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This is an elementary way for showing that the sequence /n decreases and converges to
1.

1. Show that (”:—i)n<3
Proof. Binomial theorem tells us that
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2. Show that it decreases after the 5th term.
Proof. Consider the quotient
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Now, if %<1, then (%) n(nt) <1, and hence % ”;;Ll<1. So while n > 5, we get that
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3. Show that it converges to 1.

Proof. This is a proof rewritten from Homework 1.5 of Calculus of the 15’s.
We try to estimate the error, say /n =1+ h,,. Since
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So h,, — 0. This ends the proof. ]

4. As a test for how it gets close to 1, show that Y ;- | h,? diverges when j =1, and converges
when 7 =2,3,4,---.

Proof. For n > 3,
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Since Z% diverges, the series Y h, (, by comparason test,) must diverge as well. This finish
the case j = 1.
For j = 2, by binomial theorem again, we obtain n > (g) hy, 3. So
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Since we know that > -L converges, we (by comparason test) conclude that Y h, 2 converges.
n3

If 7>2, since h,, — 0, it must occurs that hn<% when n sufficiently large. So
hp?<hy, 2.

By what is proved above (and comparason test), we finish this case. O



