

The sequence of n-th root of n

Wang-Shiuan Pahngerei

April 5, 2012

This is an elementary way for showing that the sequence $\sqrt[n]{n}$ decreases and converges to 1.

1. Show that $\frac{(n+1)^n}{n^n} < 3$

Proof. Binomial theorem tells us that

$$\begin{aligned}\frac{(n+1)^n}{n^n} &= \frac{n^n + \binom{n}{1}n^{n-1} + \binom{n}{2}n^{n-2} + \binom{n}{3}n^{n-3} + \cdots + \binom{n}{n}1}{n^n} \\ &= \frac{n^n + \frac{n}{1}n^{n-1} + \frac{n \cdot (n-1)}{2 \cdot 1}n^{n-2} + \frac{n \cdot (n-1) \cdot (n-2)}{3 \cdot 2 \cdot 1}n^{n-3} + \cdots + \frac{n \cdot (n-1) \cdots 1}{n \cdot (n-1) \cdots 1}1}{n^n} \\ &\leq \frac{n^n + \frac{n}{1}n^{n-1} + \frac{n \cdot n}{2 \cdot 1}n^{n-2} + \frac{n \cdot n \cdot n}{3 \cdot 2 \cdot 1}n^{n-3} + \cdots + \frac{n \cdot n \cdots n}{n \cdot (n-1) \cdots 1}1}{n^n} \\ &= 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!} \\ &\leq 1 + 1 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{(n-1) \cdot n} \\ &= 1 + 1 + \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \cdots + \frac{1}{n-1} - \frac{1}{n} \\ &= 3 - \frac{1}{n} < 3\end{aligned}$$

□

2. Show that it decreases after the 5th term.

Proof. Consider the quotient

$$\frac{\sqrt[n+1]{n+1}}{\sqrt[n]{n}} = \frac{(n+1)^{\frac{1}{n+1}}}{n^{\frac{1}{n}}} = \left(\frac{(n+1)^n}{n^{n+1}} \right)^{\frac{1}{n \cdot (n+1)}} = \left(\frac{(n+1)^n}{n^n} \cdot \frac{1}{n} \right)^{\frac{1}{n \cdot (n+1)}} \leq \left(\frac{3}{n} \right)^{\frac{1}{n \cdot (n+1)}}$$

Now, if $\frac{3}{n} < 1$, then $\left(\frac{3}{n} \right)^{\frac{1}{n \cdot (n+1)}} < 1$, and hence $\frac{\sqrt[n+1]{n+1}}{\sqrt[n]{n}} < 1$. So while $n \geq 5$, we get that

$$\sqrt[n+1]{n+1} < \sqrt[n]{n}$$

□

3. Show that it converges to 1.

Proof. This is a proof rewritten from Homework I.5 of Calculus of the 15's.

We try to estimate the error, say $\sqrt[n]{n} = 1 + h_n$. Since

$$\begin{aligned} n = (\sqrt[n]{n})^n &= (1 + h_n)^n = 1 + nh_n + \binom{n}{2}h_n^2 + \cdots + h_n^n \\ &\geq 1 + \frac{n \cdot (n-1)}{2}h_n^2, \end{aligned}$$

we get

$$0 \leq h_n^2 \leq \frac{2}{n} \rightarrow 0.$$

So $h_n \rightarrow 0$. This ends the proof. \square

4. As a test for how it gets close to 1, show that $\sum_{k=1}^{\infty} h_n^j$ diverges when $j = 1$, and converges when $j = 2, 3, 4, \dots$.

Proof. For $n \geq 3$,

$$(1 + \frac{1}{n})^n = \frac{(n+1)^n}{n^n} < 3 \leq n.$$

So

$$h_n = \sqrt[n]{n} - 1 \geq \frac{1}{n}.$$

Since $\sum \frac{1}{n}$ diverges, the series $\sum h_n$ (, by comparason test,) must diverge as well. This finish the case $j = 1$.

For $j = 2$, by binomial theorem again, we obtain $n \geq \binom{n}{3}h_n^3$. So

$$h_n^2 \leq \sqrt[3]{\frac{36}{(n-1)^2(n-2)^2}} \leq \frac{1000}{n^{\frac{4}{3}}}.$$

Since we know that $\sum \frac{1}{n^{\frac{4}{3}}}$ converges, we (by comparason test) conclude that $\sum h_n^2$ converges.

If $j > 2$, since $h_n \rightarrow 0$, it must occurs that $h_n < \frac{1}{2}$ when n sufficiently large. So

$$h_n^j < h_n^2.$$

By what is proved above (and comparason test), we finish this case. \square