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< 21 f()-L|+3|(g(x)=3)] (%), FId<e efﬁ FIh T A €120,
Proofi() Let £>0. @ ."limf(x)=L .. 36, >0s.t.~~, "."limg(x)=3 .".30, >0s.t.* " . Choose
0 =min(5,,0,). ®let x €. @ “(Yo)¥)— Hl"<e/20 + &/20<e. O
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e.g. lime_.xsin(1/x)=2  [Z4i i A7)

eg. ¥ Aal01]@5,7 0<ANS, &M Ax)=x" &[0,1]¢ F f2.

e.g. If for any x,y in (a,b), [fx)—f{3)|<|x—y |, prove that f'is cont. in (a,b). [Z& it &, & * 5?]

e.g. Prove: fcont. at ¢ and f{c)>0 >f(x) >0 in some (c—- 5 ,c+5). [F i+ A?]
e.g. Show: fis diff. at c>fis cont. atc. [ A? F A7

e.g. fcont. < [f] cont. ??2f+g and fhoncont.>gnoncont. ?? [+ g5+ F i+ A??
eg FALODNI Il G = BB STE RF FEEEETF E?  [Raf 27

e.g. lim,_,.f(x)= L = There are 6,B >0 such that [f{x)|<B for all 0<|x-c|<5.  [& i F&??]
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e.g. Whenxe R, lim,_.[sin(x+h) —sin (x))/h =7 [16o B2 & L97!].

e.g lim_.x/(2*+27)="1 [ §C P E5R27]
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