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Reliability is the essence of a proof. This means, to give a proof of a
fact, we want to pursuade ourselves its credibility. Everything comes with
reasons, and of course, including thoughts of Mathematics.

Many people might have heard of that there’s a proof of the fomula

1 + 1 = 2.

At the first sight, nearly all people would think that it must be insane to
prove that, because it really has nothing to do. We can just put an apple
and another one together, then these two apples is the answer.

This is a reasonable reply. Indeed, without further observation on higher
mathematics, the requirement (or, the desire) of a ”proof” would not emerge.

Theory of mathematics always develops according to our practical needs.
For example, by counting apples, we have

1 + 1 = 2;

by dividing a pie, we have

1

2
+

1

3
=

5

6
;

the theorem of right triangles leads to discovery of the irrational number,√
2, and then we have

1√
2 + 1

+ 1 =
√

2.

Operations on real numbers follows quite from the visualization of the
real line, which contains only one axis. With a connection to classical ge-
ometry, the introduction of rectangular coordinate in some sense is essential.
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Moreover, we can represent graph of functions on rectangular coordinate,
and investigate more properties.

Limits, continuity, slope of a tangent line, and area under a curve, are
important geometric topics, with limits their bases. However, disastrous
consequences occurrs during the process. For example, we have

0 = lim
y→0

lim
x→0

x

x + y
= lim

x→0
lim
y→0

x

x + y
= 1.

The deduction seems to make sense because that x goes to 0, and then y

goes to 0 means that x,y both go to 0, which also means that y goes to 0,
and then x goes to 0. However, the result that 0 = 1 is absurd. There might
be something wrong within it, and indeed, the key point is that we cannot
change the order of the limit notations.

The main problem is that the meaning of the limit is not clear enough so
that we misreorder the two limits. A formal definition required is:

lim
x→c

f(x) = L ⇔Def (∀ε>0)(∃δ>0)(if 0<|x − c|<δ, then|f(x) − L|<ε)

This is an illustration of the notion of limits. If we want to check the
truch of

lim
x→2

3x − 5 = 1,

this is a proof: Let ε>0. We choose δ = ǫ
3
. Then as 0<|x − 2|<δ,

|(3x − 5) − 1| = 3|x − 2|<3δ = 3
ε

3
= ε

What I have to mention is that, from now on the truth of terms involving
limits depends only on the right hand side of above definition —- which
involves only operations. This means, if we want to verify whether the limit
of a term is the given number, we must have been familiar with properties
of real numbers.

Hence another problem arises —— since we may accidentally make mis-
takes when dealing with problems concerning ”unusual” limits, i.e. there are
many traps in the world of limits, however, is there any trap in real numbers?
Will we ”stumble” again while struggling with real numbers? To make our
question more precise, are |3x − 6| = 3|x − 2|, and 3 ε

3
= ε reliable?



We will look back upon properties on real numbers. Our problem is
that, how arithmetric properties of real number are built. Unfortunately,
they are presently constructed by, only intuition. If we agree that the above
definition of limit is stable enough, then there must be a way to construct
the real number system like this.

In 19th century, one of the most famous definition of real numbers, is
done by Dedekind, though Dedekind cuts. A Dedekind Cut ξ is a subset of
the rational number set Q, such that

[a]ξ is nonempty and is not Q itself.

[b]If t ∈ ξ, then for any rational number s<t, s ∈ ξ

[c]For any t ∈ ξ, there is a rational number s>t such that s ∈ ξ

The background idea is that we can cut the ”rational line” (with respect
to the notion of real line), into two part, and the part in our left hands
is a Dedekind cut, and will represent a real number, For example, the cut
ξ = {t ∈ Q+|t2<2} ∪ Q−.

Addition and multiplication on two Dedekind cuts ξ, η is defined as the
cut

ξ + η := {u + v|u ∈ ξ, v ∈ η}
ξ · η := {u · v|u ∈ ξ, v ∈ η}

We might feel that, construction of the theory of real numbers without
intuition involves a lot of properties of rational numbers, For example, the
equality that

{t ∈ Q+|t2<2} · {t ∈ Q+|t2<3} = {t ∈ Q+|t2<6}.

Our target has been transfered to the theory of rational numbers. It
seems to be easier to explain the identities 1

3
= 2

6
= 3

9
, 2 = 2

1
= 4

2
, a · 2

a
= 2,

and so on. In fact, rational numbers are defined as ”equivalence classes” of
a given pair. Briefly speaking, for example.



a/b := {〈x, y〉|〈x, y〉 ∼ 〈a, b〉}
Then

1/2 = {〈1, 2〉, 〈2, 4〉, 〈3, 6〉, ...}
2/4 = {〈1, 2〉, 〈2, 4〉, 〈3, 6〉, ...}
3/6 = {〈1, 2〉, 〈2, 4〉, 〈3, 6〉, ...}

(1)

Collecting those ”(a/b)’s”, this is the rational number set. Moreover,
we denote 1̄ for 1/1, 2̄ for 2/1, and so on, but for writing convenience, we
always omit the ”bar”. Operations on rationals are defined in the natural
way. However, it’s clear that 2 = 2

1
= 4

2
remains unsolved. Indeed, we still

need something improve it.
There is a theorem saying that for rational numbers X, and Y 6= 0, there

is exactly one rational U such that

X · U = Y

This U is denoted by ” Y
X

”. Then 2 = 2

1
= 4

2
becomes trivial. (In fact, this

identity is abbreviated. The initial form is that

2̄

1̄
=Thm 2̄(=Def 2/1 = 4/2) =

4̄

2̄
.

Also, a · 2

a
= 2 would make sense.

When we want to prove that whenever 0<A<B, and 0<C<D, we always
have that 0<AC<BD, we ought to have known that of natural number
version. The reason is, after expressing A = a

α
, B = b

β
, C = c

γ
, and D = d

δ
,

we get from conditions that

aβ<αb

cδ<γd,

then, according to properties of natural numbers, we infer

(ac)(βδ)<(bd)(αγ)

AC<BD



Now, our problem is reduced to integers and natural numbers. To be
more elementary, we want to know operations on them, e.g. that

(1 + 2) + 3 = 1 + (2 + 3)

4 + 7 = 7 + 4

Moreover, we are even led to consideration of the truth of the formula that

1 + 1 = 2.

What we ought to illustrate is what 1,+,=,2, really are.
I don’t prepare to give an answer to this problem. A reference of this

(constructions of number systems) is: Foundations of analysis , written by
the German mathematician, Edmund Landau. During the reading of this
books, we could solve all problems listed above. However, if you are sensitive
on disadvantage of the discuss, and insist in what is called formalism of
foundations of mathematics, then you will face a series of problems.


