Pumping Lemma - an Example

Wang-Shiuan Pahngerei

April 27, 2012

Show that $L := \{x \in \{a, b\} : x \neq x^R\}$ is non-regular.

Proof. Assuming regularity, but whenever $m \in \mathbb{N}$, one might choose

$$w = a^m b a^N \in L,$$

where N = m + m!. Then if w is decomposed as w = xyz, with $|xy| \le m$ and $|y| \ge 1$, the string

$$w_j := x y^j z_j$$

where $j = 1 + \frac{m!}{|y|}$, is in the form $a^{K}ba^{N}$. Note that x, y looks like this form a^{r} , and z in the form $a^{s}ba^{N}$. So the number K of a's at the left hand side of the middle b of w_{j} is

$$K = m - |y| + |y| \cdot j = m + m!.$$

Therefore it is symmetric, and then $w_j \notin L$. This contradicts the Pumping Lemma.