CHAPTER

M 2.1 THE LIMIT PROCESS (AN INTUITIVE INTRODUCTION)

We could begin by saying that limits are important in calculus, but that would be a
major understatement. Without limits, calculus would not exist. Every single notion of
calculus is a limit in one sense or another. For example,

What is the slope of a curve? It is the limit of slopes of secant lines. (Figure 2.1.1.)

What is the length of a curve? It is the limit of the lengths of polygonal paths inscribed
in the curve. (Figure 2.1.2)

What is the area of a region bounded by a curve? It is the limit of the sum of areas of Figure 2.1.1
approximating rectangles. (Figure 2.1.3)
y
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54 ®m CHAPTER 2 LIMITS AND CONTINUITY

The Idea of Limit

Technically there are several limit processes, but they are all very similar. Once you
master one of them, the others will pose few difficulties. The limit process that we start
with is the one that leads to the notion of continuity and the notion of differentiability.
At this stage our approach is completely informal. All we are trying to do here is lay
an intuitive foundation for the mathematics that begins in Section 2.2

We start with a number ¢ and a function f defined at all numbers x near ¢ but not
necessarily at ¢ itself. In any case, whether or not /" is defined at ¢ and, if so, how is
totally irrelevant.

Now let L be some real number. We say that the limit of f(x) as x tends to c is L
and write

lim f(x) =L
provided that (roughly speaking)
as x approaches c, f(x) approaches L
or (somewhat more precisely) provided that
f(x) is close to L for all x # ¢ which are close to c.

Let’s look at a few functions and try to apply this limit idea. Remember, our work
at this stage is entirely intuitive.
Example T Set f(x) = 4x + 5 and take ¢ = 2. As x approaches 2, 4x approaches
8 and 4x + 5 approaches 8 + 5 = 13. We conclude that

P_)rr% f(x)=13. 4

Example 2 Set f(x) =+/1 —x and take ¢ = —8. As x approaches —8, 1 —x
approaches 9 and /1 — x approaches 3. We conclude that

lim8 fx)=3.
If for that same function we try to calculate
lim f(x),

we run into a problem. The function f(x) = 4/1 — x is defined only for x < 1. It is
therefore not defined for x near 2, and the idea of taking the limit as x approaches 2
makes no sense at all:

lirri fx) does not exist.
x—

Example 3

. x> =2x+4 5
llm— = —.
x—3 x2+l 2

First we work with the numerator: as x approaches 3, x> approaches 27, —2x approaches
—6, and x> — 2x + 4 approaches 27 — 6 + 4 = 25. Now for the denominator: as x
approaches 3, x> + 1 approaches 10. The quotient (it would seem) approaches 25/10 =
5/2. 4
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2.1 THE LIMIT PROCESS (AN INTUITIVE INTRODUCTION) = 55

The curve in Figure 2.1.4 represents the graph of a function f. The number c is on
the x-axis and the limit L is on the y-axis. As x approaches ¢ along the x-axis, f(x)
approaches L along the y-axis.

Y
f(x) f

- -

£(x)

/ X==> C ==X X

Figure 2.1.4

As we have tried to emphasize, in taking the limit of a function /" as x tends to c,
it does not matter whether f is defined at ¢ and, if so, how it is defined there. The only
thing that matters is the values taken on by f at numbers x near c. Take a look at the
three cases depicted in Figure 2.1.5. In the first case, f(c) = L. In the second case, f
is not defined at c. In the third case, f is defined at ¢, but f(c) # L. However, in each
case

lim f(x) =L
xX—c
because, as suggested in the figures,

as x approaches ¢, f(x) approaches L.

y
y
7 fle) — °
y 70 1) T
f(x) / Y [
¥ L L
L $ '
4 1
/) 1) .
/ X=> C=-X X X=>C =-X X X=» C=<—=X X
(a) (b) (c)
Figure 2.1.5
x> -9

Example4 Set f(x) =

at 3: at 3, both numerator and denominator are 0. But that doesn’t matter. For x # 3,
and therefore for all x near 3,

3 and let ¢ = 3. Note that the function f is not defined

2_9 -3
X _=(x )(x+3)=x+3.
x—3 x—3
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56 ®m CHAPTER 2 LIMITS AND CONTINUITY

y 2_9
Therefore, if x is close to 3, then al 3= x + 3 isclose to 3 + 3 = 6. We conclude
x p—
f(f) = S that
6 — 2
X .oxt=9
el )P—E%x—?; —;er%(x+3)—6.
A The graph of £ is shown in Figure 2.1.6. 1
B | | |
X==-> 3=<-=-Xx X
Example 5
Figure 2.1.6 3
-8
im il =12.
x—>2 X — 2

3
The function f(x) =
X

matter. For all x # 2,

-8, .
is undefined at x = 2. But, as we said before, that doesn’t

=8  (x—2)(x*+2x+4)

2
2x + 4.
Pa— — X+ 2x +
Therefore,
3-8
lim > — lim (@2 4+ 2x +4)=12. 0
x—2 X — x—2

3x —4, x#0
10, x =0,

It does not matter that f(0) = 10. For x # 0, and thus for all x near 0,
fx)y=3x—-4 and therefore liII(l) fx)= lir% Bx—4)=-4. 1

Example 6 If f(x) = then lir%f(x) = —4.

One-Sided Limits

Numbers x near c fall into two natural categories: those that lie to the left of ¢ and those
that lie to the right of c¢. We write

lim f(x)=1L [The left-hand limit of /{x) as x tends to ¢ is L.]
xX—>c~

to indicate that
as x approaches c from the left, f(x) approaches L.
We write

lim f(x)=1L [The right-hand limit of f{x) as x tends to ¢ is L.]
x—ct

to indicate that

as x approaches ¢ from the right, f(x) approaches L.!

The left-hand limit is sometimes written li%n f(x) and the right-hand limit, li?'g F(x).
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2.1 THE LIMIT PROCESS (AN INTUITIVE INTRODUCTION) ®m 57

As an example, take the function indicated in Figure 2.1.7. As x approaches 5 from
the left, f(x) approaches 2; therefore

1ir151_ f(x)=2.
As x approaches 5 from the right, f(x) approaches 4; therefore
g 1 =4

The full limit, lirrg f(x), does not exist: consideration of x < 5 would force the limit to
x—

be 2, but consideration of x > 5 would force the limit to be 4.

For a full limit to exist, both one-sided limits have to exist and they have to be equal.

Example 7 For the function f indicated in Figure 2.1.8,

lim x)=5 and lim x) =5.
x—>(=2)" f( ) x—(=2)" f( )

In this case
1im2 fx)=>5.
It does not matter that f(—2) = 3.

Examining the graph of f near x = 4, we find that
li =7 li =2.
xlgtl* fx) xiﬁg Sx)
Since these one-sided limits are different,
lim 7(x)

whereas

does not exist.

Example 8 Set f(x) = x/|x|. Note that f(x) =1 for x > 0, and f(x) = —1 for
x < 0:

1, ifx >0
/@)= {—1, ifx < 0.

Let’s try to apply the limit process at different numbers c.
If ¢ < 0, then for all x sufficiently close to ¢, x < 0 and f(x) = —1. It follows that
forc <0

(Figure 2.1.9)

lim £(x) = lim (=1) = —1.

If ¢ > 0, then for all x sufficiently close to ¢, x > 0 and f(x) = 1. It follows that for
c<0

lim f(x) = lim (1) = 1.

However, the function has no limit as x tends to 0:
lir{)l_ flx)=-1 but lir{)l+ fx)y=1. 1

\
A
\

-
-
XK

Figure 2.1.7

Figure 2.1.8

Sy =1

Figure 2.1.9
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58 m CHAPTER 2 LIMITS AND CONTINUITY

Y Example 9 We refer to the function indicated in Figure 2.1.10 and examine the
behavior of f(x) for x close to 3 and x close to 7.

ol /, As x approaches 3 from the left or from the right, f(x) becomes arbitrarily large

and cannot stay close to any number L. Therefore

3 7 X . .
lim f(x) does not exist.
x—3

As x approaches 7 from the left, /(x) becomes arbitrarily large negative and cannot
Figure 2.1.10 stay close to any number L. Therefore
lim f(x) does not exist.
x—7

The same conclusion can be reached by noting that as x approaches 7 from the right,
f(x) becomes arbitrarily large.

Remark To indicate that f(x) becomes arbitrarily large, we can write f(x) — oo.
To indicate that f(x) becomes arbitrarily large negative, we can write f(x) — —oo.

Go back to Figure 2.1.10, and note that for the function depicted there the following
statements hold:

asx - 37, f(x)— oo and asx — 3",  f(x) = oo.
Consequently,
asx — 3, f(x) — oo.
Also,
asx -7, f(x)— —oo and asx — 7",  f(x) — oo.
We can therefore write

asx — 7, [ f(x)] = oc0.

Example 10 We set

1
f(x)=m

and examine the behavior of f(x) (a) as x tends to 4 and then (b) as x tends to 2.

(a) Asxtends to 4, x — 2 tends to 2 and the quotient tends to 1/2. Thus
1
li = —.
lim f(x) =7

(b) As x tends to 2 from the left, f(x) — —oo. (See Figure 2.1.11.) As x tends to 2
— 2 4 x from the right, f(x) — oo. The function can have no numerical limit as x tends to
2. Thus

lim f(x) does not exist.
x—2

However, it is true that

Figure 2.1.11 asx — 2, | f(x)] = oo.
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2.1 THE LIMIT PROCESS (AN INTUITIVE INTRODUCTION) m 59

1—x2, x<1

Example 11 Set f(x) = { D —1), x> 1.
Forx < 1, f(x) =1 — x2. Thus
1ir1117f(x)=0.

Forx > 1, f(x) = 1/(x — 1). Therefore, as x — 17, f(x) — o0o. The function has no
numerical limit as x — 1:

lim f(x) does not exist.
x—1

We now assert that
lim f(x)=2.
x—1.5

To see this, note that for x close to 1.5, x > 1 and therefore f(x) = 1/(x — 1). It follows

that / N

) ) 1 1 -1 1152 x
x1—1>r{l.5f(X)_x1—l>r?5x—1 _E_z /

See Figure 2.1.12. 1 Figure 2.1.12

Example 12  Here we set f(x) = sin (7 /x) and show that the function can have no
limitasx — 0.

y = sin(w/x)

Figure 2.1.13

The function is not defined at x = 0, but, as you know, that’s irrelevant. What keeps
f from having a limit as x — 0 is indicated in Figure 2.1.13. As x — 0, f(x) keeps
oscillating between y = 1 and y = —1 and therefore cannot remain close to any one
number L. 11

In our final example we rely on a calculator and deduce a limit from numerical
calculation.

TWe can approach x = 0

2 2
by numbers a, = yrt and by numbers b, = — yray

n=0,1,2,3,....As you can check, f(a,) = 1and f(b,) = —1. This confirms the oscillatory behavior
of f nearx = 0.
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60 m CHAPTER 2 LIMITS AND CONTINUITY

Example 13 Let f(x) = (sinx)/x. If we try to evaluate / at 0, we get the mean-
ingless ratio 0/0; f is not defined at x = 0. However, /" is defined for all x # 0, and so
we can consider
. sinx

lim —.

x—0 Xx
We select numbers that approach 0 closely from the left and numbers that approach 0
closely from the right. Using a calculator, we evaluate /* at these numbers. The results
are tabulated in Table 2.1.1.

N Table 2.1.1
(Left side) (Right side)

sinx
X

sinx

x (radians) T

x (radians)

-1 0.84147 1 0.84147
-0.5 0.95885 0.5 0.95885
—0.1 0.99833 0.1 0.99833
—0.01 0.99998 0.01 0.99998
—0.001 0.99999 0.001 0.99999

These calculations suggest that

. sinx . sinx
Iim — =1 and lim — =1
x—=0- X x—>0t X
and therefore that
. sinx
lim — = 1.
x—>0 X

The graph of f, shown in Figure 2.1.14, supports this conclusion. A proof that this limit
is indeed 1 is given in Section 2.5.

N N
\/ \ x

Figure 2.1.14

If you have found all this to be imprecise, you are absolutely right. Our work so
far has been imprecise. In Section 2.2 we will work with limits in a more coherent
manner.
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EXERCISES 2.1

Exercises 1-10. You are given a number ¢ and the graph of a 4.c =4
function /. Use the graph to find

@ lim f(x) (b) lim f(x) (c) lim f(x) (d) f(c)

y
l.c=2. —
B y=fx)
y L
L y=/(x)
1 3
B [ | /‘\ |
- 4
1/0 / X
| / L1 1 L1 /_
/ 27 x
— . B
5.¢c=-2
2.c=3
y
y L
B — y=f)
I/—\ ® 1+
L] L L
7 z x
6.c=1
3.c=3
y y
- v =10 B
= 1=
L \ | \ L
3 X
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62 m CHAPTER 2 LIMITS AND CONTINUITY

7.c=1. Exercises 11-12. Give the values of ¢ for which lim f(x) does
¥ not exist.
— 11.
L y=/&) y
1 —
[ I I N N
1 X
— ®
B P
8.c=—1 y=/w
y 12.
y=fx)

y=f(Kx)
9.c=2. Exercises 13—49. Decide on intuitive grounds whether or not the
¥ indicated limit exists; evaluate the limit if it does exist.
- 13. lin})(Zx —1). 14. liml(2 — 5x).
B 15. lim (x> — 2x + 4). 16. lim v/x2 +2x + 1.
- y=fx) x—=2 x—4
1
1= o / 17. lim (jx| — 2). 18. lim —.
L | \ L 1 | x—>-3 ¥=0 |x|
4 x 4
— 19. lim 3 . 20. lim .
x—>1x+l x—>—1x+1
/ . =2 . 1
| 21. lim . 22. lim .
x—>—1x+l x=>23x —6
B 2x — 6 26 9
23. lim =2, 24 lim =7
x—>3 X — 3 x—3 X — 3
o= 25. lim —*—> 26, lim 35 +2
¥ 'x—>3x2—6x+9' Tx>2 x—2 .
— x—2 x—2
27. lim —. 28. lim —.
— an%xz—3x+2 xlﬁmlx2—3x+2
- 1 1
29. lim (x + —). 30. lim <x + —).
1+ ® x—0 X x—1 X
L | \ \ Iy — 5x2 _
3 31, Jim 222 32, lim =3
- x—0 X x—=3 6 —2x
L 21 31
33, lim ——— 34 lim .
=1 x—1 x—1 x—1
3 _ 1 2 1
A 35 lim . 36. lim
x—>1x+1 x—>1x2—1
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[ x#0
37. lim f(x); - S =15 Lo
38. lim f(v): S =18 X
.x—>1 *h *) = 3; x > 1
. ) X3 x #4
39. lim Q) f) =170 L4
. —x%, x<0
40. lim f(x); - fO) =1 (27 L g
. . ¥, x<0
AL WA NAC e IR
42, lim () fO0) = 2x, x <1
g @) S = 41, x> 1
Bl S0 foy=1 25 5
: x1—>n% *)s )= X +2, X = L.
) 2x, x <1
44.)}1_I)I(1)f(x)s f(x) = x+1, x>1.
. . B 2, x rational
45. )}1_1)1}) S fx) = —2, x irrational.
. 2x, x rational
46. )}1_{1} Jx) fx) = 2, x irrational.
RYA I V)
47. lim ——————.
x—1 x—1
. sz + 35— A/ 30
48. lim —.
x—5 x—5
2
1
49. lim ————

m ——.
=l /2x +2 -2

Exercises 50-54. After estimating the limit using the prescribed
values of x, validate or improve your estimate by using a graphing
utility.

[> s0.

[>s1.

[>s2.

[>53.

Estimate

1 —cosx .
- (radian measure)

lim
x—0 X
by evaluating the quotientatx = +1, £0.1, £0.01, £0.001.
Estimate

tan 2x

lim (radian measure)
x—=0 X

by evaluating the quotientatx = +1, £0.1, £0.01, £0.001.
Estimate

. X —sinx .
lim —— (radian measure)
x—0 x3

after evaluating the quotient at x = £1,+0.1, £0.01,
40.001, £0.0001.

Estimate

x32 -1

lim
x—=1 x — 1

by evaluating the quotientatx = 0.9, 0.99, 0.99, 0.9999 and
atx = 1.1, 1.01, 1.001, 1.0001.
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954. Estimate

2cosx — 2 + x?

7 (radian measure)

x—0 X
by evaluating the quotientatx = £1, £0.1, +0.01, £0.0001,
40.0001.
bSS. (a) Use a graphing utility to estimate lirrélt f(x):
. 2x2 —1lx + 12
@ fx)= T;
.. 2x2 — 11x + 12
() /&)= — 76 16

(b) Use a CAS to find each of the limits in part (a).
956. (a) Use a graphing utility to estimate lirrélt f(x):

. 3x2 — 10x — 8
O /O = 5576 T 16
x2 —26x + 24

. 5
/&)= e T —20°
(b) Use a CAS to find each of the limits in part (a).

957. (a) Use a graphing utility to estimate lirg f(x):

. VO6—x—x . _x2—4x+4
O /) =—"—7—: @Drx= Y

(b) Use a CAS to find each of the limits in part (a).
958. (a) Use a graphing utility to estimate lini f(x)

2x — /18 — 2 -2
() S0 = =251 (i) f(x)zm—ﬁ'

(b) Use a CAS to find each of the limits in part (a).

bExercises 59-62. Use a graphing utility to find at least one num-
ber ¢ at which lim f(x) does not exist.

x+1
59, S
f(x) T
|6x2 — x — 35|
60. o o
JS(x) T —3
x|
61. - .
SO = ST B s 6 T3 2
5x3 —22x% + 15x + 18
62. f(x) = 2 alal i

x3—9x24+27x —27
963. Use a graphing utility to draw the graphs of
1 .
f(x) = —sinx

X

and g(x) = xsin <l>
X

for x # 0 between —mr/2 and /2. Describe the behavior of
f(x) and g(x) for x close to 0.

964. Use a graphing utility to draw the graphs of

fx)= % tan x and g(x) =xtan (%)

for x # 0 between —r/2 and v /2. Describe the behavior of
f(x) and g(x) for x close to 0.
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64 W CHAPTER 2 LIMITS AND CONTINUITY

M 2.2 DEFINITION OF LIMIT

In Section 2.1 we tried to give you an intuitive feeling for the limit process. However,
our description was too vague to be called “mathematics.” We relied on statements such
as

“as x approaches ¢, f(x) approaches L”
and
“f(x)is close to L for all x # ¢ which are close to c.”

But what exactly do these statements mean? What are we saying by stating that “ f(x)
approaches L”? How close is close?

In this section we formulate the limit process in a coherent manner and, by so doing,
establish a foundation for more advanced work.

As before, in taking the limit of f(x) as x approaches ¢, we don’t require that
f be defined at ¢, but we do require that / be defined at least on an open interval
(¢ — p, ¢+ p) except possibly at ¢ itself.

c—p c c+p x

To say that
lim f(x)=L

is to say that | f(x) — L| can be made as small as we choose, less than any € > 0 we

choose, by restricting x to a sufficiently small set of the form (¢ — 8, ¢) U (¢, ¢ + 8), by

restricting x by an inequality of the form 0 < |x — c| < § with § > 0 sufficiently small.
Phrasing this idea precisely, we have the following definition.

DEFINITION 2.2.1 THE LIMIT OF A FUNCTION

Let f be a function defined at least on an open interval (¢ — p, ¢ + p) except
possibly at ¢ itself. We say that

lim f(x)=L
if for each € > 0, there exists a § > 0 such that

if O<|x—c|<3$, then [f(x)—L| <e.

Figures 2.2.1 and 2.2.2 illustrate this definition.

Figure 2.2.1
y y y y
L Lde L 0,9, L L@
E T
X
oy —o—)

| c x | c X | c x | c x

| For each e >0 there exists 0 > O such that, if0<|x-cl<d, then [ £(x) - Ll <e. |
Figure 2.2.2
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2.2 DEFINITION OFLIMIT ® 65

Except in the case of a constant function, the choice of § depends on the previous
choice of €. We do not require that there exists a number § which “works” for all €, but
rather, that for each € there exists a § which “works” for that particular €.

In Figure 2.2.3, we give two choices of € and for each we display a suitable §. For
a § to be suitable, all points within § of ¢ (with the possible exception of ¢ itself) must
be taken by the function f to within € of L. In part (b) of the figure, we began with a
smaller € and had to use a smaller 8.

Vi f
L+e Le A~ \/
s /U 7 N

c-0 c  c+0 X c—0 cc+0 x

Figure 2.2.3

The § of Figure 2.2.4 is too large for the given €. In particular, the points marked
x1 and x; in the figure are not taken by f to within € of L.

y
f(xZ) f
L+e AN\
I T /NS
f(xl)
/
c-6 %1 c Y2c+9 ¥
Figure 2.2.4

As these illustrations suggest, the limit process can be described entirely in terms

y
of open intervals. (See Figure 2.2.5.)
L+e
Let / be defined at least on an open interval (¢ — p, ¢ + p) except L
possibly at ¢ itself. We say that e
(2.2.2) lim f(x)=L
X—c
if for each open interval (L — €, L + €) there is an open interval
(¢ — 8, ¢ + 8) such that all the numbers in (¢ — §, ¢ + §), with the /
possible exception of ¢ itself, are mapped by f into (L — €, L + €). c=d ¢ c+d *

o o ) ) Figure 2.2.5
Next we apply the €, § definition of limit to a variety of functions. At first you may

find the €, § arguments confusing. It usually takes a little while for the €, § idea to take
hold.
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66 W CHAPTER 2 LIMITS AND CONTINUITY

Y Example T Show that
Sl =2x-1 111%(2)6 —1)=3. (Figure 2.2.6)
3+e€
3 Finding a §. Let € > 0. We seek a number § > 0 such that
3-¢€

if 0<|x—2] <3, then [2x = 1)=3] <e.

What we have to do first is establish a connection between

2.5 2245 x @x—1)—=3] and  [|x—2|.
L[“Z(Zx -=3 The connection is evident:
Figure 2.2.6 (%) (2x = 1) = 3| = [2x — 4| =2|x = 2|.

To make |(2x — 1) — 3] less than €, we need to make 2|x — 2| < €, which we can
accomplish by making |x — 2| < €/2. This suggests that we choose § = %e.

Showing that the § “works” If 0 < |x —2| < %6, then 2|x — 2| < € and, by
(%), |2x —1)—3] <e. d

Remark In Example 1 we chose § = %e, but we could have chosen any positive

number § less than %e. In general, if a certain 6* “works” for a given €, then any § less

than §* will also work. [

Example 2 Show that

’ 54 xl_i>n_11(2 —3x)=5. (Figure 2.2.7)
-5 Finding a §. Let € > 0. We seek a number § > 0 such that
5-¢ if  O0<|x—(=D| <3, then [(2—=3x)—5] <e.
To find a connection between
Ix —(=DI and  |(2-3x)-5],
we simplify both expressions:
S =2-3x x —(=1)] =[x + 1]
\ - and
_1_41 2=3x)—5=]|—3x—3|=|—3|lx+ 1] =3x + 1].
e We can conclude that
i S=s (%) |2 = 3x) = 5] =3Jx = (= 1)].
Figure 2.2.7 We can make the expression on the left less than € by making |[x — (—1)] less than €/3.

This suggests that we set § = %e.
Showing that the § “works.” 1f0 < |x — (—1)| < %e,then 3lx — (—1)] < € and, by
(%), |2 —=3x)—5|<e. 1

Three Basic Limits

Here we apply the €, § method to confirm three basic limits that are intuitively obvious.
(If the €, § method did not confirm these limits, then the method would have been
thrown out a long time ago.)
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2.2 DEFINITION OF LIMIT = 67

Example 3  For each number c, y
S =x
c+e
(2.2.3) limx = c. (Figure 2.2.8) ek
e CcC— €
|
PROOF Let ¢ be a real number and let € > 0. We must find a § > 0 such that c-8 ¢ c+8 x
if 0<|x—c| <, then x —c| < e. limx=e¢
Obviously we can choose § = €. ' Figure 2.2.8
Example 4  For each real number ¢
y
(2.2.4) lim |x| = |c|. (Figure 2.2.9) lcl+ €
X—cC —
e e /100
PROOF Let c be a real number and let € > 0. We seek a § > 0 such that |
if  O<lx—cl<d,  then |lx|—lcl| <e. A [T
Since Figure 2.2.9
JIx] = lel] < lx —el. 171
we can choose § = ¢, for
if O<lx—cl<e,  then |lx|—|cl|<e 4
v
Example 5 For each constant & k+e
—k f&) =k
k-¢€
(2.2.5) limk = k. (Figure 2.2.10) \
xX—c c-8 ¢ c+38 x
lim k =k
PROOF Here we are dealing with the constant function Figure 2.2.10
Jx)=k.
Let e > 0. We must find a § > 0 such that
if 0<|x—c| <38, then k—k| < e.

Since |k — k| = 0, we always have
lk—k|l <€

no matter how § is chosen; in short, any positive number will do for §. [

Usually €, § arguments are carried out in two stages. First we do a little scratch
work, labeled “finding a 6” in Examples 1 and 2. This scratch work involves working
backward from | f(x) — L| < € to find a § > 0 sufficiently small so that we can begin
with the inequality 0 < |x — ¢| < § and arrive at | f(x) — L| < €. This first stage is
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68 W CHAPTER 2 LIMITS AND CONTINUITY

just preliminary, but it shows us how to proceed in the second stage. The second stage
consists of showing that the § “works” by verifying that, for our choice of §, it is true
that

if 0<|x—c| <, then | f(x)—L| <e.

The next two examples will give you a better feeling for this idea of working backward
to find a 6.

Example 6

S =x° limx%2=9 (Figure 2.2.11)

x—3

9 Finding a §. Let € > 0. We seek a § > 0 such that

9-e if 0<|x—-3] <3, then Ix2 = 9| <.

The connection between |x — 3| and |x?> — 9] can be found by factoring:

x? =9 =(x+3)(x —3),

|
3 * and thus,

3-8 3+6
2 p— —
Figure 2.2.11 (%) Ix? — 9] = |x + 3[|x — 3.

At this point, we need to get an estimate for the size of |x 4 3| for x close to 3. For
convenience, we’ll take x within one unit of 3.
If[x —3] < 1,then2 < x < 4 and

x+3 <|x|+3]=x+3<T7.
Therefore, by (),
() if [x =3 <1, then Ix2 =9 < 7|x —3|.
If, in addition, |x — 3| < €/7, then it will follow that
X2 —9| < 7(e/7) = €.

This means that we can let § = the minimum of 1 and €/7.
Showing that the § “works.”” Let € > 0. Choose § = min{1, €/7} and assume that

0<|x—3] <.
Then
x =3 <1 and lx — 3| <¢€/7.
By (),
x> = 9] < 7]x — 3,
and since [x — 3| < €/7, we have

P ) =% X2 —9| < 7(e/T) = €. 1

Example 7

4-5 4 4+5 X }i_r)r‘l‘\/gz 2. (Figure 2.2.12)

iifﬁ;: 2 Finding a §. Let e > 0. We seek a § > 0 such that

Figure 2.2.12 if 0<|x—4| <3, then [Vx —2| <e.
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To be able to form /x, we need to have x > 0. To ensure this, we must have § < 4.
(Explain.)

Remembering that we must have § < 4, let’s move on to find a connection between
|x — 4| and |/x — 2|. With x > 0, we can form ,/x and write

x—4=x)-2" =W +2(x-2)
Taking absolute values, we have
lx — 4] = |vx +2|[vx = 2.
Since |/x + 2| > 2 > 1, it follows that
IVx =2| < [x — 4.

This lastinequality suggests that we can simply set§ < €. Butremember the requirement
8 < 4. We can meet both requirements on § by setting § = the minimum of 4 and €.
Showing that the § “works.” Let € > 0. Choose § = min{4, ¢} and assume that

0<|x—4] <.
Since § < 4, we have x > 0, and so /x is defined. Now, as shown above,
Ix — 4 = |Vx 4+ 2[[Vx = 2],
Since |4/x + 2| > 2 > 1, we can conclude that
IVx =2 < |x — 4.

Since |[x — 4| < 6 and § < ¢, it does follow that |[x — 2| <e.

There are several different ways of formulating the same limit statement. Sometimes
one formulation is more convenient, sometimes another. In particular, it is useful to
recognize that the following four statements are equivalent:

(1) lim f(x)=L (i) lim f(c+h)=1L 7
2.2.6) e "0
(iii) lim(f(x)—L)=0 (iv) lim | f(x) — L] = 0. L=
XxX—cC X—C h< 0 h> O
| | |

The equivalence of (i) and (ii) is illustrated in Figure 2.2.13: simply think of /4 as
being the signed distance from ¢ to x. Then x = c + /4, and x approaches c iff & Figure 2.2.13
approaches 0. It is a good exercise in €, § technique to prove that (i) is equivalent
to (ii).

Example 8 For f(x) = x2, we have

lim x? = 9 lim@ + 4)2 = 9
x—3 h—0
lir%(x2—9):0 1irr§|x2—9|:0. J

We come now to the €, § definitions of one-sided limits. These are just the usual
€, § statements, except that for a left-hand limit, the § has to “work™ only for x to
the left of ¢, and for a right-hand limit, the § has to “work™ only for x to the right
of c.
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DEFINITION 2.2.7 LEFT-HAND LIMIT

Let f be a function defined at least on an open interval of the form (¢ — p, ¢).
We say that

lim f(x)=1L
if for each € > 0 there exists a § > 0 such that

if c—8§<x<c, then | f(x)—L| <e.

DEFINITION 2.2.8 RIGHT-HAND LIMIT

Let f be a function defined at least on an open interval of the form (¢, ¢ + p).
We say that

lim+ fx)=1L
if for each € > 0 there exists a § > 0 such that

if c<x<c+3é then | f(x)—L| <e.

As our intuitive approach in Section 2.1 suggested,

y 229) | lim f(x)=L iff lim f(x)=L and 1im+ f(x)=1L.
/
1
/ g The result follows from the fact that any § that “works” for the limit will work for
‘ ‘ ‘ both one-sided limits, and any § that “works” for both one-sided limits will work for

_ _ N L.
2 / 1 2 ° the limit.
-1+

Example 9 For the function defined by setting

Figure 2.2.14 Fx) = 2326 +1, x<0

X7 —=x x>0 (Figure 2.2.14)

lin}) f(x) does not exist.
X—

PROOF The left- and right-hand limits at O are as follows:

¥
lirgl fx)= lirgl 2x+1)=1, lirgl fx) = lirgl (x*=x)=0.
3 ° x—0- x—0~ x—0F x—0t
Since these one-sided limits are different, liII(l) f(x) does not exist. [
ol x—
\ ‘ Example 10 For the function defined by setting
| | 1+ x2, x <1
1 P 3 x gx)= 3, x=1 (Figure 2.2.15)
\ 4 —2x, x > 1,
lim g(x) = 2.
Figure 2.2.15 x—>1g( )
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PROOF The left- and right-hand limits at 1 are as follows:
lirrll_ gx) = lirrll_(l +xH) =2, 1irr11+ gx) = lirr11+(4 —2x) =2.

Thus, lim1 g(x) = 2. NOTE: It does not matter that g(1) # 2. J

At an endpoint of the domain of a function we can’t take a (full) limit and we can’t
take a one-sided limit from the side on which the function is not defined, but we can
try to take a limit from the side on which the function is defined. For example, it makes
no sense to write

y
. . o) =k
lim +/x or lim /x.
x—0 x—>0~
But it does make sense to try to find
lim +/x. (Figure 2.2.16) [ x
x—>07 lim\x=0
As you probably suspect, this one-sided limit exists and is 0. 0
Figure 2.2.16
EXERCISES 2.2
Exercises 1-20. Decide in the manner of Section 2.1 whether or 21. Which of the §’s displayed in the figure “works” for the
not the indicated limit exists. Evaluate the limits that do exist. given €?
2
1
1. lim —— 2. tim =LY, y
x—>1x-1-1 x—=0 2x L+ern
3. Tim 20T, 4. lim ———. ;
x—0  2x2 x4 /x + 1
4_1 1— L-el
5. lim = 6. lim —
x—1 x — x—=>—-1x 4+ 1
2
—1
7. lim — 8. lim ——
x—0 |x| x—>1x2 —=2x +1
|x| x—3 ‘ ‘ ‘ 3 3 3
9. lim —. 10. lim . ) -8, N C / ci8, A x
x—=-2 X x—>9\/——3 {—/336 20—81 c-{ﬁlc+ 26§—53
11. lll’I'lJr % 12. hmi i
ot e =0 x| 22. For which of the €’s given in the figure does the specified &
Vx —1
13. lim XX 14. lim V9 — 2. work?
x—>1t X x—>3~ y
. . 2x —1, x<2
15. 1 f = ’ N L+eg]
xl)r121+f(x)1 Jx) {xz—x, x > 2. L+ez,\
. . 1, x<-1 L+ et
16.xl)1r_n]7f(x)1ff(x)_{x+2, x> —1. L—efw
3, xan integer Loy
. . _ s L- €3l
17. ;}1—{% f)iffl) = 1, otherwise. /3
x?, x<3 ¢ —
18. lim f(x) if f(x) = 7, x=3 €m0 ¢t
3 2x +3, x>3.
19. lim f(x) if f(x) = i xélln int.eger Exercises 23-26. Find the largest § that “works” for the given €.
=2 » Orerwise. 23. lim 2x = 2; € = 0.1. 24. lim 5x = 20; € = 0.5.
) ) xz x <1 x—1 x—4
20. lim fO) i fO) =15, 2 25. lim Ix=1€e=001. 26 lim Ix=123e=0.1.

SOLID CONVERTER PDF > [l neas o te



72 m CHAPTER 2 LIMITS AND CONTINUITY

b27. The graphs of f(x) = /x and the horizontal lines y = 1.5
and y = 2.5 are shown in the figure. Use a graphing utility
to find a § > 0 which is such that

if  O0<|x—4]<3$, then [v/x —2] <0.5.
v
2.5
2
1.5
4 X

PZS. The graphs of f(x) = 2x? and the horizontal lines y = 1
and y = 3 are shown in the figure. Use a graphing utility to
find a § > 0 which is such that

if  0<|x+1] <3, then  |2x?—2| < 1.
y
3
2
1
-1 X

bExercises 29-34. For each of the limits stated and the €’s
given, use a graphing utility to find a § > 0 which is such that
if 0 < |x —c¢| <34, then | f(x) — L| < €. Draw the graph of f
together with the vertical lines x = ¢ — 38, x = c+ 8 and the
horizontal lines y = L — €,y = L + €.

29. lim (3x% +x +1) =4 € =0.5, € =0.25.

30. limz(x3 +4x +2)=2; € =05, e =0.25.

X —
31. lim =2;€=0.5, ¢ =0.25.
x—1 \/;—
1-3
32. lim L 2, e=05 e=0.1.
x—>-12x +4
. sin3x
33. hrr(l) =3;,¢=025 ¢=0.1.
xX—> X

34. lirr} tan(wrx/4) = 1;€ = 0.5, € =0.1.

Give an €, § proof for the following statements.
35. lim(2x - 5) = 3. 36. lim(3x — 1) = 5.
37. ling(6x -7 =11 38. lirr(1)(2 —5x)=2.

39. lim |1 — 3x| = 5. 40. lim |x — 2| = 0.
x—2 x—2
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41. Let f be some function for which you know only that
if 0<l|x -3 <1, then |f(x)—5] <O0.1.
Which of the following statements are necessarily true?
(a) If |x — 3| < 1, then | f(x) — 5| < 0.1.
(b) If |x —2.5] < 0.3, then | f(x) — 5] < 0.1.
(©) lim f(x) = 5.
(d) If 0 < |x — 3| < 2, then | f(x) — 5] <O0.1.
(e) If0 < |x — 3| < 0.5, then | f(x) — 5] < 0.1.
(H If0 < |x — 3| < {1, then | f(x) — 5| < £(0.1).
(g) If0 < |x — 3| < I, then | f(x) — 5] < 0.2.
(h) If 0 < |x — 3| < 1, then | f(x) — 4.95|] < 0.05.
1) Ifli_}n% f(x)=L,then4.9 <L <S5.1.
42. Supposethat |4 — B| < € foreache > 0.Provethat 4 = B.
HINT: Suppose that 4 # B and set e = %|A — Bj.

Exercises 43-44. Give the four limit statements displayed in
(2.2.6), taking

43. f(x) =
x—1
45. Prove that

,c=3 4. f(x) =

X
— =
x2 42

(2.2.10) li_I;n‘ f(x)=0, iff li_1)nv | f(x)] =0.

46. (a) Prove that
if lim f(x)=L, then lim|f(x)|=]|L|.
X—cC X—cC
(b) Show that the converse is false. Give an example where

lim | f(x)] = [L] and lim f(x)=M# L,

and then give an example where

lim | f(x)] exists but lim f(x) doesnot exist.
x—c x—c

47. Give an €, § proof that statement (i) in (2.2.6) is equivalent
to (ii).

48. Give an €, § proof of (2.2.9).

49. (a) Show that lim /x = \/c for each ¢ > 0.

HINT: If x and ¢ are positive, then
[x —c| 1
0<Ivx—el=

m < —C|x —Cl.
(b) Show that lir{)l+ Jx=0.

Give an €, § proof for the following statements.

50. lin%xz = 4. 51. lirr} =1
52. lin% Jx+1=2. 53. lirglﬁ J3—x=0.

54. Prove that, for the function

(x) = x, xrational
gx) = 0, x irrational,

lin})g(x) =0.




55. The function

1, xrational
)= {0, x irrational

is called the Dirichlet function. Prove that for no number ¢
does lim f(x) exist.
X—cC

Prove the limit statement.

56. xl_i)rgf(x):L iff }Ei_r}})f(c—|h|)=L.
57. xl_i)tgf(x):L iff }Ei_r)I})f(c—i—Ihl):L.
58. }i_)rrif(x):L iff }Lr%[f(x)—L] =0.
59. Suppose that )P—{I} fx)=L.

(a) Prove that if L > 0, then f(x) > 0 for all x # ¢ in an
interval of the form (¢ — y, ¢ + y).
HINT: Use an €, § argument, setting € = L.
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(b) Prove that if L < 0, then f(x) < 0 for all x # ¢ in an
interval of the form (¢ — y, ¢ + y).

60. Prove or give a counterexample: if f(c) > 0 and lim f(x)
exists, then f(x) > 0 for all x in an interval of the form
(c—v.ct+y).

61. Suppose that f(x) < g(x) forallx € (¢ — p, ¢ + p), except
possibly at c itself.

(a) Prove that lim f(x) < lim g(x), provided each of these
limits exist.

(b) Supposethat f(x) < g(x)forallx € (¢ — p,c + p),ex-
cept possibly at c itself. Does it follow that lim f(x) <

lim g(x)?
62. Prove that if lim f(x) = L, then there are positive numbers
8 and B such that if 0 < |[x — ¢| < 8, then | f(x)| < B.

As you probably gathered by working through the previous section, it can become
rather tedious to apply the €, § definition of limit time and time again. By proving some
general theorems, we can avoid some of this repetitive work. Of course, the theorems
themselves (at least the first ones) will have to be proved by €, § methods.

We begin by showing that if a limit exists, it is unique.

THEOREM 2.3.1 THE UNIQUENESS OF A LIMIT

If lim f(x)=L and lim f(x) = M, then L=M.

PROOF We show L = M by proving that the assumption L # M leads to the false
conclusion that

|IL — M| < |L— M|
Assume that L # M. Then |L — M|/2 > 0. Since lim f(x) = L, we know that
there exists a §; > 0 such that

(1) if 0<|x—c|<é, then |f(x)—L| <|L— M|/2.

(Here we are using |L — M|/2 as€.)

Since lim f(x) = M, we know that there exists a §, > 0 such that
X—cC

2 if 0<|x—c|<é, then | f(x)—L| <|L— M|/2.

(Again, we are using |L — M|/2 as €.)
Now let x| be a number that satisfies the inequality
0 < |x; — ¢| < minimum of §; and §,.
Then, by (1) and (2),
|L — M|

| f(x)—L| < ———— and

IL — M|
3 .

1fGe) = M| < —
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It follows that
IL—=M| = [[L—fx)]+[f(x)— M]
< L= fGeDl+ /(1) — M|
by the triangle
inequality—T
L—M L— M
= 1)~ L+ 1 - M < E B
_
lal = | —al a
THEOREM 2.3.2

If lim f(x) = L and lim g(x) = M, then
@ lim [£00) + 00l = L+ M,
(i) lim [af(x)] = L || a real number

(ii)) lim [f(x)g(x)] = L M.

PROOF Let e > 0. To prove (i), we must show that there exists a § > 0 such that
if 0<|x—c| <5, then I f(x)+gx)]—[L+ M]| <e.
Note that

() 1L/ () +g()] —[L + M]| = [[f(x) — L]+ [g(x) — M]|
= [f(x) = L] + |g(x) — M|.

We can make |[f(x)+ g(x)] — [L + M]| less than € by making |f(x)— L| and
|g(x) — M| each less than %e. Since € > 0, we know that %e > (. Since

lim f(x)=1L  and  limg(x) = M,
we know that there exist positive numbers §; and §, such that
if 0<|x—c|<é, then |f(x)—L|<%e
and
if 0<|x—c| <&y, then lg(x) — M| < %e.
Now we set § = the minimum of §; and §, and note that, if 0 < |x — ¢| < §, then
|f(x)—L| < ie and |g(x)— M| < Le.
Thus, by (x),
/() +g(x)] = [L + M]| < e.
In summary, by setting § = min{§, 8,}, we find that
if O<|x—c|l<3$§ then I[Lf(x)+gC)]—[L+ M]| <e.

This completes the proof of (i). For proofs of (ii) and (iii), see the supplement to this
section. [
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If you are wondering about lim[ f(x) — g(x)], note that

J) —g(x) = f(x) + (=1)g(x),

and so the result

(2.3.3) Im[f(x) —g0)] =L —M

follows from (i) and (ii).
Theorem 2.3.2 can be extended (by mathematical induction) to any finite collection
of functions; in particular, if

lim fi(x) =L, lim f5(x) = Lo, lim f,(x) = L,

and oy, aa, ..., a, are real numbers, then

}i_)ni[alfl(x) + oo fo(x)+ -+ oy fr(3)]

(2.3.4)

=o Ll +arlo+ - +oa,L,.
Also,
(2.3.5) }i_)n}[fl(x)fz(x) e fu(X) = LiLy--- Ly,

For each polynomial P(x) = a,x” + - - - + a1x + ap and each real number ¢

2.3.6) lim P(x) = P(c).

PROOF We already know that

;l—{% x =c.
From (2.3.5) we know that
}1_{2 xk =k for each positive integer k.
We also know that }L)rrz ay = ay. It follows from (2.3.4) that

lim [@,x" + -+ aix +ap]l = a,c" + -+ -+ ajc+ ap,
X—C

which says that
lim P(x) = P(c).

A function f for which lim f(x) = f(c) is said to be continuous at c. What we just
X—>C

showed is that polynomials are continuous at each number c. Continuous functions,
our focus in Section 2.4, have a regularity and a predictability not shared by other
functions.
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Examples
lim (5x2 — 12x +2) = 5(1)> — 12(1) + 2 = —5,
lim (14x° — 7x? 4 2x 4 8) = 14(0)° — 7(0)*> +2(0) + 8 = 8,
lim @xP 4 x?—2x=3)=2(—1P + (=1 =2(-1)=3=-2. 1

We come now to reciprocals and quotients.

THEOREM 2.3.7

1 1
If limg(x)=M with M #0, then lim — = —,
x—c x—ocg(x) M
PROOF Given in the supplement to this section. [
Examples
. . 1 1 . 1 1 1
lim — = —, lim = -, Im —=——+=-. 1
—4x2 16 is2x3—1 7 -3 x| |=3] 3

Once you know that reciprocals present no trouble, quotients become easy to handle.

THEOREM 2.3.8
S _ L

If im f(x)=L and limgx)= M with M #0, then Ilim =
x—c x—>c x—>c g()C) M

PROOF The key here is to observe that the quotient can be written as a product:

@1
S IREARTY
With limf()=L and  lim $ - %

the product rule [part (iii) of Theorem 2.3.2] gives
1 L
f&)

lim—==L— = —.
x—rgg(x) M M

This theorem on quotients applied to the quotient of two polynomials gives us the
limit of a rational function. If R = P/Q where P and Q are polynomials and c is a real
number, then

@39) | limR@) = lim —&) = PO _

Im 5~ 0@ R(c), provided Q(c) # 0.
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This says that a rational function is continuous at all numbers ¢ where the denominator
is different from zero.

Examples

3x—=5 6-5 .
=— = -, lim

. x3—=3x%2 27-27
lim — = — _
x—2x24+1 441 5 x—3 1 —x2 1-9

=0. 4

There is no point looking for a limit that does not exist. The next theorem gives a
condition under which a quotient does not have a limit.

THEOREM 2.3.10

If lim f(x) =L with L # 0 and lim g(x) =0, then lim % does not exist.
x—c x—c x—c g(x

PROOF Suppose, on the contrary, that there exists a real number K such that

lim & =K.
x—c g(x)
Then
L = lim f(x) = lim [g(x) . &} = lim g(x) - lim M =0-K=0.
x—>c x—c 2(x) x—c x—c g(x)
This contradicts our assumption that L #£ 0.
Examples From Theorem 2.3.10 you can see that
im x im X7 and lim
x—>1x—1’ x—>2x2—4’ x—0 X

all fail to exist. [

Now we come to quotients where both the numerator and denominator tend to zero.
Such quotients will be particularly important to us as we go on.

Example 1T Evaluate the limits that exist:
. x>—x—6 (¥ =3x —4)? . x+1
@ M OmT Ty OMgamse
SOLUTION
(a) First we factor the numerator:
x> —x—6 _ (x+2)(x —3)
x—3 x—3 '

For x # 3,

2_x—6
#:x.'_z.
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Therefore

o oxt—x-—6 .
lm——3—=lm&+2=5

(b) Note that
(x? —3x —4) [+ Dx = 4)? (e + 1)2(x — 4)
x—4 B x—4 B x—4 '
Thus for x # 4,

2 a4V
W 1P —4),
x—4

It follows that

. (x2—3x—4)2_ . 2 _
Mo T - a=0
(¢) Since

x+1 B x+1 B x+1

Qx24+7x +52  [2x +5)x +DPP  2x +52(x + 1)’
forx # —1,

x+1 1

QRx24+7x +5?2  Qx+52(x+1)

As x — —1, the denominator tends to 0 but the numerator tends to 1. It follows from
Theorem 2.3.10 that

1
li _— t exist.
x_l)rgl o TG T D) does not exis
Therefore
1
lim L does not exist.
x—=>—1(2x% 4+ 7x + 5)?

Example 2 Justify the following assertions.

CAx—12 1 _x-9
@M =7 OmE5=0
SOLUTION
(a) Forx # 2,

2—x
x—1/2 57 —(x—2) -1

x—2  x—2 2x(x—-2) 2x
Thus
. 1/x—=1/2 . -1 1
lim —— =lim | — | = —-.
x—=2 X — 2 x—2 2x 4
(b) Before working with the fraction, we remind you that for each positive number ¢

lim /x = +/c. (Exercise 49, Section 2.2)

X—>C
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Now to the fraction. First we “rationalize” the denominator:
x—9 x—9 x+3 x —9)(/x+3
Jx =3 JSx-=3 Jx+3 x =9
It follows that
x—=9
lim = lim 3]=6. 4
x—9 ﬁ -3 x—>9[ﬁ + ]
Remark In this section we phrased everything in terms of two-sided limits. Although
we won’t stop to prove it, analogous results carry over to one-sided limits. '
EXERCISES 2.3
1. Given that 7. 1im4()c2 +3x =7). 8. lim2 3x —1].
lim f(x) =2, lim g(x) = —1, lim A(x) =0, x2+1
e e e 9. lim |x? — 8. 10. lim1 T a
evaluate the limits that exist. If the limit does not exist, state x=V3 X j—
4 2—
how you know that. . 11. lim <x - —>. 12, lim =
(a) Lim[f(x) — g(x)]. (b) lim[f(x)]. =0 x x5 Ax
X—>C X—C 2 2
+1 X
h .X .
(©) tim & (d) Tim 2. 13. lim ~— W lim 57

e g(v) e 1) ) 1

- Jx) . 1 15. lim 16. limh (1 —— ).
(e) lim =——. ® lim ——. x—>2 x2 —4 h—0 h

2 ) e f(¥) = g) o )

2. Given that 17. lim /s <1 + Z)' 18. lim == T
— x—=2 x4 —

lim f(x) =3, limgkx)=0, limh(x)=-2,

x—c x—c x—c 19 | x2 —4 20 | (x2 —x — 6)2
evaluate the limits that exist. If the limit does not exist, state ’ xl_rg x—2 : x_l,n_lz x 42
how 3./ou know that. . N oo
(@) lim[3 f(x) — 2A(x)]. (b) 11m}[h(x)]3. 21. )}l_rg PR 22. il_r)r} NSk

h
(©) lim 2 () tim &%  x2—x—6 C x2—x—6
x>e X — ¢ x—c h(x) 23. lim -5 24, lim Y
lim —2 () lim[3 + g(0P ey ey
e) lim ——. im )%
© I o —he) s 8 25, i LU/ 26 1im LU
3. When asked to evaluate ho 1= 1/h° S0 1 1/h?
. 1 1 1 1—1/h 1+1/h
1 - == , i . . —_—
XEI};(x 4) <x—4> 27 I 28 i e
1 1 2 2 _
Moe replies that the limit is zero since lim [ — — — [ =0 29. lim ﬂ 30. lim = 4.
x—4| x 4 ——112 43142 x—2t x —2
and cites Theorem 2.3.2 as justification. Verify that the limit t+at 2
is actually —% and identify Moe’s error. 31. lim TS 32. lim gt
4. When asked to evaluate ot —: /t i
-1 1
X 4x—12 33. lim = 34. lim A2 (14— ).
lim ———, x—1x4—1 h—0 h
x—3 x—3
Moe says that the limit does not exist since lim(x —3) =0 35. limA 1+ i 36. lim 3x + L .
. . =3 h—0 h? x>—4\x+4 x+4
and cites Theorem 2.3.10 (limit of a quotient) as justifica-
tion. Verify that the limit is actually 7 and identify Moe’s . 2x 8
37. lim +
CITOr. y—»—-4\x+4 x+
Exercises 5-38. Evaluate the limits that exist. 2 8
. : A2 38. lim -
5. ;1_)1‘%3 6. }1_rg(5 4x)°. my (x T4 x+

SOLID CONVERTER PDF > [l neas o te




80 m CHAPTER 2 LIMITS AND CONTINUITY

39. Evaluate the limits that exist.

i 1 1
@ Jm (; ‘z>~
(/1 1 1
®) i‘fﬁ_(; _Z> (x_4>]~
o m[(t-1)o-2]

VAR 12
W‘ﬁ_(;‘z)(x_z;”'

40. Evaluate the limits that exist.

2 12 2 —12

(a) lim i (b) lim L
x—3 x—3 x—3 x—3

. ()cz—i—)c—IZ)2 x4+ x—12

©ln=——— @lm——5

41. Given that f(x) = x? — 4x, evaluate the limits that exist.

@ i LSSy SO SO
x—4 x—1 x—1
. f(x)—f(l) ) - [
©OmT =y - OmT

42. Given that f(x) = x>, evaluate the limits that exist.

@ i LDIO  SO SO
© im0 gy =S
x—3 x—1 x—1

43. Show by example that lim[ f(x) + g(x)] can exist even if
lim f(x) and lim g(x) do not exist.

44. Show by example that lim[f(x)g(x)] can exist even if
X—c
lim f(x) and lim g(x) do not exist.

Exercises 45-51. True or false? Justify your answers.
45. If lim[ f(x) + g(x)] exists but lim f(x) does not exist, then
x—c x—c
lim g(x) does not exist.
X—cC

46. If lim[ /(x) + g(x)] and lim f(x) exist, then it can happen
that lim g(x) does not exist.

47. If lim / f(x) exists, then lim f(x) exists.
48. If lim f(x) exists, then lim / f(x) exists.

exists.

49. If lim f(x) exists, then lim !
x—c x—c f(x
50. If f(x) < g(x) for all x # ¢, then 1i_1>n‘ flx) < li_r)n‘g(x).
51. If f(x) < g(x) forall x # ¢, then lim f(x) < lim g(x).
52. (a) Verify that
max{ f(x), gx)} = {[/(¥) + 2] + | /(x) — g)]}-

(b) Find a similar expression for min { f(x), g(x)}.

53. Let 2(x) = min{ f(x), g(x)} and H(x) =
Show that

if limf(x)=L and limg(x)=L
X—>cC X—C

max{f(x), g(x)}.

then limh(x)=L and lim H(x)=

HINT: Use Exercise 52.

54. (Stability of limit) Let f be a function defined on some in-
terval (¢ — p, ¢ + p). Now change the value of / at a finite
number of points x;, xa, ..., x, and call the resulting func-
tion g.

(a) Show that if lim f(x)=L,then lim g(x) =
(b) Show that if hm does not exist, then 11m g(x) does not
exist.

55. (a) Suppose that lim f(x) =0 and lim[f(x)g(x)] = 1.

Prove that lim g(x) does not exist.
(b) Suppose that lim f(x) = L # 0 and lim[ f(x)g(x)] =
1. Does lim g(x) exist, and if so, what is it?

56. Let f be a function defined at least on an interval
(¢ — p, ¢+ p). Suppose that for each function g

lim[ f(x) + g(x)] does not existif lim g(x)
does not exist.

Show that lim f(x) does exist.

(Difference quotients) Let f be a function and let ¢ and ¢ + &
be numbers in an interval on which f is defined. The expression

Jle+h)—f)
h

is called a difference quotient for f. (Limits of difference quo-
tients as # — 0 are at the core of Chapter 3.) In Exercises 57-60,
calculate

i JC+ =S

h—>0
for the function f and the number c.
57. f(x) =2x*—3x; c=2.
58. f(x)=x>+1;
59. f(x)=./x; c=4
60. fx)=1/(x+1); c=1.
61. Calculate

c=—1.

i Jx+h) — f(x)
im - ———
h—0 h

for each of the following functions:

@ flx)=x.
(b) f(x) = x>
© f(x)=x
@ fx)=x"

(e) f(x) = x",n an arbitrary positive integer.
Make a guess and confirm your guess by induction.
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2.3 SOME LIMITTHEOREMS m 81

*SUPPLEMENT TO SECTION 2.3

PROOF OF THEOREM 2.3.2 (1)

We consider two cases: « # 0 and @ = 0. If o # 0, then €/|a| > 0 and, since
lim f(x)=L,

we know that there exists § > 0 such that,

if  O<|x—c|<d  then |f(x)—L|<|€—|.
o

From the last inequality, we obtain
lal| f(x)—L| <€ and thus laf(x) —al| < e.
The case o = 0 was treated before. (2.2.5)
PROOF OF THEOREM 2.3.2 (II1)
We begin with a little algebra:
|/ ()gx) — LM| = |[f(x)g(x) — f(x)M] + [f(x)M — L M]|
= 1f(0)gx) = f()M| + | f(x)M — L M|
= |f)llg(x) — M|+ [M]| f(x) — L]
= 1 /lgle) = M|+ (1 + [MDIf(x) — LI
Now let € > 0. Since ;I—Q f(x)=L and ;l_r}l} g(x) = M, we know the following:
1. There exists §; > 0 such that, if 0 < |x — ¢| < §;, then
[f(x)— Ll <1 and thus [f) < 1+|L]

2. There exists §, > 0 such that

1
S€
if 0<|x—c| <6y, then x)— M| < 2 .
x—cl <6 lgx) = M| (1+|LI)
3. There exists 83 > 0 such that

1
2

€
if 0 — 83, then — L .
<lx—cl<d [ f(x) |<<1+|M|)

We now set § = min{d,, 8, 83} and observe that, if 0 < |[x — ¢| < 8, then

) = LM < [f(0)llg(x) = M|+ (1 4+ [MD]f(x) — L]

je Je
=e.
< (1+IL) T+ L] + (1 + M) 5 M| €
by (1) — ) Lby3)

PROOF OF THEOREM 2.3.7
For g(x) # 0,

‘ 1 U _ lex) — M|
gx) M lg()| M|
Choose 8; > 0 such that

M|
if 0<|x—c| <éy, then lg(x) — M| < |2—|
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For such x,

M 1 2
lg(x)] > u so that < —
2 gl M|

and thus
1 1 lg(x) — M| 2 2
gy M| = — M| = —g(x) — M.
‘g(x) M lg()|IM| — |M|2|g(x) I =578 |

Now let € > 0 and choose 8, > 0 such that

M2
if 0<|x—c| <éy, then lg(x) — M| < 76.

Setting § = min{§,, 8,}, we find that

1 1
if 0<|x—c|l <8, then ———|<e U4
gx)y M

B 2.4 CONTINUITY

In ordinary language, to say that a certain process is “continuous” is to say that it
goes on without interruption and without abrupt changes. In mathematics the word
“continuous” has much the same meaning.

The concept of continuity is so important in calculus and its applications that we
discuss it with some care. First we treat continuity at a point ¢ (a number c), and then
we discuss continuity on an interval.

Continuity at a Point

The basic idea is as follows: We are given a function /" and a number ¢. We calculate
(if we can) both lim f(x) and f(c). If these two numbers are equal, we say that /" is

continuous at c. Here is the definition formally stated.

DEFINITION 2.4.1

Let f be a function defined at least on an open interval (¢ — p, ¢ + p). We say
that f'is continuous at c if

lim f(x) = f(c).

If the domain of f contains an interval (¢ — p, ¢ + p), then f can fail to be con-
tinuous at ¢ for only one of two reasons: either

(1) fhas alimit as x tends to ¢, but lim f(x) # f(c), or

flofl e (ii) fhas no limit as x tends to c.

L / In case (i) the number c is called a removable discontinuity. The discontinuity can be
removed by redefining f at c. If the limit is L, redefine f at ¢ to be L.

S
| In case (i) the number c is called an essential discontinuity. You can change the value of
/ ¢ x f at abillion points in any way you like. The discontinuity will remain. (Exercise 51.)
The function depicted in Figure 2.4.1 has a removable discontinuity at c. The dis-
Figure 2.4.1 continuity can be removed by lowering the dot into place (i.e., by redefining f'atctobe L).
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The functions depicted in Figures 2.4.2, 2.4.3, and 2.4.4 have essential disconti- y
nuities at ¢. The discontinuity in Figure 2.4.2 is, for obvious reasons, called a jump —
discontinuity. The functions of Figure 2.4.3 have infinite discontinuities.

/ c X

p
, / / \ ! Figure 2.4.2

Figure 2.4.3 y

In Figure 2.4.4, we have tried to portray the Dirichlet function

1, x rational

f(x)z{_l’ ;

x irrational P x

At no point ¢ does f have a limit. Each point is an essential discontinuity. The function

is everywhere discontinuous. Figure 2.4.4
Most of the functions that you have encountered so far are continuous at each point

of their domains. In particular, this is true for polynomials P,

lim P(x) = P(c), [(2.3.6)]
for rational functions (quotients of polynomials) R = P/Q,

P PO
MR =100 = 0@ ~

and for the absolute value function,

R(c) provided 0(c) #0, [23.9)]

lim |x| = |¢|. [(2.2.4)]

As you were asked to show earlier (Exercise 49, Section 2.2),

lim /x = /¢ for each ¢ > 0.

X—>C

This makes the square-root function continuous at each positive number. What happens
at ¢ = 0, we discuss later.
With /" and g continuous at ¢, we have

lim /()= f(e)  lim g(x) = g(c)
and thus, by the limit theorems,
lim[ /() + g@)] = f(©) +g),  lim[ /() = g)] = (c) — £(e)
limfaf(¥)] = af(c) foreachreale  lim[/(¥)g)] = f()g(c)
and, ifg(c) #0,  lim[ /(x)/g()] = f(e)/g(c).
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We summarize all this in a theorem.

THEOREM 2.4.2
If f/ and g are continuous at ¢, then

(i) f + g is continuous at ¢;
(ii) f — g is continuous at c;
(iii) «f is continuous at ¢ for each real o;
(iv) f - g is continuous at c;
(v) f/g is continuous at ¢ provided g(c) # 0.

These results can be combined and extended to any finite number of functions.

X3

Example 1 The function F(x) = 3|x| + %):—6 + 4 is continuous at all real
x? —5x
numbers other than 2 and 3. You can see this by noting that

F=3f+g/h+k
where
f(x) = |x], gx) = x> —x, h(x) = x> — 5x + 6, k(x) = 4.

Since f, g, h, k are everywhere continuous, F' is continuous except at 2 and 3, the
numbers at which / takes on the value 0. (At those numbers F is not defined.)

Our next topic is the continuity of composite functions. Before getting into this,
however, let’s take a look at continuity in terms of €, §. A direct translation of

lim /() = /()
into €, § terms reads like this: for each € > 0, there exists a § > 0 such that
if 0<|x—c| <3, then [ f(x)— f(o)] <e.
Here the restriction 0 < |x — ¢| is unnecessary. We can allow |x — ¢| = 0 because then
x =c¢, f(x) = f(c), and thus | f(x) — f(c)| = 0. Being 0, | f(x) — f(c)| is certainly

less than €.
Thus, an €, § characterization of continuity at ¢ reads as follows:

for each € > 0 there exists a § > 0 such that

(2.4.3) £ is continuous atclf{if x—cl <8, then |f(x)— f(O)l <e.

In intuitive terms
£ is continuous at ¢ if for x close to c, f(x)is close to f(c).

We are now ready to take up the continuity of composite functions. Remember the
defining formula: (f o g)(x) = f(g(x)). (You may wish to review Section 1.7.)
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THEOREM 2.4.4

If g is continuous at ¢ and f is continuous at g(c), then the composition f o g
is continuous at c.

The idea here is as follows: with g continuous at ¢, we know that
for x close to ¢, g(x) is close to g(c);
from the continuity of f at g(c), we know that
with g(x) close to g(c), f(g(x)) is close to f(g(c)).
In summary,
with x close to ¢, f(g(x)) is close to f(g(c)).

The argument we just gave is too vague to be a proof. Here, in contrast, is a proof.
We begin with € > 0. We must show that there exists a number § > 0 such that

if  fx—c[<é,  then |f(g(x))— f(go)l <e.

In the first place, we observe that, since /" is continuous at g(c), there does exist a
number §; > 0 such that

(D if |t —g(o)] < én, then | /(1) — f(g(e)] <.

With §; > 0, we know from the continuity of g at ¢ that there exists a number § > 0
such that

2) if x —c| < 3§, then lg(x) — g(c)| < §;.

Combining (2) and (1), we have what we want: by (2),
if  |x—c| <3$, then lg(x) — g(o)| < &
so that by (1)

1/ (g(x)) = f(g(e)] < e.

This proof is illustrated in Figure 2.4.5. The numbers within § of ¢ are taken by g
to within &; of g(c), and then by f to within € of f(g(c)).

Figure 2.4.5

It’s time to look at some examples.
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Example 2 The function F(x) =

I, .
3 is continuous at all numbers greater

than 3. To see this, note that /' = f o g, where
2
x“+1
S =VE  ad g = .
Now, take any ¢ > 3. Since g is a rational function and g is defined at ¢, g is continuous

at ¢. Also, since g(c) is positive and f is continuous at each positive number, f is
continuous at g(c). By Theorem 2.4.4, F is continuous at c. '

The continuity of composites holds for any finite number of functions. The only
requirement is that each function be continuous where it is applied.

1
Example 3 The function F(x) = PR is continuous everywhere except
—/x* 4+
at x = £3, where it is not defined. To see this, note that F' = f o g o k o h, where
1
fx)=—, g(x)=5—1x, k(x) = /X, h(x) = x* + 16,

X

and observe that each of these functions is being evaluated only where it is continuous.
In particular, g and /4 are continuous everywhere, f is being evaluated only at nonzero
numbers, and k is being evaluated only at positive numbers.

Just as we considered one-sided limits, we can consider one-sided continuity.

DEFINITION 2.4.5 ONE-SIDED CONTINUITY
A function £ is called

continuous from the left at c if lim f(x) = f(c).
It is called

continuous from the right at ¢ if lim+ f(x) = f(o).

The function of Figure 2.4.6 is continuous from the right at 0; the function of Figure
2.4.7 is continuous from the left at 1.

: . \
™

X 1 X
) = gx) =V1-x
Figure 2.4.6 Figure 2.4.7

It follows from (2.2.9) that a function is continuous at ¢ iff it is continuous from both
sides at c. Thus
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S is continuous at ¢ iff f(c), im f(x), lim+ f(x)
(246) ' x—c x—c
all exist and are equal.

Example 4 Determine the discontinuities, if any, of the following function:

2x + 1, x<0 Y 0
fx)= 1, 0<x<l1 (Figure 2.4.8) 3
x2+1, x > 1.
2

SOLUTION Clearly f is continuous at each point in the open intervals
(—00,0), (0, 1), (1, 00). (On each of these intervals f is a polynomial.) Thus, we have
to check the behavior of f atx = 0 and x = 1. The figure suggests that f is continuous
at 0 and discontinuous at 1. Indeed, that is the case: 7 1 2 x

f(0) =1, lir{)li fx) = lir{)li(Zx +1)=1, lir{)l+ flx) = lir{)1+(1) =1.

Figure 2.4.8
This makes f continuous at 0. The situation is different at x = 1:

linll, fx) = linll, (H=1 and lirr11+ flx)= 1irr11+ (2 +1)=2.
Thus f has an essential discontinuity at 1, a jump discontinuity.

Example 5 Determine the discontinuities, if any, of the following function:

x3, x < —1
xr =2, —l<x<l1
6 —x, l<x<4
=1 %
, 4<x<7
7—x
S5x + 2, x >17.

SOLUTION 1t should be clear that f is continuous at each point of the open intervals
(=00, —1),(—1,1),(1,4),(4,7), (7, c0). All we have to check is the behavior of f at
x =—1,1,4,7. To do so, we apply (2.4.6).

The function is continuous at x = —1 since f(—1) = (=1)’ = —1,

lim_ f(x) = 1imr(x3) =1, and lim = f(x) = lim (x*=2)=—1.
Our findings at the other three points are displayed in the following chart. Try to verify
each entry.

c f(o) lim f(x) lim+ f(x) Conclusion

1 5 —1 5 discontinuous
4 not defined 2 2 discontinuous
7 37 does not exist 37 discontinuous

The discontinuity atx = 4 isremovable: if we redefine f at4 to be 2, then f becomes
continuous at 4. The numbers 1 and 7 are essential discontinuities. The discontinuity at
1 is a jump discontinuity; the discontinuity at 7 is an infinite discontinuity: f(x) — 0o
asx — 7. 4
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Continuity on Intervals

A function £ is said to be continuous on an interval if it is continuous at each interior
7 point of the interval and one-sidedly continuous at whatever endpoints the interval may
contain.
For example:

/ \ (i) The function

-1 1 x f(x)=+1—-x2

Negme is continuous on [—1, 1] because it is continuous at each point of (—1, 1), con-
=N tinuous from the right at —1, and continuous from the left at 1. The graph of the
Figure 2.4.9 function is the semicircle shown in Figure 2.4.9.

(ii) The function
1
VT=x2
is continuous on (—1, 1) because it is continuous at each point of (—1, 1). It is not

continuous on [—1, 1) because it is not continuous from the right at —1. It is not
continuous on (—1, 1] because it is not continuous from the left at 1.

S =

(iii) The function graphed in Figure 2.4.8 is continuous on (—oo, 1] and continuous on
(1, 00). It is not continuous on [1, co) because it is not continuous from the right
atl.

(iv) Polynomials, being everywhere continuous, are continuous on (—o00, 00).
Continuous functions have special properties not shared by other functions. Two

of these properties are featured in Section 2.6. Before we get to these properties, we
prove a very useful theorem and revisit the trigonometric functions.

EXERCISES 2.4
1. The graph of 1 is given in the figure. 2. The graph of g is given in the figure. Determine the intervals
(a) At which points is f* discontinuous? on which g is continuous.

(b) For each point of discontinuity found in (a), determine
whether £ is continuous from the right, from the left, or

neither.
(c) Which, if any, of the points of discontinuity found in (a) Y
is removable? Which, if any, is a jump discontinuity? 4
3+ 3
g
° 2 °
y
4 i)
| I [ I S I B
3 5 -4 -3 -2 -1 1 2 4 5 6 7 8 x
1
2 J
2
1
| /| \ \ \ [ [
-5/ -4 -3 -2 1 2 3 4 5 6 x . . .
_1 ° Exercises 3—16. Determine whether or not the function is contin-
uous at the indicated point. If not, determine whether the discon-
-2 tinuity is a removable discontinuity or an essential discontinuity.
If the latter, state whether it is a jump discontinuity, an infinite

discontinuity, or neither.
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. f(x)=x3—5x+1; x=2.

4. gx)=+/(x —1)*+5 x=1

5. f(x)=+/x2+9;, x=3.
6. f(x)=4—x2; x=2.
X244, x<2
7. f(x)=[ B ox 2 =2.
X245 x<2
8. h(x) = 3 ox 2 =2.
X244, x<2
9. g(x) = 5, x=2 x=2.
X3, x>2
X245 x<2
10. g(x) = 10, x=2 x=2.
1+x3, x>2;
lx — 1]
=4 >-1° **1 <=1
0, x=1;
1—x, x<1
12. f(x) = I, x=1, x=1
x2—1, x>1;
x2—1
Boam={571 7" x=-1
-2, x=-—1;
! 1
14-g(X)=ix+1’ AL o
0, x=-1;
x+2
15.f(x)=[x2_4’ X#EZ )
4, x =2
—x2, x<0
16. f(x) = 0, x=0 x=0
1/x%, x> 0;

Exercises 17-28. Sketch the graph and classify the discontinu-
ities (if any) as being removable or essential. If the latter, is it a
jump discontinuity, an infinite discontinuity, or neither.

17. f(x) = |x —1]. 18. h(x) = x> —1].

x2—4 )
19 fy={ x—2 *7
4, x=2.
x =3 £3.-3
20. f)=4x2-9 7T
i ox=3,-3
x+2
_—, -2,3
21. f(x) =4 x2—x—6 X7
-1 x=-23
2x—1, x<1
22. g(x) = 0, x=1
1/x%, x>1

2.4 CONTINUITY m 89

-1, x<-—1
23. fx)=1 x}, —-l<x<l1
1, 1<x.
1, x<-=2
24.g(x)=14 3x, 2<x<4
Jx, 4<x
1, x<0
X2, 0<x<l1
25. h(x) = | l<x<2
x, 2<x.
—x2, x<—1
3, x=-1
26. g(x) = 2—x, —-l<x<l1
l/xz, 1 <x.
2x+9, x <=2
X241, —2<x<l,
WS =135 21, 1<x<3
x+6, 3<ux.
x+7, x<-=3
_ x=2], -3<x<-1
28. 2(x) = x2=2x, —-1<x<3
2x —3, 3<x.
29. Sketch a graph of a function f* that satisfies the following
conditions:

1. dom(f) =[-3,3].

2. [()=/ED=Lf2)=70B)=2

3. f has an infinite discontinuity at —1 and a jump discon-
tinuity at 2.

4. f is right continuous at —1 and left continuous at 2.

30. Sketch a graph of a function f* that satisfies the following
conditions:
1. dom(f) =[-2,2].
2. f(=2)=/=D=/fD=/f2)=0.
3. f has an infinite discontinuity at —2, a jump disconti-

nuity at —1, a jump discontinuity at 1, and an infinite
discontinuity at 2.

4. f is continuous from the right at —1 and continuous from
the left at 1.

Exercises 31-34. If possible, define the function at 1 so that it
becomes continuous at 1.

2 1
31 f(x) = ); — 32. /()= —.
3. f(x) = Ii ~ L. 34. f(x) = %

X2, x <1 .. . .
35. Let f(x) = Ar—3 x> 1 Find A4 given that f is con-

tinuous at 1.

2.2
36. Let f(x) = {(1 _AA))CX’ i i 3 For what values of 4 is /'

continuous at 2?

SOLID CONVERTER PDF > [l neas o te



[> 40. Set f(x) =

90 m CHAPTER 2 LIMITS AND CONTINUITY

37. Give necessary and sufficient conditions on 4 and B for the
function

Ax — B, x <1
fx) = 3x, l<x<2
Bx?— A4, 2<x

to be continuous at x = 1 but discontinuous at x = 2.

38. Give necessary and sufficient conditions on 4 and B for the
function in Exercise 37 to be continuous at x = 2 but dis-
continuous at x = 1.

l4+ex, x<2

[ 39. Set f(x) = {C —x, x>2.

/ continuous on (—o0, 00). Use a graphing utility to verify
your result.

Find a value of ¢ that makes

1 —cx +dx?, x<-—1

x> +x, —1 <x <2 Findvalues of
ex?4+dx +4, x>2.
cand d that make /' continuous on (—oo, 00). Use a graphing
utility to verify your result.

Exercises 41-44. Define the function at 5 so that it becomes

continuous at 5.

JA¥4a-3 JAF4d-3
41, fy =772 8. fry=YEr4"°
X

-5 x—35

Vax—1-3

43.f(x)=);T.

V2 —Tx +16 — /6
x=35vx+1

Exercises 45—47. At what points (if any) is the function contin-
uous?

45. f(x) = { (1)

44. f(x) =

, x rational
, x irrational.

X, X rational
46. g(x) = { 0, x irrational.

_ ) 2x, x aninteger
47. hix) = {xz, otherwise.
48. The following functions are important in science and engi-
neering:
.. . 0, x<c
1. The Heaviside function H.(x) = { L x>e

2. The unit pulse function

1
Pe,c(x) = E[Hc(x) - Hc+e(x)]-

(a) Graph H, and P, ..
(b) Determine where each of the functions is continuous.
(c) Find lim H.(x) and 1im+ H.(x). What can you say
about lim H(x)?
49. (Important) Prove that

f is continuous at ¢ iff hlin(l) fle+h)= f(o).

50. (Important) Let f and g be continuous at c¢. Prove that if:

(a) f(c) > 0, then there exists § > 0 such that
f(x)>0forallx € (c —§,c+9).

(b) f(c) < 0, then there exists § > 0 such that
f(x)<Oforallx € (c —38,c+ ).

(¢) f(c) < g(c), then there exists § > 0 such that
f(x) < g(x)forallx € (c — 8, c+9).

51. Suppose that /" has an essential discontinuity at ¢. Change

the value of f as you choose at any finite number of points

X1, X2, ..., X, and call the resulting function g. Show that g

also has an essential discontinuity at c.

52. (a) Prove that if /" is continuous everywhere, then |f] is
continuous everywhere.
(b) Give an example to show that the continuity of | /| does
not imply the continuity of f.
(¢) Give an example of a function f such that f is continu-
ous nowhere, but | f] is continuous everywhere.

53. Suppose the function f has the property that there exists a
number B such that

|f(x) = f(o)] = Blx — |

for all x in the interval (¢ — p, ¢ + p). Prove that 1 is con-
tinuous at c.

54. Suppose the function f has the property that
/() = (O] < |x — 1]

for each pair of points x, 7 in the interval (a, b). Prove that f
is continuous on (a, b).
55. Prove that if
lim LM = (0
im¥—
h—0 h
exists, then f"is continuous at c.

56. Suppose that the function f is continuous on (—oo, 00).
Show that f can be written

f=fe+ fo.

where f, is an even function which is continuous on
(—00, 00) and fy is an odd function which is continuous
on (—oo, 00).

bExercises 57-60. The function f is not defined at x = 0. Use a

graphing utility to graph /. Zoom in to determine whether there
is a number k such that the function
_ /), x#0
Fx)= [ k, x=0
is continuous at x = 0. If so, what is k? Support your conclusion
by calculating the limit using a CAS.

in5
57. f(x) = 222X
sin 2x
2
X
58. =
J() 1 —cos2x
59. f(x) = 20X
x|
X sin2x
60. f(x) = ——-.
sinx
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