\documentclass[12pt]{article} \textwidth 6.6in \oddsidemargin 0.0in \evensidemargin 0.0in \textheight 9.0in \topmargin -0.3in \usepackage{amsthm,amssymb,amsmath,mathrsfs} \begin{document} \title{\textbf{A problem}} \maketitle [Problem] Let $A=\{$functions from $(0,1)$ to $\mathbb{R}\}$, and $B=\{$functions from $(0,1)$ continuously to $\mathbb{R}\}$. Show that (a) $A\not\approx\mathbb{R}$, and (b) $B\approx\mathbb{R}$. \begin{proof} We now show(a). Assume that $A\approx (0,1)$. Let $F:(0,1)\to A$ be such a bijection. Define a function $g:(0,1)\to \mathbb{R}$ such that for $c\in (0,1)$, \begin{align} g(c)= \begin{cases} 0, &\text{if $(F(c))(c)=1 $; } \\ 1, &\text{otherwise.} \end{cases} \end{align} (This is the "diagonal argument" on continuum.) We know that $g\in A=F((0,1))$. For $x\in (0,1)$, since $g(x)\ne (F(x))(x)$, we have that $g\ne F(x)$. This means $g\notin F((0,1))$, a contradiction. Therefore, $A\not\approx\mathbb{R}$. Secondly, we prove (b). To describe a function from $(0,1)$ continuously to $\mathbb{R}$, we only need to know its values on rationals. Moreover, the set \begin{align} C(\mathbb{Q}\cap (0,1),\mathbb{R})\subset \mathbb{R}^{\mathbb{Q}\cap (0,1)}.\notag \end{align} Note that restriction sets up a bijection between $B$ and $C(\mathbb{Q}\cap(0,1),\mathbb{R})$. So we have \begin{align} |B|\leq |\mathbb{R}^{\mathbb{Q}\cap (0,1)}| = \mathfrak{c}.\notag \end{align} We also know that $|B|\geq\mathfrak{c}$ because \begin{align} B\supset \bigcup_{r\in\mathbb{R}} \{f:f(x)\equiv r\}.\notag \end{align} Therefore, $|B|=\mathfrak{c}$, i.e. $B\approx\mathbb{R}$. \end{proof} \end{document}