
A Quite Note On Set Theory

1 Sets

1.1 Basic Sets

Collected objects are often what mathematics
focus on, so we have the notion of sets. A
collection of objects ”is called” a set. We care
about the members of sets. Sets A and B ”are
called” equal if and only if they contain the
same elements, by which I mean,

whenever x ∈ A, we have x ∈ B, and
whenever y ∈ B, we have y ∈ A.

1.2 Operations

Having sets, we hope to define operations on
them.
Definition. For sets A,B,

(i) A ∩B := {x |x ∈ A and x ∈ B};
(ii) A ∪B := {x |x ∈ A or x ∈ B};
(iii) A \B := {x |x ∈ A but x /∈ B}.

Some properties are immediately.
Proposition. Let S, T, U be sets.

(a) (S ∩ T ) ∩ U = S ∩ (T ∩ U).
(b) (S ∪ T ) ∪ U = S ∪ (T ∪ U).
(c) S ∪ (T ∩ U) = (S ∪ T ) ∩ (S ∪ U).

Proof. I only show (c). Let x ∈ S∪ (T ∩U).
Then x ∈ S or x ∈ T ∩U . Our goal is to prove
that x ∈ S ∪ T and x ∈ S ∪ U . If x ∈ S, then
x ∈ S∪T by definition of union. If x ∈ T ∩U ,
then x ∈ T (definition of intersection). So
x ∈ S ∪ T by definition of union.

Let y ∈ (S ∪ T ) ∩ (S ∪ U). Then y ∈ S ∪ T
and y ∈ S ∪ U . We want to show that y ∈ S
or y ∈ T ∩ U . If y ∈ S, then we finish the

proof. Suppose that y /∈ S. We want to show
y ∈ T and y ∈ U .

For y ∈ T , since y ∈ S ∪ T but y /∈ S,
by definition of union, we get that y ∈ T .
Similarly, y ∈ U . Thus, by convention of set
equality, we’ve shown the identity. �

1.3 Specified Sets

Let A be a set. We call S a subset set of A
if for any x ∈ S, it holds that x ∈ A. The
power set of A is defined as

℘(A) = {S |S ⊂ A}.

1.4 Ordered Pairs and Products

The ordered pair is another concept different
from that of a set. We denote an ordered
pair by (a, b). To distinguish an ordered pair
from a set, note that ordered pairs have the
property that

If (a, b) = (c, d)

then a = c , b = d.

Similarly we also have the form (a1, · · · , ak)
which contains k components. We omit the
detail.

...

2 Relations

2.1 Basic Form

A relation between a set A and a set B is a
subset R of ℘(A× B). By the notion of rela-
tion we hope to classify or build relationship
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between given sets. Note that we care about
those relations with some specified properties.

Let R be a relation on A (i.e. a relation
between A and itself).

(R) Reflexivity: If (x, x) ∈ R for any x ∈
A, then we say R is reflexive.

(S) Symmetry: Suppose that if (x, y) ∈ R
then (y, x) ∈ R. Then we say R is sym-
mectric.

(A) Anty-Symmetry: Suppose that if
(x, y) ∈ R and (y, x) ∈ R, then x = y.
Then we say R is anty-symmectric.

(T) Transitivity: Suppose that if (x, y) ∈
R and (y, z) ∈ R, then (x, z) ∈ R. Then
we say R is transitive.

Example. R1 := {(x, y) ∈ N × N |x ≤ y},
R2 := {(m,n) ∈ Z × Z |m ≡ n (mod )5},
R3 := {(p, q) ∈ N × N | p divides q}, and
R4 = {(S, T ) |S ⊂ T, S, T ⊂ R} are exam-
ples of each type above.

For writing and reading convenience, we al-
ways write

xRy

instead of (x, y) ∈ R.

2.2 Equivalence Relations

An equivalence relation is a reflexive, sym-
metric, transitive relation on some A. It is
usually denoted by the symbol ∼. To be ex-
plicit, ∼ is an equivalence relation means: For
each x, y, z ∈ A,

(i) x ∼ x.

(ii) if x ∼ y, then y ∼ x.

(iii) if x ∼ y and y ∼ z, then x ∼ z.

Example. ∼1:= R3 = {(p, q) ∈ N ×
N | p divides q} is an equivalence relation on
Z.

Example. ∼2:= {(〈x, y〉, 〈z, w〉) ∈ (N×N)×
(N × N) |xw = yz} is an equivalence rela-
tion on N × N. Moreover, we observe that
〈1, 2〉 ∼ 〈2, 4〉 ∼ 〈3, 6〉, and 〈2, 5〉 ∼ 〈4, 10〉 ∼
〈100, 250〉, which presents the notion of the
rationals.

2.3 Equivalence classes

However, an important further observation is
the classification on those elements in A by
equivalence.

We make the definitions.
Definition. On a relation R, the domain,
and the range, of R are defined as: dom(R) =
{x ∈ A | (x, y) ∈ R for some y ∈ A} and
ran(R) = {y ∈ A | (x, y) ∈ R for some
x ∈ A}.
Note that we may also define the domain and
the range, or a relation R between sets A and
B. However, this is detail.

——–
For an equivalence relation ∼ on a set A,

given x ∈ A, we denote the equivalence class
by [x]∼, sometimes omitting the index ∼,
which is defined as

[x]∼ = {y ∈ A | y ∼ x}.
and the set of all equivalence classes of ∼ on
A is called the quotient set of ∼ under A,
denoted by A/ ∼.
Example. On Z, using ∼3:= {(x, y) ∈ Z ×
Z | 3|x − y}, which can be shown to be an
equivalence relation. The equivalence classes
are:

3Z = {· · · ,−3, 0, 3, 6, 9, · · · }
3Z + 1 = {· · · ,−2, 1, 4, 7, 10, · · · }
3Z + 2 = {· · · ,−4,−1, 2, 5, 8, · · · }.

Thus, Z/ ∼3= {3Z, 3Z + 1, 3Z + 2}.

2.4 Partitions

This leads to the notion of a partition P on the
given set A. Let P = {Pi}i∈A , where Pi ⊂ A
for all i. P is called a partition of A if
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(1) all sets in P are pairwisely disjoint and
(2) A =

⋃
Pi∈P Pi.

Proposition. (1) If ∼ is an equivalence re-
lation on A, then A/ ∼ is a partition on A.

(2) If P is a partition on A, then

∼P : = {(x, y) |x, y ∈ Pi for some Pi}
= {(x, y) |x, y are in the same Pi

for some Pi}

is an equivalence relation.

3 Functions

3.1 Definition

A function is a relation which has a ”unique
correspondence”. Recall that, in the sense of
greatnness, 7 is related to 6,5,4,3. However,
functions do not allow such a case. We mean
that, functions is retricted to avoid multiple
correspondences.

Definition. (1)A function f is a relation
xuch that ,whenever (x, y) ∈ f and (y, z) ∈ f ,
it holds that y = z.

(2) A function f (defined on A) [from A
to B] is a function such that (dom(f) = A)
[dom(f) = A and ran(f) ⊂ B].

There’re some customary types for letting a
function. The following are examples.

Original Type: f1 := {(x, 2x) |x ∈ R+}.
Predicate Type: f2(x) = 2x, for x ∈ R+.
Assignment Type: f3 : R+ → R, x 7→ 2x.

Proposition. Two functions are equal if and
only if they have the same domain and their
assignments are equal for each element of the
common domain.

3.2 One-to-one and Onto

There are some special types of functions.

Definition. f is one-to-one if x1 = x2 when-
ever f(x1) = f(x2). f is onto if for y ∈ B,
there is an x ∈ A such that f(x) = y.

3.3 Inverse

In the sense of finding a solution of a certain
function, we need what is called the inverse
of this function. We now give the definition in
the viewpoint of its essence of being a relation.

Definition. Let f be a function. If f̀ is also
a function, then f is called invertable.

The main properties are:

Proposition. (a) f is invertable if and only
if f is one-to-one and onto,

(b) which holds if and only if there is
another function g such that g(f(x)) =
f(g(x)) = x for all proper x (i.e. all x such the
terms above are defined). (Require the AC)

3.4 The Index

It’s time to illustrate the index-sets.

4 Cardinality

4.1 Equinumerosity

A natural thought about ”numbers” comes
from certain classificatiion of collections of ob-
jects. We have the intuition in mind, that the
string ”1572xc” has 6 characters. Experience
tells us that counting is a correspondence be-
tween the observing set and a standare ”base”
set.

To be more precisely, according to my intu-
ition, to say {N, (2, 3), 1, 7, 1√

10
has 5 elements,

I need to make an one-to-one correspondence
between {1, 2, 3, 4, 5} and {N, (2, 3), 1, 7, 1√

10
.

The first notion of counting is equinumeros-
ity.
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Definition. The sets A and B are called
equinumerosity, if there is an one-to-one corre-
spondence between A and B, and it’s notation
is A ≈ B.

Proposition. Let A be a collection of sets.
Write

∼:= {(A,B) ∈ A ×A |A ≈ B}.

Then ∼ is an equivalence relation on A .

A question is that: Why don’t we let A
to be the collection of all sets? The answer is
that: such a set does not exist.

Assume that we have a set B which contains
all sets. Then we construct another set

Q := {x ∈ B |x /∈ x}.

If Q ∈ Q, then Q ∈ B and Q /∈ Q, a con-
tradiction. If Q /∈ Q, since Q ∈ B (definition
of B), it holds that Q ∈ Q, a contradiction.
Now, neither Q ∈ Q nor Q /∈ Q holds, which
is another contradiction. Hence such a B fails
to exist. �

Definition. If there is a function f from
A one-to-one to B, then we say that B dom-
inates A, or A is dominated by B, written
A - B.

4.2 The Integers

Example. (a) N ≈ ON := {2n − 1 |n ∈ N}.
(b) N ≈W. (c) N ≈ Z.

...

4.3 The Rationals

Example. N ≈ Q.
...

4.4 The Reals

Example. Q ≺ R.
...

4.5 The Complex

Example. R ≈ C.
...

4.6 Set Levels

Definition. (a) A finite set is a set that is
equinumerous to {1, 2, · · · , n} for some n, or
it is empty. (b) A denumerable set is a set
that is equinumerous to N. A countable set is
a set that is either finite or denumerable.

5 Cardinal Numbers

...

6 Ordered Sets

...

7 Axiomization

A precise development of Set Theory re-
quires some axioms, which can be viewed as
a start of the theory. Every proposition is
duducted from either axioms or from lower-
leveled propositions.

We always ”let a set”, and do something on
it without verifying its existence. This would
be a danger. For example.

(1) Let S := {x : x /∈ x}.
(2) Let r =

∑∞
k=0 2k.

So we ought to quote some basic, intuitive,
and reasonable statements as what are called
axioms.

The reason by which we choose these state-
ments as axioms is because that they seems to
be required and will not self-contradict. How-
ever, whether the seeming is real is a study in
mathematical logic.

...
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