Complex Exponentiation

Definition Let z be a complex number, we know by Abel theorem that the series $\sum_{k=1}^{\infty} \frac{z^k}{k!}$ converges for any z. Define $\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$.

Theorem Let z, w be complex numbers. Then $\exp(z+w) = \exp(z) \exp(w)$.

Proof Let
$$S_n = \left(1 + \frac{z^1}{1!} + \frac{z^2}{2!} + \dots + \frac{z^n}{n!}\right) \left(1 + \frac{w^1}{1!} + \frac{w^2}{2!} + \dots + \frac{w^n}{n!}\right)$$
. We find by

expanding that

$$S_n = \sum_{k=0}^n \frac{\left(z+w\right)^k}{k!} + T_n$$

where

$$T_n = \sum_{k=1}^{n} \left(\frac{z^k w^n}{k! n!} + \frac{z^{k+1} w^{n-1}}{(k+1)! (n-1)!} + \dots + \frac{z^n w^k}{n! k!} \right)$$

For k=1,2,3,...,n, let $\rho = \max(|\mathbf{z}|, |\mathbf{w}|, 1)$, we have

$$\begin{aligned} \left| \frac{z^{k} w^{n}}{k! n!} + \frac{z^{k+1} w^{n-1}}{(k+1)! (n-1)!} + \dots + \frac{z^{n} w^{k}}{n! k!} \right| &\leq \rho^{2n} \left(\frac{1}{k! n!} + \frac{1}{(k+1)! (n-1)!} + \dots + \frac{1}{n! k!} \right) \\ &\leq \rho^{2n} \cdot n \cdot \frac{1}{\left(\left[\frac{k+n}{2} \right]! \right)^{2}} \leq \rho^{2n} \cdot n \cdot \frac{1}{\left(\left[\frac{n}{2} \right]! \right)^{2}} \end{aligned}$$

So we have

$$\begin{aligned} \left| \mathbf{T}_{\mathbf{n}} \right| &\leq \sum_{k=1}^{n} \rho^{2n} \cdot n \cdot \frac{1}{\left(\left[\frac{n}{2} \right]! \right)^{2}} \leq 10 \rho^{2n} \cdot \left[\frac{n}{2} \right]^{2} \cdot \frac{1}{\left(\left[\frac{n}{2} \right]! \right)^{2}} \\ &= 10 \rho^{2n} \cdot \left[\frac{n}{2} \right]^{2} \cdot \frac{1}{\left(\left[\frac{n}{2} \right]! \right)^{2}} \leq 10 \rho^{100 \left(\left[\frac{n}{2} \right]^{-1} \right)} \frac{1}{\left(\left(\left[\frac{n}{2} \right]^{-1} \right)! \right)^{2}} \to 0 \end{aligned}$$

Hence $T_n \to 0$, $S_n \to \sum_{k=0}^{\infty} \frac{(z+w)^k}{k!} = \exp(z+w)$. Since $S_n \to \exp(z)\exp(w)$ by

definition, therefore the theorem is proved.

Theorem Let $\theta \in \mathbb{R}$. Then $\exp(i\theta) = \cos\theta + i\sin\theta$. *Proof* Since

$$\exp(i\theta) = \sum_{k=0}^{\infty} \frac{(i\theta)^k}{k!} = \sum_{j=0}^{\infty} \left(\frac{(i\theta)^{2j}}{(2j)!} + \frac{(i\theta)^{2j+1}}{(2j+1)!} \right) = \sum_{j=0}^{\infty} \left(\frac{(-1)^j \theta^{2j}}{(2j)!} + i \frac{(-1)^j \theta^{2j+1}}{(2j+1)!} \right)$$
$$= \sum_{j=0}^{\infty} \frac{(-1)^j \theta^{2j}}{(2j)!} + i \cdot \sum_{j=0}^{\infty} \frac{(-1)^j \theta^{2j+1}}{(2j+1)!} = \cos\theta + i\sin\theta$$

we are done.

Definition Let $\theta \in \mathbb{R}$. Define $cis\theta = cos\theta + i sin\theta$.

Theorem For $\alpha, \theta \in \mathbb{R}$, $e^{\alpha} cis \theta = \exp(\alpha + i\theta)$

Theorem The function *exp* is one to one from $\mathbb{R}^+ \times [0, 2\pi) \subseteq \mathbb{C}$ onto \mathbb{C}_x .

Proof Since $\exp(\alpha + i\theta) = e^{\alpha} cis\theta = e^{\alpha} (\cos \theta + i \sin \theta)$ for α, θ in $\mathbb{R}^+ \times [0, 2\pi)$, hence it is one to one and onto.

Definition The inverse function of *exp* restricted on $\mathbb{R}^+ \times [0, 2\pi)$ is denoted by Log. **Definition** For $Z \neq 0$, $W \in \mathbb{C}$. Define $Z^W = \exp(W \operatorname{Log}(Z))$.

Theorem Hence $Z^{W_1+W_2} = Z^{W_1}Z^{W_2}$, and $Z^{W_1W_2} = (Z^{W_1})^{W_2}$.

Proof By definition, we have

$$Z^{W_1+W_2} = \exp((W_1 + W_2)Log(Z)) = \exp(W_1Log(Z) + W_2Log(Z))$$

= $\exp(W_1Log(Z))\exp(W_2Log(Z)) = Z^{W_1}Z^{W_2}$

and

$$Z^{W_1W_2} = \exp((W_1W_2)Log(Z)) = \exp(W_2Log(\exp(W_1LogZ)))$$

= $(\exp(W_1LogZ))^{W_2} = (Z^{W_1})^{W_2}$

Hence, these identities are proved.

Definition Define $\log_Z W = \frac{LogW}{LogZ}$.

Theorem For $Z \neq 0$, we have $LogZ = \ln |Z| + i \arg(Z)$. *Proof* Let $Z = r(\cos \theta + i \sin \theta)$, where $\theta = \arg(Z)$. Then

$$LogZ = Log(r(\cos\theta + i\sin\theta)) = Log(Exp(\ln r)Exp(i\theta))$$
$$= Log(Exp(\ln r + i\theta)) = \ln r + i\arg\theta = \ln |Z| + i\arg\theta$$

Theorem $Z^{\log_z W} = W$, $\log_Z Z^W = W$. *Proof* We have

$$Z^{\log_z W} = Z^{\frac{Log W}{Log Z}} = Exp(\frac{Log W}{Log Z} \cdot Log Z) = ExpLog W = W$$

and

$$\log_Z Z^W = \frac{Log Z^W}{Log Z} = \frac{Log Exp(W \cdot Log Z)}{Log Z} = \frac{W \cdot Log Z}{Log Z} = W$$

Theorem When $W, Z \in \mathbb{R}$, the new defined exponentiation Z^{W} coincides with the original definition. And then we find that the new form is indeed an extension of exponentiation. *Note*: It suffices to show that the restruction of the new definitions (in complex systems) to

real number system and the old definitions (in real systems as we learned in senior high) coincide.