
Here I will give another proof concerning Abel’s counterexample about a discontinuous
function which is an infinite sum of continuous functions. The difference of this proof from
the previous one shown in another article of mine is that I avoid the technique about the
First Mean Value Theorem of Integration because it is not mentioned in standard high school
courses.
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is such that
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whenever p + j is even and while p + j is odd,
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This means, by squeeze theorem, that as N → ∞, gN,j → 0 for all j’s. So
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i.e.
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