\documentclass[12pt]{article} \textwidth 7.0in \oddsidemargin -0.3in \evensidemargin 0.0in \textheight 10.0in \topmargin -1.3in \usepackage{amsthm,amssymb,amsmath,mathrsfs} \newtheorem{num}{} \begin{document} \title{\textbf{Pumping Lemma - an Example}} \author{Wang-Shiuan Pahngerei} \date{April 27, 2012} \maketitle Show that $L:=\{x\in\{a,b\}\,\,:\,\,x\ne x^R \}$ is non-regular. \begin{proof} Assuming regularity, but whenever $m\in\mathbb{N}$, one might choose \begin{align} w=a^m ba^N \in L,\notag \end{align} where $N= m + m!$. Then if $w$ is decomposed as $w=xyz$, with $|xy|\leq m$ and $|y|\geq 1$, the string \begin{align} w_j := xy^j z,\notag \end{align} where $j=1+\frac{m!}{|y|}$, is in the form $a^K ba^N$. Note that $x,y$ looks like this form $a^r$, and $z$ in the form $a^s ba^N$. So the number $K$ of $a$'s at the left hand side of the middle $b$ of $w_j$ is \begin{align} K = m-|y| + |y|\cdot j = m + m! .\notag \end{align} Therefore it is symmectric, and then $w_j\notin L$. This contradicts the Pumping Lemma. \end{proof} \end{document}