Cardinality

Jang-Ge

May 21, 2018

To consider the size of a set, the most important thing is about functions. If $f : A \to B$ is a function, the following properties are elementary:

1 (One-to-one). Supposely that whenever f(x) = f(y), it follows that x = y, then the function f is called one-to-one from A to B.

2 (Onto). Supposely that for each $b \in B$, there is an $a \in A$ such that f(a) = b, then this function f is called from A onto B.

3. An Injection (injective function) is an one-to-one function; a surjection (surjective function) is an onto function; a bijection (bijective function) is an injective and surjective function.

4 (Equinumerosity). The sets A, B are called equinumerous (of the same cardinality), denoted by $A \approx B$, if there is a bijection from A to B; $A \preceq B$ (of (weakly) less cardinality than) if there is an injection from A to B. $A \prec B$ (of strickly less cardinality than) if $A \preceq B$ but $A \not\approx B$. Sometimes, equinumerous is replaced by equipotent.

1 Bijections

Now I think it is necessary to verify that if those elementary functions are one-to-one and onto between each pair of given sets.

5. $f : \mathbb{R} \to \mathbb{R}$ with $f(x) = \pi x$ is one-to-one and onto because,

- (i) For $x, y \in \mathbb{R}$, if f(x) = f(y), i.e. $\pi x = \pi y$, then x = y immediately.
- (ii) For $y_0 \in \mathbb{R}$, choose $x = \frac{y_0}{\pi}$. Then $f(x) = \pi \cdot \frac{y_0}{\pi} = y_0$.

6. $g: \mathbb{R}^+ \to \mathbb{R}^+, x \to x^2$ is a bijective.

- (i) For $a, b \in \mathbb{R}^+$, if $a^2 = b^2$ then (a b)(a + b) = 0. Because $a + b \neq 0$, we obtain a b = 0, *i.e.* a = b.
- (ii) For $b_0 \in \mathbb{R}^+$, we choose $a = \sqrt{b_0}$. Then $g(a) = (\sqrt{b_0})^2 = b_0$.

Hence, g is bijective.

7. The function $u(x) = x^3$ in \mathbb{R} is one-to-one and onto.

Proof. For $y \in \mathbb{R}$, choose $x = \sqrt[3]{y}$. This implies that u is onto. If $x, y \in \mathbb{R}$ such that $x^3 = y^3$. Then consider

$$0 = x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$
$$= (x - y)\left((x + \frac{1}{2}y)^{2} + \frac{3}{4}y^{2}\right)$$

If $(x - y)\left((x + \frac{1}{2}y)^2 + \frac{3}{4}y^2\right) = 0$, then x = y. (= 0). If $(x - y)\left((x + \frac{1}{2}y)^2 + \frac{3}{4}y^2\right) \neq 0$, then x - y = 0. Hence u is one-to-one.

Another way to show "one-to-one" is that we have several cases according as x>0, x = 0, or x<0 and, y>0, y = 0, or y<0. For example, if x, y both >0 (<0) then $x^2 + xy + y^2>0$. Hence $x^3 - y^3 = 0$ implies x = y.

This division inspires us a helpful property.

- 8. If $A \cap B = C \cap D = \emptyset$, and $f : A \cup B \to C \cup D$ is
 - (i) one-to-one from A onto C and
 - (ii) one-to-one from B onto D,
- then f is a bijection.

This is a trivial statement, so we omit the proof.

Still another example is a trigonometric function.

9. Show that $G(x) = \sin x$, where $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is one-to-one from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ to (-1, 1).

Proof.

(one-to-one) If $x, y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that G(x) = G(y). Then

$$0 = \sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right).$$

Since $\frac{x+y}{2} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $\cos\left(\frac{x+y}{2}\right) \neq 0$, it follows that

$$\sin\left(\frac{x-y}{2}\right) = 0.$$

Hence x = y.

(onto) Let $K \in (-1, 1)$. Since

(i) $G(x) = \sin x$ is continuous in $[-\frac{\pi}{2}, \frac{\pi}{2}]$. (ii) $\sin(-\frac{\pi}{2}) = -1$, $\sin(\frac{\pi}{2}) = 1$. (iii) -1 < K < 1. Intermediate Value Theorem hence tell us that there is a $c \in (-\frac{\pi}{2}, \frac{\pi}{2})$ such that

 $G(c) = \sin c = K.$

Exercise 1. Check $\tan x$ is a bijection from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$.

2 Some Properties and Number Systems

Next, our purpose is to show that $\mathbb{N} \approx \mathbb{Z} \approx \mathbb{Q} \prec \mathbb{R} \approx \mathbb{C}$.

2.1 \mathbb{N} and \mathbb{Z}

10. $\mathbb{N} \approx \mathbb{Z}$

Proof. We ought to find a bijection. Let

$$f(n) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even;} \\ -\frac{n-1}{2}, & \text{otherwise.} \end{cases}$$
(1)

Then it is routine to show bijectivity.

For even natural numbers x, y, if f(x) = f(y), i.e. $\frac{x}{2} = \frac{y}{2}$, then x = y. Next, for $p \in \mathbb{Z}$, p > 0, we find that $f(2p) = \frac{2p}{2} = p$; For odd natural numbers x, y, if f(x) = f(y), i.e. $-\frac{x-1}{2} = -\frac{y-1}{2}$, then x = y. Similarly, if $p \in \mathbb{Z}$, $p \leq 0$, then $f(-2p+1) = -\frac{(-2p+1)-1}{2} = p$. By previous example, f is bijective.

2.2 \mathbb{N} and Fractions

For the goal of the fact that $\mathbb{Z} \approx \mathbb{Q}$, we need quite a few effort. Firstly, we embed a significant property into our discussion.

11. Let Λ be an index set. Given $f : \sqcup_{j \in \Lambda} A_j \to \sqcup_{j \in \Lambda} C_j$, if for any $j \in \Lambda$, f is one-to-one from A_j onto C_j , then f is one-to-one and onto.

Note that the notation $\sqcup_{j\in\Lambda}S_j$ means disjoint union. If the sets S_j 's are pairwise disjoint, we write $\sqcup_{j\in\Lambda}S_j$ for their union instead.

The statement is useful in the following property, by which we will show that $\mathbb{N} \approx \mathbb{Q}^+$.

12. $\mathbb{N} \approx \mathbb{N} \times \mathbb{N}$.

Proof. Define

$$\widehat{n} = \begin{cases} 0, & \text{if } n \le 0, \ n \in \mathbb{Z}; \\ 1 + 2 + 3 + \dots + n, & \text{if } n \in \mathbb{N}. \end{cases}$$
(2)

_	-	_	-	

Let p(m,n) = m + n - 2 + m. We're going to show that p gives a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} . If $m + n = k \in \mathbb{N}$, we hope to verify that f is bijective from

$$A_k := \{ \langle m, n \rangle : m + n = k \}$$

to

$$C_k := \widehat{(k-2, k-1]} \cap \mathbb{N}$$

Let k be given.

(1) For
$$\langle m, n \rangle \in A_k = \{ \langle 1, k - 1 \rangle, \langle 2, k - 2 \rangle, \cdots, \langle k - 1, 1 \rangle \},$$

$$\widehat{k - 2} = \widehat{m + n - 2} < p(m, n) = \widehat{m + n - 2} + m$$

$$= \widehat{k - 2} + m \le \widehat{k - 2} + (k - 1) = \widehat{k - 1}$$

This means p maps A_k into C_k .

(2) Let $\langle m_1, n_1 \rangle$, $\langle m_2, n_2 \rangle \in A_k$. Suppose that $p(\langle m_1, n_1 \rangle) = p(\langle m_2, n_2 \rangle)$, then

$$\widehat{k-2} + m_1 = \widehat{k-2} + m_2$$

So $m_1 = m_2$, and $n_1 = n_2$. This indicates, that f is one-to-one from A_k to C_k .

(3) Let $N \in C_k$. Denote

$$N = \widehat{k - 2} + j$$

Choose $\langle m, n \rangle = \langle j, k - j \rangle$. Then p(m, n) = N.

Since $\mathbb{N} \times \mathbb{N} = \bigsqcup_{k=2}^{\infty} A_k$, $\mathbb{N} = \bigsqcup_{k=2}^{\infty} \left(\widehat{(k-2, k-2]} \cap \mathbb{N} \right)$, which satisfies all conditions of previous example. Hence p is bijective. \Box

Our next mission is that $\mathbb{Q}^+ \preceq \mathbb{N} \times \mathbb{N}$. Since we already have $\mathbb{N} \preceq \mathbb{Q}^+$, we'll show that $\mathbb{N} \approx \mathbb{Q}^+$.

13. $\mathbb{Q}^+ \leq \mathbb{N} \times \mathbb{N}$ because, we may choose $f : \mathbb{Q}^+ \to \mathbb{N} \times \mathbb{N}$ by

$$f(\frac{q}{p}) = \langle q, p \rangle$$
 with $gcd(p,q) = 1$,

i.e.

$$f = \{ \langle \frac{a}{b}, \langle a, b \rangle \rangle : a, b \in \mathbb{N}, \ gcd(a, b) = 1 \}$$

i.e.

$$\frac{n}{m} \mapsto \langle \frac{n}{\gcd(n,m)}, \frac{m}{\gcd(n,m)} \rangle \qquad for \, m, n \in \mathbb{N}.$$

To show that f is injective, given $\frac{m_1}{n_1}, \frac{m_2}{n_2} \in \mathbb{Q}^+$ such that $gcd(m_1, n_1) = gcd(m_2, n_2) = 1$ and $f(\frac{m_1}{n_1}) = f(\frac{m_2}{n_2})$. Since $\langle m_1, n_1 \rangle = \langle m_2, n_2 \rangle$, it follows that $m_1 = m_2$ and $n_1 = n_2$.

2.3 Fractions to \mathbb{Q}^+ and \mathbb{Q}

14. If $B \approx \mathbb{N}$, $A \subset B$, and $\mathbb{N} \preceq A$, then $A \approx \mathbb{N}$.

Proof. Denote

$$B = \{b_1, b_2, \cdots\}$$

Then we hope to construct a sequence representing A, i.e. $A = \{y_1, y_2, \dots\}$.

Let n_1 be the smallest integer n such that $b_n \in A$, and write $A_1 = A \setminus \{n_1\}$.

Let n_2 be the smallest integer $n > n_1$ such that $b_n \in A_1$, and write $A_2 = A_1 \setminus \{n_2\}$.

Let n_3 be the smallest integer $n > n_2$ such that $b_n \in A_2$, and write $A_3 = A_2 \setminus \{n_3\}$.

:

The process can repeat permanently because $\mathbb{N} \leq A_j$ for all $j \in \mathbb{N}$ (Why?). Since $A_j \neq \emptyset$, n_{j+1} can be chosen (from A_j). Next, to show

$$A = B_0 := \{b_{n_1}, b_{n_2}, \cdots\}$$

 $B_0 \subset A$ is trivial. Let $a \in A \subset B$. Then $a = b_m$ for some $m \in \mathbb{N}$. Because $1 \leq n_1 < n_2 < \cdots$, we know $m \in (n_j, n_{j+1}]$. It follows that $a = b_{n_{n+1}}$. Hence $A \subset B_0$. Therefore $A = B_0$, and then $A \approx \mathbb{N}$.

The following two propositions are prepared for the third proposition.

15. If $A \leq C$, then $A \approx B$ for some $B \subset C$. The reason is that, if f is one-to-one from A to C, then f is from A onto $B := f(A) \subset C$.

16. If $A \leq B_1$ and $B_1 \approx B_2$, then $A \leq B_2$. We derive this as follow: If f is one-to-one from A to B_1 and g is a bijection from B_1 to B_2 , then $g \circ f$ is injective from A to B_2 . **17.** $\mathbb{N} \approx \mathbb{Q}^+$.

Proof. We know that $\mathbb{Q}^+ \leq \mathbb{N} \times \mathbb{N}$. Then $\mathbb{Q}^+ \approx N$ for some $N \subset \mathbb{N} \times \mathbb{N}$. The result is immediate from preceding examples.

18. We can now show equinumerosity between \mathbb{Z} and \mathbb{Q} . Since we already have a one-to-one function f from \mathbb{N} onto \mathbb{Q}^+ . Let $F : \mathbb{Z} \to \mathbb{Q}$, by

$$F(x) = \begin{cases} f(x), & \text{if } n \in \mathbb{N}; \\ 0, & \text{if } x = 0; \\ -f(-x), & \text{if } x \in -\mathbb{N}. \end{cases}$$
(3)

Then F is bijective.

2.4 \mathbb{Q} and \mathbb{R}

We're going to show a more astonishing property, that \mathbb{Q} contains (strictly) less elements than \mathbb{R} . Before reaching a precise proof, we need some preparation.

19. If $A \approx B$, $B \approx C$, then $A \approx C$. A simple proof is: Suppose that f, g are bijections between A, B and C. Then $g \circ f$ is bijective from A to C.

20. $\mathbb{R}^+ \approx \mathbb{R}$ because, the functions $f(x) := e^x$ and

$$g(x) = \begin{cases} x+1, & \text{if } x \ge 0; \\ \frac{-x}{1-x}, & \text{if } x < 0. \end{cases}$$
(4)

are one-to-one from \mathbb{R} to \mathbb{R}^+ .

21. $\mathbb{N} \prec \mathbb{R}^+$.

Proof. It's clear that $\mathbb{N} \leq \mathbb{R}^+$. Assume that $\mathbb{R}^+ = \{f_0, f_1, f_2, \cdots\}$, written in a sequence. We list the elements below in decimal expression.

$$f_0 = f_{00} \cdot f_{01} f_{02} f_{03} f_{04} \cdots$$

$$f_1 = f_{10} \cdot f_{11} f_{12} f_{13} f_{14} \cdots$$

$$f_2 = f_{20} \cdot f_{21} f_{22} f_{23} f_{24} \cdots$$

$$f_3 = f_{30} \cdot f_{31} f_{32} f_{33} f_{34} \cdots$$

:

The main idea is to construct a decimal number which is none of the f_j 's. Denote $f_{\infty} = f_{\infty 0} \cdot f_{\infty 1} f_{\infty 2} f_{\infty 3} \cdots$, where

$$f_{\infty j} = \begin{cases} 7, & \text{if } f_{jj} = 3; \\ 3, & \text{Otherwise.} \end{cases}$$
(5)

Then $f_{\infty} \in \mathbb{R}^+$. It is some f_k , but $f_{\infty k} \neq f_{kk}$, a contradiction. Hence $\mathbb{N} \not\approx \mathbb{R}^+$. This means $\mathbb{N} \prec \mathbb{R}^+$.

22. We can now show that $\mathbb{Q} \prec \mathbb{R}$. It's well-known that $\mathbb{Q} \preceq \mathbb{R}$. Assume that $\mathbb{Q} \approx \mathbb{R}$. Since $\mathbb{N} \approx \mathbb{Q}$ and $\mathbb{R} \approx \mathbb{R}^+$, it follows that $\mathbb{N} \approx \mathbb{R}^+$, a contradiction.

2.5 \mathbb{R} to \mathbb{C}

The last thing we hope to verify is that $\mathbb{R} \approx \mathbb{C}$. Similarly as before, for convenience, we divid it into several parts.

23. $(0,1) \approx (0,1) \times (0,1)$.

To give a precise proof, we need the help of **Schröder-Bernstein Theorem**, i.e. if $A \leq B$ and $B \leq A$ then $A \approx B$.

Proof. The map $x \mapsto (x, \frac{1}{2})$ is an injection. Define $f: (0,1) \times (0,1) \to (0,1)$ by

$$(a,b) := (0.a_1a_2a_3\cdots, 0.b_1b_2b_3\cdots) \mapsto 0.a_1b_1a_2b_2a_3b_3\cdots$$

where none of a, b has consecutive 9's, i.e. neither a nor b is in the form $0.d_1d_2\cdots d_j9999\cdots$. Then if $a = 0.a_1a_2\cdots$, $b = 0.b_1b_2\cdots$, $c = 0.c_1c_2\cdots$ and $d = 0.d_1d_2\cdots$ are such that f(a, b) = f(c, d), we write

$$0.a_1b_1a_2b_2\cdots = 0.c_1d_1c_2d_2\cdots$$

According to uniqueness of decimal expression, it follows that $a_j = c_j$ and $b_j = d_j$. Hence f is an injection. The property is then proved by Schröder-Bernstein Theorem.

Note that the function f is not onto. In fact, we can find no pair mapping to the number $0.010191919191 \cdots$ in (0, 1), hence we need to show *double injectivity*.

The following is a slight modification to our final goal.

24. For $(a,b) \subset \mathbb{R}$, $(a,b) \approx (0,1)$. The map can be chosen as f(x) = (b-a)x + a.

25. $(0,1) \approx \mathbb{R}$. A bijection between them can be chosen as

$$f(x) = \frac{x}{1+|x|}$$

from \mathbb{R} onto (-1,1) or

$$g(x) = \tan x$$

from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ to \mathbb{R} .

26. $(0,1) \times (0,1) \approx \mathbb{R} \times \mathbb{R}$.

Proof. Let $f:(0,1) \to \mathbb{R}$ be bijective. Then

$$F(a,b) = (f(a), f(b)) \quad on(0,1) \times (0,1)$$

is a bijection that we desire.

27. Since $\mathbb{R} \approx (0,1)$, $(0,1) \approx (0,1) \times (0,1)$, $(0,1) \times (0,1) \approx \mathbb{R} \times \mathbb{R}$, we conclude that $\mathbb{R} \approx \mathbb{R} \times \mathbb{R}$.

28. $\mathbb{R} \times \mathbb{R} \approx \mathbb{C}$, because we have the function k(x, y) = x + iy. Therefore we obtain the final equinumerosity

$$\mathbb{R} \approx \mathbb{C}.$$

3 Countable and Uncountable Infinities

Although we've shown that the five basic sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ have only 2 levels about their amounts of elements, yet we even have no idea about what an infinite set really is. Our intuition might tell us that a finite set must contain some *n* elements. That means, it must be equinumerous to some *standard set* which we consider to have *n* elements. In the following discussion, this standard set will naturally be chosen as $I_n := \{1, 2, 3, \dots, n\}$.

Except for the notion of an infinite set, we have another notion called countable sets. The difference from countability depends on whether the given set can be listed in a (finite of infinite) sequence.

29. We now make a convention that \mathbb{W} means the whole number set. i.e. $\mathbb{W} = \mathbb{N} \cup \{0\}$. Define $I_n := \{1, 2, \dots, n\} = \{k \in \mathbb{N} : 1 \leq k \leq n\}$, and $I_0 = \emptyset$, for convenience of later consideration.

30. A set S is called finite if $S \approx I_n$ for some $n \in \mathbb{W}$. If S is not finite, then S is called infinite. Note that the "new" notion leads to no contradiction about what are discussed before because we did not mention the word "infinite" previously.

31. A set K is called countable if all elements of K are in a (finite or infinite) sequence, i.e. if $K \approx I_n$ for some $n \in \mathbb{W}$ or $K \approx \mathbb{N}$. In the later case, K is also called denumerable. So K is countable if K is either finite or denumerable. If K is not countable, we say K is uncountable.

There are many "trivial" statements concerning infinite sets, but not all of them is easy to prove.

32. If S is an infinite set, and $T \subset S$, then either T or $S \setminus T$ is infinite.

Proof. Assume that S and $S \setminus T$ are both finite. Let $f : I_n \to S$ and $g : I_m \to S \setminus T$ be bijections. Then define $\varphi : I_{m+n} \to S$ as follow:

$$\varphi(x) = \begin{cases} f(x), & \text{if } x = 1, 2, 3 \cdots, n; \\ g(x-n), & \text{if } x = n+1, n+2, \cdots, n+m. \end{cases}$$
(6)

Then φ is one-to-one from I_{n+m} onto S, a contradiction to the fact that S is infinite.

33. The union of a finite set and a denumerable set is denumerable because, if the finite set is expressed as $\{a_1, a_2, \dots, a_n\}$ while the other $\{b_1, b_2, \dots\}$, then the union $\{a_1, \dots, a_n, b_1, b_2, \dots\}$ is equinumerous to a subset (why not exactly ?) of $\{\langle a, 1 \rangle, \dots, \langle a, n \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \dots\}$. Moreover, $\mathbb{N} \leq$ the union, we conclude that \mathbb{N} is equinumerous to the union.

34. The disjoint union of two denumerable sets are denumerable. Therefore, the disjoint union of n denumerable sets are also denumerable.

Proof. It easy to check that \mathbb{N} is equinumerous to $2\mathbb{N}$ and $2\mathbb{N}+1$ (We define $2\mathbb{N} = \{2, 4, 6, 8, \cdots\}$ and $2\mathbb{N}+1 = \{1, 3, 5, \cdots\}$.). Let A, B be two disjoint sets. Choose $f : 2\mathbb{N} \to A, g : 2\mathbb{N}+1 \to B$ as bijections. Define $G : \mathbb{N} \to A \sqcup B$ by

$$G(x) = \begin{cases} f(x), & \text{if } x \text{ is even;} \\ g(x), & \text{if } x \text{ is odd.} \end{cases}$$
(7)

Then G shows that $A \sqcup B$ is denumerable.

35. How about the union of n denumerable sets? How about a denumerable union of denumerable sets?

For the second assertion, we need some observation.

36. The denumerable union of pairwise disjoint denumerable sets are denumerable.

Proof. Denote these sets by S_1, S_2, \cdots , where

$$S_{1} = \{s_{11}, s_{12}, s_{13}, \cdots \}$$
$$S_{2} = \{s_{21}, s_{22}, s_{23}, \cdots \}$$
$$S_{3} = \{s_{31}, s_{32}, s_{33}, \cdots \}$$
$$\vdots$$

are their elements. Then the mapping $\langle i, j \rangle \leftrightarrow s_{ij}$ is bijective. Hence $\mathbb{N} \approx \bigcup_{n \in \mathbb{N}} S_n$.

37. A set S is countable if and only if $S \leq \mathbb{N}$.

Proof. If S is denumerable, then $S \approx \mathbb{N}$ and hence $S \preceq \mathbb{N}$. If S if finite, then $S \preceq \mathbb{N}$ because $I_n \preceq \mathbb{N}$. Conversely, Let f be one-to-one from S into \mathbb{N} . Let T = Im(f). Then

- (a) If T contains no maximum, then $\mathbb{N} \leq T$ (why?). Since $T \subset \mathbb{N}$, we obtain that $\mathbb{N} \approx T$. Since f is onto T, it follows that $S \approx T$.
- (b) If T contains a maximum, say $n_0 \in \mathbb{N}$. Then $T \subset I_{n_0}$. Hence T is equinumerous to some I_m (why? This might be proved by induction.). Similarly, the assertion is proved by $S \approx T \approx I_m$.

38. The denumerable union of pairwise disjoint countable sets are countable.