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Recall that the characteristic function of a given random variable X is given by

ϕ(t) := EeitX = E cos tX + iE sin tX.

with several properties about its values. An important theorem called Inversion Formula says
that:

Proposition 1 (Theorem 3.3.4.). Let ϕ(t) =
∫
eitxµ(dx) where µ is a probability measure. If a < b,

then

lim
T→∞

(2π)−1
∫ T

−T

e−ita − e−itb

it
ϕ(t)dt = µ(a, b) +

1

2
µ({a, b}).

We shall use this formula to show that

Theorem. Let X be a random variable. If
∫
|ϕ(t)|dt <∞, then

(1) µ has a density. (in fact it is bounded continuous and is expressed by f(y) = 1
2π

∫
e−ityϕ(t)dt.)

(2) Then ϕ(t)→ 0 as t→∞,

(3) and then µ has no point masses. i.e. there is no x such that µ({x}) 6= 0.

Moreover, none of the inverse of (1), (2), (3) is necessarily true.

Proof of (1). This follows from textbook, theorem 3.3.5.
∫ b
a
e−itydy = e−ita−e−itb

it
and absolute

property imply that ∣∣∣∣e−ita − e−itbit

∣∣∣∣ =

∣∣∣∣∫ b

a

e−itydy

∣∣∣∣ ≤ |b− a|.
Since, in fact,

∫ T
−T

e−ita−e−itb
it

ϕ(t)dt and b− a are real,

µ(a, b) +
1

2
µ({a, b}) =

1

2π

∫ ∞
−∞

e−ita − e−itb

it
ϕ(t)dt ≤ b− a

2π

∫ ∞
−∞
|ϕ(t)|dt.

I claim that µ has no point masses, for if a is a point mass, then

0 <
1

2
µ({a}) ≤ b− a

2π

∫ ∞
−∞
|ϕ(t)|dt.
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Let b → a , then a is not a point mass, a contradiction. Thus by inversion formula and Fubini’s
theorem,

µ(x, x+ h) =
1

2π

∫
e−itx − e−it(x+h)

it
ϕ(t)dt

=
1

2π

∫ (∫ x+h

x

e−itydy

)
ϕ(t)dt =

∫ x+h

x

(
1

2π

∫
e−ityϕ(t)dt

)
dy.

So f(y) = 1
2π

∫
e−ityϕ(t)dt is the distribution. On the other hand, it converse fails. If we consider the

Exponential distribution (example 3.3.6), who has density e−x and ch.f. 1
1−it , but the integral∫ ∞

−∞

1√
1 + t2

dt = sinh−1 t
∣∣∞
−∞ =∞

is infinity. �

Proof of (2). We recall Riemann-Lebesgue Lemma that

Lemma 1. If g is integrable then

lim
λ→∞

∫
g(x) cosλxdx = 0,

lim
λ→∞

∫
g(x) sinλxdx = 0.

Proof of Lemma. Since every function g(x) can be written as the limit of a simple function
sequence gn(x), where the integration of their difference can be less than an arbitrarily given ε > 0.
That is,

∫
|g(x)− gN(x)|dx < ε (Zygmund pp.54) .∣∣∣∣∫ g(x) cosnxdx

∣∣∣∣ ≤ ∣∣∣∣∫ gN(x) cosnxdx

∣∣∣∣+

∫
|g(x)− gN(x)|dx

≤ 2K

n
+ ε,

so if n >> 0 we can conclude that
∫
g(x) cosnxdx = 0. �

Then consider

ϕ(t) =

∫
(cos(tX) + i sin(tX)) dµ.

By above lemma, as t→∞, ϕ(t)→ 0. Its converse also fails. Let Ω = [0, 1] with Lebesgue measure.
Let

X(ω) =

{
ω as 0 ≤ ω ≤ 0.5

2ω − 0.5 as 0.5 ≤ ω ≤ 1.
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Then the distribution function F (x) has a non-differentiable point at 1
2

and so cannot be expressed
by
∫ x
−∞ f(y)dy for some f . Meanwhile,

ϕ(t) = Ee−itX =

∫ 1
2

0

e−itωdω +

∫ 1

1
2

e−it(2ω−0.5)dω

=

(
e−itω

−it

) ∣∣ 12
0

+

(
e−it(2ω−0.5)

−2it

) ∣∣1
1
2

→ 0

as t→∞. �

Proof of (3). We need the following properties.

Lemma 2. (i) µ({a}) = limT→∞
1
2T

∫ T
−T e

−itaϕ(t)dt.

(ii) If P (X ∈ hZ) = 1 where h > 0, then its ch.f. has ϕ(2π
h

+ t) = ϕ(t) , so for x ∈ hZ,

P (X = x) =
h

2π

∫ π
h

−π
h

e−itxϕ(t)dt

(iii) Write X = Y + b, then EeitX = eitbEeitY . So if P (X ∈ b+ hZ) = 1, the inversion formula in
(ii) is alid for x ∈ b+ hZ.

Proposition 2. If X and Y are independent and have ch.f. ϕ and distribution µ. Then

lim
T→∞

1

2T

∫ T

−T
|ϕ(t)|2dt = P (X − Y = 0) =

∑
x

µ({x})2.

To prove this proposition, we need the following.

Proposition 3. (i) If X and Y are independent with distributions µ and ν then P (X + Y = 0) =∑
y µ({−y})ν({y}). (ii) If X has continuous distribution then P (X = Y ) = 0.

Proof of original proposition. Then X − Y has ch.f ϕ · ϕ̄ = |ϕ|2. Let a = 0 in (i) of the last
theorem, then

P (X − Y = 0) = lim
T→∞

1

2T

∫ T

−T
|ϕ(t)|2dt.

By exercise 2.1.8, P (X − Y = 0) =
∑

x µ({x})2. �

Back to its proof. We show that 1
T

∫ T
0
|ϕ(t)|2dt→ 0 as T →∞. Given any ε > 0, by condition

there is an M > 0 such that |ϕ(t)| <
√
ε for any T > M . At this time,

0 ≤ 1

T

∫ T

0

|ϕ(t)|2dt =
1

T

∫ M

0

|ϕ(t)|2dt+

∫ T

M

|ϕ(t)|2dt

≤ 1

T

∫ M

0

|ϕ(t)|2dt+

∫ T

M

εdt ≤ 1

T

∫ M

0

|ϕ(t)|2dt+ ε.
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Then 0 ≤ lim infT→∞
1
T

∫M
0
|ϕ(t)|2dt + ε ≤ lim supT→∞

1
T

∫M
0
|ϕ(t)|2dt + ε = ε. Since ε is arbitrary,

limT→∞
1
T

∫ T
0
|ϕ(t)|2dt = 0. Hence by last theorem, there is no point masses. The converse is false.

Give a random variable P (X = 0) = P (X = 0.5) = 0.5. Then we claim that X has ch.f.

ϕ(t) =
∞∏
j=1

1 + e−it2·3
−j

2
.

Since e2πj = 1 for all j ∈ N,

ϕ(3kπ) =
∞∏
j=1

1 + ei2π·3
k−j

2
=
∞∏
r=1

1 + ei2π·3
−r

2
= ϕπ.

Since ϕ(π) 6= 0, limt→∞ ϕ(t) 6= 0. �

Proof of Claim. It follows from the lemma which states that if X1, X2, · · · are independent and
Sn = X1 + · · ·+Xn, and ϕj is the ch.f. of Xj and Sn → S∞ a.s. then S∞ has ch.f.

∏∞
j=1 ϕj(t).

The proof is like this: Firstly we show that if Xn → X in probability and then Xn ⇒ X.
Supposely that Xn → X in probability, then choose a bounded continuous g. Then Eg(Xn) →
Eg(X) by BCT. Since g is arbitrary, by theorem Xn ⇒ X.

By basic properties of ch.f. Sn has ch.f.
∏n

j=1 ϕj(t). By condition plus the last paragraph
Sn ⇒ S∞. By continuity theorem that

∏∞
j=1 ϕ(t)→ ϕ, which is the ch.f. of S∞. �
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