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However, finding its limit require lots of efforts. Previously, great mathematician Euler evalu-
ated the limit, π

2

6
through a unprecise method. Despite its unpreciseness, we still believe the

truth of its limit —— its n-term values seems to approach it.
There’re three interesting proofs: One is by complex variables; second is an application of

Fourier Series; third is an elementary proof: We only use basic mathematics (those learned in
high school) and squeeze theorem. I will restate the third proof here.

What is not only astonishing but incredible is that, the proof contains the following meth-
ods, which seem to be unrelated:

(1) Binomial Theorem.

(2) De Moivre Theorem.

(3) The relation between roots and coefficients.

(4) sin θ<θ< tan θ.

(5) 1 + cot2 θ = csc2 θ.

(6) Squeeze Theorem.

It is really hard for most of people to think of them, and even use them. However, they
work indeed, in critical parts. Now, expand the following

(cos θ + i sin θ)2n+1 = cos2n+1 θ + C2n+1

1 cos2n(i sin θ)

+ C2n+1

2 cos2n−1(i sin θ)2 + ... + Cn

n
(i sin θ)2n+1

= (cos2n+1 θ − C2n+1

2 cos2n−1 θ sin2 θ + ... + )

+ i · (C2n+1

1 cos2n(sin θ) − C2n+1

3 cos2n−2(sin θ)3 + ... + )

where

θ =
kπ

2n + 1
, k = 1, 2, 3, ..., n.
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Moreover, for these θ’s , De Moivre Theorem tells us that

(cos θ + i sin θ)2n+1 = (cos
kπ

2n + 1
+ i sin

kπ

2n + 1
)2n+1

= cos kπ + i sin kπ ∈ R.

(which means, the imaginary parts must be 0.) Hence we find that

C2n+1

1 cos2n(sin θ) − C2n+1

3 cos2n−2(sin θ)3 + ... + = 0

Because θ = kπ

2n+1
∈ (0, π

2
), sin2n+1 θ 6= 0. We can divid both sides of the last formula by

sin2n+1 θ, getting
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3 cot2n−2 +C2n+1

5 cot2n−4 +... + = 0

Obverse the following equation:

C2n+1

1 Y n − C2n+1

3 Y n−1 + C2n+1

5 Y n−2 + ... + = 0

We know that it has at most n distinct roots. However, according to the previous result, we’ve
indeed found out n roots:

cot2
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, k = 1, 2, 3, ..., n.

This means, we know that the sum of these n roots
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Now, we see that, we have ”made” the form of the sum of squares , π, and the number 6
in the denominator of the limit. Now, the π’s has to get out of the cot’s. Use the formula:

sin θ<θ< tan θ, while θ ∈ (0,
π

2
).

we find that

1 + cot2 θ = csc2 θ>
1

θ2
> cot2 θ

substituting kπ
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for θ, and finding the sum where k goes from 1 to n, we get
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We rewrite it by
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At last, by squeeze theorem, we will get the limit.

{ [Note] This is a partial rewrite of an article of the website:

http://episte.math.ntu.edu.tw

}


