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(Recall that) An equivalence relation ”∼” on A is a relation satisfying the following conditions:

(i) x ∼ x for all x ∈ A. [Reflexivity]

(ii) If x ∼ y then y ∼ x for all x, y ∈ A. [Symmetry]

(iii) If x ∼ y and y ∼ z then x ∼ z for all x, y, z ∈ A. [Transitivity]

Example 1. In Z, we define p ∼ q if and only if 5|p − q. Then ∼ is an equivalence relation on Z.
(In fact, p ∼ q means p ≡ q (mod 5). )

Proof. It clear that 5|0 = p − p, so p ∼ p for all p. If 5|p − q then 5|(p − q)(−q) = q − p, so p ∼ q
implies q ∼ p. If 5|p − q and 5|q − r then 5|(p − q) + (q − r) = p − r, so p ∼ q and q ∼ r implies
p ∼ r. Hence ∼ is an equivalence relation on Z.

Example 2. Let L denote all triangles in Euclidean plane. Then similarity of graphs decides an
equivalence on L.

Proof. By proportion on lengths for corresponding edges, it’s clear.

An important purpose for defining equivalence relations is their equivalence classes. With the
properties of them, we might deal with complicated objects with a simple way.

Let A,∼ as above, and x ∈ A. Define the equivalence class of x by

[x]∼ = {y ∈ A : y ∼ x }

and the quotient set is defined by

A/ ∼= {[x]∼ : x ∈ A }

Then we have a property:

Proposition 1. Let A,∼ as above. Then

(a) For x, y ∈ A, if x ∼ y then [x]∼ = [y]∼; if x ≁ y then [x]∼ ∩ [y]∼ = ∅.

(b) ∪x∈A[x]∼ = A.

In fact, this leads us to what is called a partition on a set.
Let A be a set, and Π be a collection of subsets of A. Π is called a partition on A if

(i) Whenever P1 6= P2, ∈ Π, it follows that P1 ∩ P2 = ∅.
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(ii)
⋃

Π (= ∪P∈ΠP ) = A.

Example 3. If A := {1, 2, 3, 4, 5, 6, 7, 8, 9}, then Π := { {1, 4, 7}, {2, 5, 8} {3, 6, 9} } is a partition
on A.

Example 4. A/ ∼ is a partition on A (Why?). Sometimes, it is called the partition from ∼, and
denoted Π∼.

Moreover, we wonder whether we can produce a equivalence relation from a given partition?
We define

∼Π= {(x, y) : x, y ∈ P, for some P ∈ Π}

Then we have to properties to show:

Proposition 2. ∼Π is an equivalence relation on A. Π∼ is a partition on A.

Proof. Verification for the three condition is quite direct. We only show the later assertion. For
p ∈ Π∼. Let P = [x]∼ then P ⊂ A. If P1 6= P2, choose P1 = [x1]∼ and P2 = [x2]∼. Let (Why can
we let?) x0 ∈ [x1]∼ ∩ [x2]∼. Then x0 ∼ x1 and x2. Hence x1 ∼ x2. Hence

P1 = [x1]∼
Why?
= [x2]∼ = P2,

a contradiction. Hence P1 ∩ P2 = ∅. Let a ∈ A. Choose [a]∼ ∈ Π∼, then a ∈ [a]∼. Hence⋃
Π = A.

Theorem 1. Let A, ∼, and Π be as before. Then

(1) ∼Π∼=∼.

(2) Π∼Π
= Π.

Proof. For (1), if (a, b) ∈∼Π∼ , then a, b ∈ P for some P ∈ Π. By definition of Π∼, P = [x]∼ for
some x ∈ A. So we find that a ∼ x and b ∼ x. Hence a ∼ b and then (a, b) ∈∼.

Conversely, given (a, b) ∈∼, then a ∼ b and a, b ∈ [a]∼. Since [a]∼ ∈ Π, we obtain that a, b ∈∼Π∼ .
Hence we have the equality.

For (2), Let P ∈ Π∼Π
. Then P = [x]∼Π

for some x ∈ A. Then x ∈ P . Since x ∈ [x]∼Π
, x ∈ P ′

for some P ′ ∈ Π. Then P and P ′ has a common element x, so P = P ′ ∈ Π.
Conversely, for P ∈ Π, we can find x ∈ P . Because x ∼Π x, [x]∼Π

∈ Π∼Π
. We are going to show

that

P = [x]∼Π

Let y ∈ [x]∼Π
. Then y ∼Π x. It follows that x, y ∈ P ′ for some P ′ ∈ Π. Since x ∈ P , P ′ = P .

This yields that y ∈ P . Let y ∈ P . By x ∈ P and P ∈ Π we obtain x ∼Π y. So y ∈ [x]∼Π
. Hence

P = [x]∼Π
, and then P ∈ Π∼Π

.

A little proposition afterward is:

Proposition 3. As all assumptions above, one has that

(a) If Π∼1
= Π∼2

, then ∼1=∼2.

(b) If ∼Π1
=∼Π2

, then Π1 = Π2.
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Proof. We simply have ∼1=∼Π∼1
=∼Π∼2

=∼2, and Π1 = Π∼Π1
= Π∼Π2

= Π2.

Finally I shall mention some important senses for application of equivalence relations for pure
mathematics. One example is the rationalization for N (or for an Integral Domain). In fact, in many
other fields of mathematics such as the notion homotopy in algebraic topology, textitp − adic numbers
in algebraic number theory, and so on.

Example 5. On N × N, define

〈a, b〉 ∼ 〈c, d〉 if and only if ad = bc

Then we must have that ∼ is an equivalence relation on N×N. Further, the quotient set N×N / ∼
will become the set of rationals (In intuitive sense, it means all positive rational numbers).

Proof. Reflexivity and symmetry are clear. We only show transitivity. If 〈a, b〉 ∼ 〈c, d〉 and 〈c, d〉 ∼
〈e, f〉, then we have ad = bc and cf = de. It follows that

daf = adf = bcf = bde = dbe

Hence af = be, and then ∼ is an equivalence relation.

Example 6. Define Q = N × N / ∼. Then we hope to construct its operations. Intuitively, if
X, Y ∈ Q, expressed as [〈x1, x2〉] and [〈y1, y2〉] respectively (We omit the subscription ∼ since it
contains no vagueness.), we may define

X + Y = [〈x1y2 + x2y1, x2y2〉]

Y · Y = [〈x1y1, x2y2〉]

We then ought to show that this definition is well-defined. i.e. When X expressed as both [〈x1, x2〉]
and [〈r1, r2〉], and Y both [〈y1, y2〉] and [〈s1, s2〉], then we must have [〈x1y2 + x2y1, x2y2〉] = [〈r1s2 +
r2s1, r2s2〉] and [〈x1y1, x2y2〉] = [〈r1s1, r2s2〉]. i.e.

〈x1y2 + x2y1, x2y2〉 ∼ 〈r1s2 + r2s1, r2s2〉

〈x1y1, x2y2〉 ∼ 〈r1s1, r2s2〉

Proof. Assume 〈x1, x2〉 ∼ 〈r1, r2〉 and 〈y1, y2〉 ∼ 〈s1, s2〉. Then

(x1y2 + y1x2) · r2s2

= x1r2y2s2 + y1s2x2r2

= x2r1y2s2 + y2s1x2r2

= (r1s2 + r2s1) · x2y2

and

(x1y1) · (r2s2)

= x1r2y1s2 = x2r1s1y2

= (r1s1) · (x2y2)

Hence the two equivalence holds.

Note that for x ∈ N, we define x̄ = [〈x, 1〉], and for x, y ∈ N, we define x/y = [〈x, y〉].
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Theorem 2. For given X, Y ∈ Q (expressed as q/p, n/m respectively), there is a unique U ∈ Q

such that

X · U = Y

Proof. (Uniqueness) Assume q/p · s/r = n/m and q/p · s′/r′ = n/m. Then we have 〈qs, pr〉 ∼
〈qs′, pr′〉. It follows that pqr′s = prqs′. Hence r′s = rs′, and then s/r = s′/r′.

(Existence) Choose U = ps/qr. Then X · U = q/p · ps/qr = qps/pqr. Because qps · r = pqr · s,
we obtain X · U = s/r.

As a consequence, we define Y
X

as the unique U in the previous theorem.
Recall that at first we begin with the pair 〈x, y〉, and by eauivalence classes we define x/y.

Moreover, by above equation, we introduce the notation N
M

. Now those x’s in N and those x̄ looks
alike, so we hope to illustrate the relationship between these two types of numbers.

The sense is that, we are used to denoting it ({x̄ : x ∈ N}) by N, and view it the exact natural
number set we always write and use. Hence

N ⊂ Q

while the set N is from now on hidden behind. Hence we have the following property.

Example 7. For each X ∈ Q, there are M, N ∈ N such that

X =
N

M

Proof. It’s clear that we can write X in the following form

X = [〈n, m〉] = n/m

By easy verification we obtain that

M · n/m = m̄ · n/m = n̄ = N

Hence n/m = N
M

.

This is merely a simple introduction about construction of those rationals. There are many
properties that I have not mentioned, for example, ordering, but all discussion above reveals enough
information for those basic properties for rationals. If someone feels interested on this topic, a
reference is Foundations of Analysis written by Edmund Landau.
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