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(Recall that) An equivalence relation ”~” on A is a relation satisfying the following conditions:
(i) « ~ z for all x € A. [Reflexivity]
(ii) If x ~y then y ~ x for all x,y € A. [Symmetry]
(iii) If z ~y and y ~ z then x ~ z for all z,y, 2 € A. [Transitivity]

Example 1. In Z, we define p ~ q if and only if 5|p — q. Then ~ is an equivalence relation on Z.
(In fact, p ~ g means p = q (mod 5). )

Proof. 1t clear that 5|0 = p — p, so p ~ p for all p. If 5|p — ¢ then 5|(p — q)(—¢) = ¢—p, sop ~ q
implies ¢ ~ p. If 5|p — ¢ and 5|¢ — r then 5|(p —q) + (¢ —r) = p —r, so p ~ q and ¢ ~ r implies
p ~ r. Hence ~ is an equivalence relation on Z. O

Example 2. Let L denote all triangles in Fuclidean plane. Then similarity of graphs decides an
equivalence on L.

Proof. By proportion on lengths for corresponding edges, it’s clear. [

An important purpose for defining equivalence relations is their equivalence classes. With the
properties of them, we might deal with complicated objects with a simple way.
Let A, ~ as above, and = € A. Define the equivalence class of = by

[z ={yeAd: y~uz}
and the quotient set is defined by
Af ~={la). : x€ A}
Then we have a property:
Proposition 1. Let A, ~ as above. Then
(a) Forxz,y € A, if & ~y then [x]. = [y|~; if x » y then [z]. N [y]. = 2.
(b) Ugealz]w = A.

In fact, this leads us to what is called a partition on a set.
Let A be a set, and II be a collection of subsets of A. II is called a partition on A if

(i) Whenever P, # P,, €11, it follows that P, N P, = @.



(il) U (= UpenP) = A.
Example 3. If A := {1,2,3,4,5,6,7,8,9}, then I1 := {{1,4,7}, {2,5,8} {3,6,9} } is a partition
on A.

Example 4. A/ ~ is a partition on A (Why?). Sometimes, it is called the partition from ~, and
denoted 11...

Moreover, we wonder whether we can produce a equivalence relation from a given partition?

We define
~n=A{(z,y) : =,y € P, forsomeP € II}
Then we have to properties to show:
Proposition 2. ~y is an equivalence relation on A. 1l is a partition on A.

Proof. Verification for the three condition is quite direct. We only show the later assertion. For
p € II.. Let P = [z]. then P C A. If P, # P,, choose P; = [x1]. and P, = [x5].. Let (Why can
we let?) xg € [z1]~ N [z2]~. Then zy ~ x; and z5. Hence z1 ~ x5. Hence

a contradiction. Hence P, N P, = @. Let a € A. Choose [a]. € IL., then a € [a].. Hence
U = A. O

Theorem 1. Let A, ~, and Il be as before. Then
(1) NI, =Y.
(2) I, =11

Proof. For (1), if (a,b) €~y_, then a,b € P for some P € II. By definition of II., P = [z]. for
some x € A. So we find that a ~ 2 and b ~ z. Hence a ~ b and then (a,b) €~.

Conversely, given (a,b) €~ then a ~ band a,b € [a].. Since [a].. € II, we obtain that a,b €~ _.
Hence we have the equality.

For (2), Let P € II.,. Then P = [z]., for some € A. Then = € P. Since x € [z]
for some P’ € II. Then P and P’ has a common element x, so P = P’ € II.

Conversely, for P € TI, we can find z € P. Because z ~y , [z], € Il.,. We are going to show
that

r e P

~T1Y

P =[a].,
Let y € [¢]~y. Then y ~p x. It follows that =,y € P’ for some P’ € II. Since x € P, P’ = P.
This yields that y € P. Let y € P. By x € P and P € II we obtain z ~p y. So y € [z].,. Hence
P = [z].,, and then P € Il . O

A little proposition afterward is:
Proposition 3. As all assumptions above, one has that
(a) If 1., =1l.,, then ~j=ry.
(b) If ~pn,=~m,, then I1; = Il;.



Proof. We simply have ~1=rLL, =L, =2, and Tl = H~H1 = H~n2 = IIs. O

Finally I shall mention some important senses for application of equivalence relations for pure
mathematics. One example is the rationalization for N (or for an Integral Domain). In fact, in many
other fields of mathematics such as the notion homotopyin algebraic topology, textitp — adic numbers
in algebraic number theory, and so on.

Example 5. On N x N, define
(a,b)y ~ (c,d) if and onlyif ad = be

Then we must have that ~ is an equivalence relation on N x N. Further, the quotient set NxN / ~
will become the set of rationals (In intuitive sense, it means all positive rational numbers).

Proof. Reflexivity and symmetry are clear. We only show transitivity. If (a,b) ~ (c,d) and (¢, d) ~
(e, f), then we have ad = bc and cf = de. It follows that

daf = adf = bef = bde = dbe
Hence af = be, and then ~ is an equivalence relation. [l

Example 6. Define Q = N x N / ~. Then we hope to construct its operations. Intuitively, if
X,Y € Q, expressed as [(x1,x2)] and [(y1,ys)] respectively (We omit the subscription ~ since it
contains no vagueness.), we may define

X +Y = [(x1y2 + 22y1, T2Yyo)]
Y Y = [(z1y1, 22ya))]

We then ought to show that this definition is well-defined. i.e. When X expressed as both [(z1, x9)]
and [(r1,72)], and 'Y both [(y1,y2)] and [(s1, s2)], then we must have [(x1ys + Toy1, Toya)] = [(r182 +
r9S1,T9S2)] and [{x1y1, Toya)] = [(r181,72892)]. i.e.

(T1Y2 + Tay1, Taya) ~ (1152 + 1251, T252)

<$1y1,9€2y2> ~ <7”181>7“282>

Proof. Assume (1, x9) ~ (r1,r2) and (y1,ys2) ~ (s1, 82). Then

(T1Yy2 + y12) - 252
= T1T2Y2S2 + Y1S2T2T2
= ToT1Y2S2 + Y2S51T2T2

= (1182 + ras1) - T2y

and
(@1y1) - (r252)
= T1T2Y152 = T2T151Y2
= (r1s1) - (2292)
Hence the two equivalence holds. L]

Note that for z € N, we define z = [(z, 1)], and for x,y € N, we define z/y = [(z, y)].
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Theorem 2. For given X,Y € Q (expressed as q/p, n/m respectively), there is a unique U € Q
such that

X -U=Y

Proof. (Uniqueness) Assume ¢/p - s/r = n/m and q/p - s'/r" = n/m. Then we have (gs,pr) ~
(qs’,pr'y. Tt follows that pgr's = prqs’. Hence r’'s = rs’, and then s/r = s'/r'.

(Existence) Choose U = ps/qr. Then X -U = q/p - ps/qr = qps/pqr. Because qps - r = pqr - s,
we obtain X - U = s/r. O

As a consequence, we define % as the unique U in the previous theorem.

Recall that at first we begin with the pair (x,y), and by eauivalence classes we define x/y.

Moreover, by above equation, we introduce the notation % . Now those x’s in N and those Z looks

alike, so we hope to illustrate the relationship between these two types of numbers.
The sense is that, we are used to denoting it ({Z : € N}) by M, and view it the ezact natural
number set we always write and use. Hence

NC
while the set N is from now on hidden behind. Hence we have the following property.

Example 7. For each X € Q, there are M, N € N such that

N
X="—
M

Proof. 1t’s clear that we can write X in the following form
X = [{n,m)] = n/m
By easy verification we obtain that

=N
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M-n/m=m-n/m=

Hence n/m = . O

This is merely a simple introduction about construction of those rationals. There are many
properties that I have not mentioned, for example, ordering, but all discussion above reveals enough
information for those basic properties for rationals. If someone feels interested on this topic, a
reference is Foundations of Analysis written by Edmund Landau.



