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This is an elementary way for showing that the sequence n
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Proof. Binomial theorem tells us that
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2. Show that it decreases after the 5th term.

Proof. Consider the quotient
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3. Show that it converges to 1.

Proof. This is a proof rewritten from Homework I.5 of Calculus of the 15’s.
We try to estimate the error, say n
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So hn → 0. This ends the proof.

4. As a test for how it gets close to 1, show that
∑∞
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j diverges when j = 1, and converges

when j = 2, 3, 4, · · · .
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For j = 2, by binomial theorem again, we obtain n ≥
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converges, we (by comparason test) conclude that
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If j>2, since hn → 0, it must occurs that hn<1
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when n sufficiently large. So
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By what is proved above (and comparason test), we finish this case.
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