
6. Show αn :=
∏n

j=1
1 −

1

3j converges, with it limit positive.
[Solution] It’ trivial that (αn) decreases, with 0 its lower bound. It con-

verges. I’ll give two ways to show that it has a positive lower bound.

(Method I) We know that (1−a)(1− b)>1− (a+ b) for a, b ∈ (0, 1). This
means
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So we conclude that the limit might greater than 0.

(Method II) By an inequality 3n>n2, we find that 1 −
1

3j >1 −
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j2 . Hence
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Similarly we finish the proof.


