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To begin construction on the system of natural numbers, there’re some essential notions
required, which are: 1 (one), natural numbers, ·′ (the next number of ·, the successor of ·),
sets, and = (identity). We agree that we’re all familiar with properties of sets. Moreover, the
notion of identity comes from logic, and satisfies:

(R) x = x ∀x

(S) x = y ⇒ y = x ∀x, y

(T ) if x = y and y = z, then x = z ∀x, y, z

We do not discuss what 1, a natural number, ·′ do really mean in detial. We only care about
the properties of them from cognitive intuition. They are, in fact, called axioms, as follow:
(Variables always mean natural number in this article.)

(I) 1 is a natural number.

(II) if x = y, then x′ = y′.

(III) ∀x, x′ 6= 1.

(IV) If x′ = y′ then x = y.

(V) Let m be a set of natural numbers and satisfies

(a) 1 ∈ m

(b) ∀x ∈ m, x′ ∈ m.

Then m contains all natural numbers (∗).

We denote N the set of all natural numbers. Hence, (∗) means m = N.
Next, we define:

2 = 1′ 3 = 2′ 4 = 3′ 5 = 4′ 6 = 5′

7 = 6′ 8 = 7′ 9 = 8′ T = 9′

With them, we can exhibit additional operation on natural number. The following is its
standard definition.
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(i) x + 1 = x′.

(ii) x + y′ = (x + y)′.

According to this, it’s not hard to reach some great theorems:

Theorem 1. (i) 1 + 1 = 2. (ii) 2 + 3 = 5.

Proof. By definition, 1 + 1 = 1′ and 2 = 1′. By (S) and (T) we deduce 1 + 1 = 2. Hence (i) is
done.

By definition, 2 + 3 = 2 + 2′ = (2 + 2)′. Again 2 + 2 = 2 + 1′ = (2 + 1)′, and still again
2+1 = 2′ = 3. By (II) we get (2+1)′ = 3′ = 4, which means 2+2=4. Again (2+2)′ = 4′ = 5,
which means 2 + 3 = 5.

Through the process of the proof, we additionally get that

2 + 1 = 3, 2 + 2 = 4.

[note]
We now may create an addition table for those pairs of numbers who are not too ”large”,

for if we hope to evalute 5 + 7, by similar argument as the above theorem, we might find that
we have not yet possessed a notation for the result. (in fact, 5+ 7 = 9′′′, but we can not write
12 now).

[note]
The system of decimal expression and addition on decimals of natural numbers will be

discuss far later.

We now proceed to show the so-called commutative law and associative law of natural
numbers.

Theorem 2. For all y, 1 + y = y + 1.

Proof. We want to prove it by (V). Let

m = {y : 1 + y = y + 1}.

By (R), 1 + 1 = 1 + 1, so 1 ∈ m. Assume that k ∈ m, and we hope to reach the case that
k′ ∈ m. Since 1 + k = k + 1, we evaluate

1 + k′ = (1 + k)′ = (k + 1)′ = (k′)′ = k′ + 1.

Hence k′ ∈ m. Therefore m = N, which ends the proof.

Theorem 3. For all x, y, x + y = y + x.
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Proof. Let

m = {x : x + y = y + x ∀y}.

By above theorem, we have that 1 + y = y + 1 ∀y, so 1 ∈ m. Assume that k ∈ m, namely,

k + y = y + k ∀y.

Then, we hope to show that k′ + y = y + k′ ∀y. Denote

n = {y : k′ + y = y + k′}.

Then we know that 1 ∈ n. Assume that t ∈ n, namely

k′ + t = t + k′.

We hope to show k′ + t′ = t′ + k′. We do it as follow:

k′ + t′ = (k′ + t)′ = (t + k′)′ = (t + k)′′

= (k + t)′′ = (k + t′)′ = (t′ + k)′ = t′ + k′.

Hence t′ ∈ n. This means n = N, i.e.

∀y k′ + y = y + k′.

We find immediately that k′ ∈ m, and therefore m = N. It is proved.

Theorem 4. (x + y) + z = x + (y + z) ∀x, y, z.

[hint] Let m = {z : (x + y) + z = x + (y + z) ∀x∀y}.

Theorem 5. Given x, y, exactly one of the following holds:

x = y + u ∃u

x = y

y = x + v ∃v

[hint] Let m = {x : The statement holds for all y }. Then for fixed x, set n = {y : The
statement holds } . (V) gives a proof.

{ To be continued. This article will be updated later!! }

3


