, 1 \rangle]$, and for $x, y \in \mathbb{N}$, we define $x/y = [\langle x, y \rangle]$.

Theorem 2. For given $X, Y \in \mathfrak{Q}$ (expressed as q/p, n/m respectively), there is a unique $U \in \mathfrak{Q}$ such that

 $X\cdot U=Y$

Proof. (Uniqueness) Assume $q/p \cdot s/r = n/m$ and $q/p \cdot s'/r' = n/m$. Then we have $\langle qs, pr \rangle \sim \langle qs', pr' \rangle$. It follows that pqr's = prqs'. Hence r's = rs', and then s/r = s'/r'.

(Existence) Choose U = ps/qr. Then $X \cdot U = q/p \cdot ps/qr = qps/pqr$. Because $qps \cdot r = pqr \cdot s$, we obtain $X \cdot U = s/r$.

As a consequence, we define $\frac{Y}{X}$ as the unique U in the previous theorem.

Recall that at first we begin with the pair $\langle x, y \rangle$, and by eauivalence classes we define x/y. Moreover, by above equation, we introduce the notation $\frac{N}{M}$. Now those x's in N and those \bar{x} looks alike, so we hope to illustrate the relationship between these two types of numbers.

The sense is that, we are used to denoting it $(\{\bar{x} : x \in \mathbb{N}\})$ by \mathfrak{N} , and view it the *exact* natural number set we always write and use. Hence

 $\mathfrak{N}\subset\mathfrak{Q}$

while the set \mathbb{N} is from now on hidden behind. Hence we have the following property.

Example 7. For each $X \in \mathfrak{Q}$, there are $M, N \in \mathfrak{N}$ such that

$$X = \frac{N}{M}$$

Proof. It's clear that we can write X in the following form

$$X = [\langle n, m \rangle] = n/m$$

By easy verification we obtain that

$$M \cdot n/m = \bar{m} \cdot n/m = \bar{n} = N$$

Hence $n/m = \frac{N}{M}$.

This is merely a simple introduction about construction of those rationals. There are many properties that I have not mentioned, for example, ordering, but all discussion above reveals enough information for those basic properties for rationals. If someone feels interested on this topic, a reference is *Foundations of Analysis* written by *Edmund Landau*.