Inverslization

Wang-Hsiuan Pahngerei

2013.06.24

There're two usual ways to "go" from a magma to a group, as the diagram below,

where "divisibility" means for any a, b, ax = b and ya = b admits a unique solution.

Recall that a monoid is a pair (M, *) such that * is associative and has an identity e. Elements of a monoid need not have an inverse, so we hope to "extend" it to a group in some conditions. In fact, this action helps us contruct the Zahlen from the set of natural numbers.

Let us focus on commutative monoids with cancellation law (i.e. ax = ay implies x = y). In fact, this is really near a group. Firstly, define a relation \sim on $M \times M$ by $(a, b) \sim (x, y)$ if and only if a * y = b * x. This is an equivalence relation because, (i) a * b = a * b so $(a, b) \sim (a, b)$, (ii) $(a, b) \sim (c, d)$ means a * d = b * c, so c * b = a * d, that is $(c, d) \sim (a, b)$, and (*iii*) whenever $(a, b) \sim (c, d) \sim (e, f)$, a * d = b * c and c * f = e * d, so c * d * a * f = c * d * b * e, indicating a * f = b * e.

Secondly, let G be the set of equivalence classes. Then we define operation: [(a,b)] * [(x,y)] = [(a*x,b*y)]. This is well-defined because, written $(a,b) \sim (a',b')$ and $(x,y) \sim (x',y')$, so we have a*x*b'*y' = b*a'*x*y' = b*a'*y*x' = b*y*a'*x'.

Thirdly, [(1,1)] is the identity of the new "group", and for $[(a,b)] \in G$, [(b,a)] is the inverse. We're going to show that $h : M \to G$ by $a \mapsto [(1,a)]$ is the embedding (one-to-one monoid homomorphism). It's enough to show that h is one-to-one, but this is routine because [(1,a)] = [(1,b)] implies 1 * b = a * 1.

Now we hope to add in another operation. Recall that a semiring is a pair $(S, +, \cdot)$ such that (S, +) is a commutative monoid with identity 0, (S, \cdot) is a monoid with identity 1, it has both side multiplicative distrubution over addition, and multiplication by 0 annihilates S

 $(0 \cdot a = a \cdot 0 = 0)$. We now consider a commutative semiring $(S, +, \cdot)$.

Let (R, +) be the equivalence classes as mentioned above. We hope to add multiplication so that $(R, +, \cdot)$ is a ring. Define

$$[(a,b)] \cdot [(x,y)] = [(ay + bx, ax + by)].$$

It's routine to check well-defined. If $(a,b) \sim (a',b')$ and $(x,y) \sim (x',y')$, then

$$(ay + bx)(a'x' + b'y') = aa'yx' + yy'ab' + xx'ba' + bb'xy'$$

= $aa'xy' + yy'a'b + xx'ab' + bb'x'y = (a'y' + b'x')(ax + by).$

Note that the mapping h is again an embedding. Thus we view S as a semi-subring of R. Again, throughout this method, we have the conclusion that $\mathbb{N} \subset \mathbb{Z}$.