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To consider the size of a set, the most important thing is about functions. If f : A → B
is a function, the following properties are elementary:

1 (One-to-one). Supposely that whenever f(x) = f(y), it follows that x = y, then the function
f is called one-to-one from A to B.

2 (Onto). Supposely that for each b ∈ B, there is an a ∈ A such that f(a) = b, then this
function f is called from A onto B.

3. An Injection (injective function) is an one-to-one function; a surjection (surjective function)
is an onto function; a bijection (bijective function) is an injective and surjective function.

4 (Equinumerosity). The sets A, B are called equinumerous (of the same cardinality), denoted
by A ≈ B, if there is a bijection from A to B; A � B (of (weakly) less cardinality than) if
there is an injection from A to B. A ≺ B (of strickly less cardinality than) if A � B but
A 6≈ B. Sometimes, equinumerous is replaced by equipotent.

1 Bijections

Now I think it is necessary to verify that if those elementary functions are one-to-one and
onto between each pair of given sets.

5. f : R→ R with f(x) = πx is one-to-one and onto because,

(i) For x, y ∈ R, if f(x) = f(y), i.e. πx = πy, then x = y immediately.

(ii) For y0 ∈ R, choose x = y0
π

. Then f(x) = π · y0
π

= y0.

6. g : R+ → R+, x→ x2 is a bijective.

(i) For a, b ∈ R+, if a2 = b2 then (a− b)(a+ b) = 0. Because a+ b 6= 0, we obtain a− b = 0,
i.e. a = b.

(ii) For b0 ∈ R+, we choose a =
√
b0. Then g(a) = (

√
b0)2 = b0.

Hence, g is bijective.
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7. The function u(x) = x3 in R is one-to-one and onto.

Proof. For y ∈ R, choose x = 3
√
y. This implies that u is onto. If x, y ∈ R such that x3 = y3.

Then consider

0 = x3 − y3 = (x− y)(x2 + xy + y2)

= (x− y)

(
(x+

1

2
y)2 +

3

4
y2

)
If (x − y)

(
(x+ 1

2
y)2 + 3

4
y2
)

= 0, then x = y. (= 0). If (x − y)
(
(x+ 1

2
y)2 + 3

4
y2
)
6= 0, then

x− y = 0. Hence u is one-to-one.

Another way to show ”one-to-one” is that we have several cases according as x>0, x = 0,
or x<0 and, y>0, y = 0, or y<0. For example, if x, y both >0 (<0) then x2 + xy + y2>0.
Hence x3 − y3 = 0 implies x = y.

This division inspires us a helpful property.

8. If A ∩B = C ∩D = ∅, and f : A ∪B → C ∪D is

(i) one-to-one from A onto C and

(ii) one-to-one from B onto D,

then f is a bijection.
This is a trivial statement, so we omit the proof.

Still another example is a trigonometric function.

9. Show that G(x) = sin x, where x ∈ (−π
2
, π

2
) is one-to-one from (−π

2
, π

2
) to (−1, 1).

Proof.

(one-to-one) If x, y ∈ (−π
2
, π

2
) such that G(x) = G(y). Then

0 = sinx− sin y = 2 cos

(
x+ y

2

)
sin

(
x− y

2

)
.

Since x+y
2
∈ (−π

2
, π

2
), cos

(
x+y

2

)
6= 0, it follows that

sin

(
x− y

2

)
= 0.

Hence x = y.

(onto) Let K ∈ (−1, 1). Since

(i) G(x) = sinx is continuous in [−π
2
, π

2
].

(ii) sin(−π
2
) = −1, sin(π

2
) = 1.

(iii) −1<K<1.
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Intermediate Value Theorem hence tell us that there is a c ∈ (−π
2
, π

2
) such that

G(c) = sin c = K.

Exercise 1. Check tanx is a bijection from (−π
2
, π

2
)→ R.

2 Some Properties and Number Systems

Next, our purpose is to show that N ≈ Z ≈ Q ≺ R ≈ C.

2.1 N and Z
10. N ≈ Z

Proof. We ought to find a bijection. Let

f(n) =

{
n
2
, if n is even;

−n−1
2
, otherwise.

(1)

Then it is routine to show bijectivity.
For even natural numbers x, y, if f(x) = f(y), i.e. x

2
= y

2
, then x = y. Next, for p ∈ Z, p>0,

we find that f(2p) = 2p
2

= p; For odd natural numbers x, y, if f(x) = f(y), i.e. −x−1
2

= −y−1
2

,

then x = y. Similarly, if p ∈ Z, p ≤ 0, then f(−2p + 1) = − (−2p+1)−1
2

= p. By previous
example, f is bijective.

2.2 N and Fractions

For the goal of the fact that Z ≈ Q, we need quite a few effort. Firstly, we embed a significant
property into our discussion.

11. Let Λ be an index set. Given f : tj∈ΛAj → tj∈ΛCj, if for any j ∈ Λ, f is one-to-one
from Aj onto Cj, then f is one-to-one and onto.

Note that the notation tj∈ΛSj means disjoint union. If the sets Sj’s are pairwise disjoint,
we write tj∈ΛSj for their union instead.

The statement is useful in the following property, by which we will show that N ≈ Q+.

12. N ≈ N× N.

Proof. Define

n̂ =

{
0, if n ≤ 0, n ∈ Z;

1 + 2 + 3 + · · ·+ n, if n ∈ N.
(2)
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Let p(m,n) = ̂m+ n− 2 +m. We’re going to show that p gives a bijection from N×N to
N. If m+ n = k ∈ N, we hope to verify that f is bijective from

Ak := {〈m,n〉 : m+ n = k}

to

Ck := (k̂ − 2, k̂ − 1] ∩ N.

Let k be given.

(1) For 〈m,n〉 ∈ Ak = {〈1, k − 1〉, 〈2, k − 2〉, · · · , 〈k − 1, 1〉},

k̂ − 2 = ̂m+ n− 2<p(m,n) = ̂m+ n− 2 +m

= k̂ − 2 +m ≤ k̂ − 2 + (k − 1) = k̂ − 1

This means p maps Ak into Ck.

(2) Let 〈m1, n1〉, 〈m2, n2〉 ∈ Ak. Suppose that p(〈m1, n1〉) = p(〈m2, n2〉), then

k̂ − 2 +m1 = k̂ − 2 +m2

So m1 = m2, and n1 = n2. This indicates, that f is one-to-one from Ak to Ck.

(3) Let N ∈ Ck. Denote

N = k̂ − 2 + j

Choose 〈m,n〉 = 〈j, k − j〉. Then p(m,n) = N .

Since N × N = t∞k=2Ak, N = t∞k=2

(
(k̂ − 2, k̂ − 2] ∩ N

)
, which satisfies all conditions of

previous example. Hence p is bijective.

Our next mission is that Q+ � N × N. Since we already have N � Q+, we’ll show that
N ≈ Q+.

13. Q+ � N× N because, we may choose f : Q+ → N× N by

f(
q

p
) = 〈q, p〉 with gcd(p, q) = 1,

i.e.

f = {〈 a
b
, 〈a, b〉 〉 : a, b ∈ N, gcd(a, b) = 1}

i.e.

n

m
7→ 〈 n

gcd(n,m)
,

m

gcd(n,m)
〉 form, n ∈ N.

To show that f is injective, given m1

n1
, m2

n2
∈ Q+ such that gcd(m1, n1) = gcd(m2, n2) = 1 and

f(m1

n1
) = f(m2

n2
). Since 〈m1, n1〉 = 〈m2, n2〉, it follows that m1 = m2 and n1 = n2.
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2.3 Fractions to Q+ and Q
14. If B ≈ N, A ⊂ B, and N � A, then A ≈ N.

Proof. Denote

B = {b1, b2, · · · }

Then we hope to construct a sequence representing A, i.e. A = {y1, y2, · · · }.
Let n1 be the smallest integer n such that bn ∈ A, and write A1 = A \ {n1}.
Let n2 be the smallest integer n>n1 such that bn ∈ A1, and write A2 = A1 \ {n2}.
Let n3 be the smallest integer n>n2 such that bn ∈ A2, and write A3 = A2 \ {n3}.
...

The process can repeat permanently because N � Aj for all j ∈ N (Why?). Since Aj 6= ∅,
nj+1 can be chosen (from Aj). Next, to show

A = B0 := {bn1 , bn2 , · · · }

B0 ⊂ A is trivial. Let a ∈ A ⊂ B. Then a = bm for some m ∈ N. Because 1 ≤ n1<n2< · · · ,
we know m ∈ (nj, nj+1]. It follows that a = bnn+1 . Hence A ⊂ B0. Therefore A = B0, and
then A ≈ N.

The following two propositions are prepared for the third proposition.

15. If A � C, then A ≈ B for some B ⊂ C. The reason is that, if f is one-to-one from A to
C, then f is from A onto B := f(A) ⊂ C.

16. If A � B1 and B1 ≈ B2, then A � B2. We derive this as follow: If f is one-to-one from
A to B1 and g is a bijection from B1 to B2, then g ◦ f is injective from A to B2.

17. N ≈ Q+.

Proof. We know that Q+ � N × N. Then Q+ ≈ N for some N ⊂ N × N. The result is
immediate from preceding examples.

18. We can now show equinumerosity between Z and Q. Since we already have a one-to-one
function f from N onto Q+. Let F : Z→ Q, by

F (x) =


f(x), if n ∈ N;

0, if x = 0;

−f(−x), if x ∈ −N.

(3)

Then F is bijective.
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2.4 Q and R
We’re going to show a more astonishing property, that Q contains (strictly) less elements than
R. Before reaching a precise proof, we need some preparation.

19. If A ≈ B, B ≈ C, then A ≈ C. A simple proof is: Suppose that f, g are bijections between
A,B and C. Then g ◦ f is bijective from A to C.

20. R+ ≈ R because, the functions f(x) := ex and

g(x) =

{
x+ 1, if x ≥ 0;
−x
1−x , if x<0.

(4)

are one-to-one from R to R+.

21. N ≺ R+.

Proof. It’s clear that N � R+. Assume that R+ = {f0, f1, f2, · · · }, written in a sequence. We
list the elements below in decimal expression.

f0 = f00.f01f02f03f04 · · ·
f1 = f10.f11f12f13f14 · · ·
f2 = f20.f21f22f23f24 · · ·
f3 = f30.f31f32f33f34 · · ·

...

The main idea is to construct a decimal number which is none of the fj’s. Denote f∞ =
f∞0.f∞1f∞2f∞3 · · · , where

f∞j =

{
7, if fjj = 3;

3, Otherwise.
(5)

Then f∞ ∈ R+. It is some fk, but f∞k 6= fkk, a contradiction. Hence N 6≈ R+. This means
N ≺ R+.

22. We can now show that Q ≺ R. It’s well-known that Q � R. Assume that Q ≈ R. Since
N ≈ Q and R ≈ R+, it follows that N ≈ R+, a contradiction.

2.5 R to C
The last thing we hope to verify is that R ≈ C. Similarly as before, for convenience, we divid
it into several parts.

23. (0, 1) ≈ (0, 1)× (0, 1).

To give a precise proof, we need the help of Schröder-Bernstein Theorem, i.e. if A � B
and B � A then A ≈ B.
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Proof. The map x 7→ (x, 1
2
) is an injection. Define f : (0, 1)× (0, 1)→ (0, 1) by

(a, b) := (0.a1a2a3 · · · , 0.b1b2b3 · · · ) 7→ 0.a1b1a2b2a3b3 · · ·

where none of a, b has consecutive 9’s, i.e. neither a nor b is in the form 0.d1d2 · · · dj9999 · · · .
Then if a = 0.a1a2 · · · , b = 0.b1b2 · · · , c = 0.c1c2 · · · and d = 0.d1d2 · · · are such that f(a, b) =
f(c, d), we write

0.a1b1a2b2 · · · = 0.c1d1c2d2 · · ·

According to uniqueness of decimal expression, it follows that aj = cj and bj = dj. Hence f
is an injection. The property is then proved by Schröder-Bernstein Theorem.

Note that the function f is not onto. In fact, we can find no pair mapping to the number
0.010191919191 · · · in (0, 1), hence we need to show double injectivity.

The following is a slight modification to our final goal.

24. For (a, b) ⊂ R, (a, b) ≈ (0, 1). The map can be chosen as f(x) = (b− a)x+ a.

25. (0, 1) ≈ R. A bijection between them can be chosen as

f(x) =
x

1 + |x|

from R onto (−1, 1) or

g(x) = tan x

from (−π
2
, π

2
) to R.

26. (0, 1)× (0, 1) ≈ R× R.

Proof. Let f : (0, 1)→ R be bijective. Then

F (a, b) = (f(a), f(b)) on (0, 1)× (0, 1)

is a bijection that we desire.

27. Since R ≈ (0, 1), (0, 1) ≈ (0, 1)×(0, 1), (0, 1)×(0, 1) ≈ R×R, we conclude that R ≈ R×R.

28. R× R ≈ C, because we have the function k(x, y) = x+ iy. Therefore we obtain the final
equinumerosity

R ≈ C.
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3 Countable and Uncountable Infinities

Although we’ve shown that the five basic sets N,Z,Q,R,C have only 2 levels about their
amounts of elements, yet we even have no idea about what an infinite set really is. Our
intuition might tell us that a finite set must contain some n elements. That means, it must
be equinumerous to some standard set which we consider to have n elements. In the following
discussion, this standard set will naturally be chosen as In := {1, 2, 3, · · · , n}.

Except for the notion of an infinite set, we have another notion called countable sets. The
difference from countability depends on whether the given set can be listed in a (finite of
infinite) sequence.

29. We now make a convention that W means the whole number set. i.e. W = N ∪ {0}.
Define In := {1, 2, · · · , n} = {k ∈ N : 1 ≤ k ≤ n}, and I0 = ∅, for convenience of later
consideration.

30. A set S is called finite if S ≈ In for some n ∈ W. If S is not finite, then S is called
infinite. Note that the ”new” notion leads to no contradiction about what are discussed before
because we did not mention the word ”infinite” previously.

31. A set K is called countable if all elements of K are in a (finite or infinite) sequence, i.e.
if K ≈ In for some n ∈W or K ≈ N. In the later case, K is also called denumerable. So K is
countable if K is either finite or denumerable. If K is not countable, we say K is uncountable.

There are many ”trivial” statements concerning infinite sets, but not all of them is easy
to prove.

32. If S is an infinite set, and T ⊂ S, then either T or S \ T is infinite.

Proof. Assume that S and S \ T are both finite. Let f : In → S and g : Im → S \ T be
bijections. Then define ϕ : Im+n → S as follow:

ϕ(x) =

{
f(x), if x = 1, 2, 3 · · · , n;

g(x− n), if x = n+ 1, n+ 2, · · · , n+m.
(6)

Then ϕ is one-to-one from In+m onto S, a contradiction to the fact that S is infinite.

33. The union of a finite set and a denumerable set is denumerable because, if the finite set is
expressed as {a1, a2, · · · , an} while the other {b1, b2, · · · }, then the union {a1, · · · , an, b1, b2, · · · }
is equinumerous to a subset (why not exactly ?) of {〈a, 1〉, · · · 〈a, n〉, 〈b, 1〉, 〈b, 2〉, · · · }. More-
over, N � the union, we conclude that N is equinumerous to the union.

34. The disjoint union of two denumerable sets are denumerable. Therefore, the disjoint union
of n denumerable sets are also denumerable.

Proof. It easy to check that N is equinumerous to 2N and 2N+1 (We define 2N = {2, 4, 6, 8, · · · }
and 2N+1 = {1, 3, 5, · · · }.). Let A, B be two disjoint sets. Choose f : 2N→ A, g : 2N+1→ B
as bijections. Define G : N→ A tB by

G(x) =

{
f(x), if x is even;

g(x), if x is odd.
(7)

Then G shows that A tB is denumerable.
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35. How about the union of n denumerable sets?
How about a denumerable union of denumerable sets?

For the second assertion, we need some observation.

36. The denumerable union of pairwise disjoint denumerable sets are denumerable.

Proof. Denote these sets by S1, S2, · · · , where

S1 = {s11, s12, s13, · · · }
S2 = {s21, s22, s23, · · · }
S3 = {s31, s32, s33, · · · }

...

are their elements. Then the mapping 〈i, j〉 ↔ sij is bijective. Hence N ≈
⋃
n∈N Sn.

37. A set S is countable if and only if S � N.

Proof. If S is denumerable, then S ≈ N and hence S � N. If S if finite, then S � N because
In � N. Conversly, Let f be one-to-one from S into N. Let T = Im(f). Then

(a) If T contains no maximum, then N � T (why?). Since T ⊂ N, we obtain that N ≈ T .
Since f is onto T , it follows that S ≈ T .

(b) If T contains a maximum, say n0 ∈ N. Then T ⊂ In0 . Hence T is equinumerous to
some Im (why? This might be proved by induction.). Similarly, the assertion is proved
by S ≈ T ≈ Im.

38. The denumerable union of pairwise disjoint countable sets are countable.
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