- 1. Motivation From e^x , we find $(e^x)' = e^x$. Immediately the question arises: Is e^x unique for f'(x) = f(x)? How about the case $f'(x) = \alpha f(x)$?
- 2. Solution By Taylor Expansion, we find analytic solutions $c_0 \cdot e^{\alpha x}$ and by assumption that f(x) > 0 we get the same solutions.
- 3. Generalization We then hope to solve y' + p(x)y = q(x). We perform multiplication of the function $\varphi(x)$, getting its general form. Substituting $-\alpha$ and 0 for p(x) and q(x) resp., we entirely solve (1).
- 4. Second ordered The equation $y'' + (\alpha + \beta)y' + \alpha\beta \cdot y = 0$ can be solved by means of two-variable simultaneous equations, and that of solving first-order equations twice.
- 5. Multiple Root Solution to $y'' + 2r \cdot y' + r^2 y = 0$ is $y = c_0 \cdot e^{-rx} + c_1 \cdot x e^{-rx}$.
- 6. **Imaginary Roots** Two particular roots $y_1 = \sin ax$, $y_2 = \cos ax$ would lead to the general solution $y = c_1 \sin ax + c_2 \cos ax$.
- 7. Generalization By use of "translation" like that performed on graphs on \mathbb{R}^2 , the form is $y = e^{\rho x}(c_1 \sin \omega x + c_2 \cos \omega x)$. Also, we might apply theories of complex variables, and imitate previous methods. The solution set remains the same.