
This column is interested in publishing mathematical mater- 
ial which satisfies the following criteria, among others: 

1. It should not require technical expertise in any special- 
ized area of mathematics. 

2. The topics treated should when possible be comprehen- 

David Gale* 
sible not only to professional mathematicians but also to rea- 
sonably knowledgeable and interested nonmathematicians. 

We welcome, encourage and frequently publish contributions 
from readers. Contributors who wish an acknowledgement of 
submission should enclose a self-addressed postcard. 

Has this ever happened to you? You've just finished pa- 
tiently trying to explain some beautiful result of pure 
mathematics to a group of nonmathematicians, hoping 
that you've conveyed something of the flavor of this 
pearl of truth and beauty, and then after a pause some- 
one says, "Yes, but what has any of this got to do with 
everyday life?". After much thought I've decided the 
correct response is to say "Nothing. That's what's so 
nice about it. After all, Every Day Life is often a drag, 
so we do mathematics for the same reason we listen to 
music or ski down a mountain, to get away from and 
above and beyond Every Day Life." 

But now I must admit that every once in a while it 
works out the other way and EDL turns out to be a source 
of unexpectedly interesting mathematics. A nice exam- 
ple of this is the following item, written by guest colum- 
nist John H. Halton. 

*Column editor's address: Department of Mathematics, University of 
California, Berkeley, CA 94720 USA. 

The Shoelace Problem 

John H. Halton 

In a number of discussions of how shoes should be 
laced, it became apparent that no one seemed to have 
the definitive answer. Shoes were laced and relaced, 
passions flared, and shoes were even thrown . . . .  The 
author decided that an appeal to mathematics was in- 
dicated. 

This problem is a restriction of the Traveling Salesman 
Problem. We are given a set of 2(n + 1) points (the lace- 
holes or eyelets) arranged in a bi-partite lattice, as shown 
in Figure 1. 

The problem is to find the shortest path from A0 to 
B0, passing through every eyelet just once, in such a way 
that points of the subsets 

Figure 1. The shoe (a schematic). 
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A = {Ao, A1,  A2  . . . . .  An} a n d  
B = {Bo, B1, B2 . . . . .  Bn} (1) 

a l t e rna te  in the  pa th .  
Three  s t a n d a r d  lac ing s t ra tegies  a re  s h o w n  in Fig- 

u r e s  2-4. 
For the  A m e r i c a n  (AM) style, as in F igure  2, if n is 

odd, the lacing is 

Ao --~ B1 ~ A2 ~ B3 ~ A4 ~ �9 �9 �9 
A n - 1  ---> Bn ---> An --~ B n - I  ~ A n - 2  ---) Bn-1  --~ " " " 

A3 ~ B2 ---) A1 --~ Bo; (2) 

if n is even, the  lacing is, s imi lar ly ,  

Ao--*  B1 --> A2---~ B3---> A4--> �9 �9 �9 

--~ A n - 2  --~ Bn-1 --~ An  ---> B,~ --~ A n -  1 ---> B n -  2 --~ �9 �9 �9 

A3 ~ B2 ~ A1 --~ Bo; (3) 

a n d  it is eas i ly  ve r i f i ed  that ,  in e i ther  case,  the  total  
l eng th  of  lace u s e d  is 

LAM = LaM(n ,  v,  w)  = w + 2nV'--~ + w 2. (4) 

Figure 2. American zig zag lacing. 

For  the  E u r o p e a n  (EU) style,  as  in F igure  3, w h e n  n 
is odd, the  lac ing  is 

Ao ~ B1 ~ A1 --* B3 ----> A3 ~ " " �9 
A n - 2  ~ Bn --~ Am --) Bn-1 ~ A n - 1  --'-> Bn-3  -'-> �9 " " 

---) B2 "-~ A2 ~ Bo; (5) 

w h e n  n is even,  the lac ing  is, s imi lar ly ,  

Ao --* B1 ~ A1 ~ B3 --~ A3 --~ �9 �9 �9 

--> A n - 1  ---> Bn --~ An  --) Bn-2  ~ A n - 2  ~ Bn-4  "-~ " " " 

-~  B2 ---) A2 --~ B0; (6) 

and ,  w i th  a little m o r e  though t ,  w e  see that ,  in bo th  
cases,  the  to ta l  l ength  of  lace is 

LEU = LEu(n, v, w) 
= n w + 2 X / - ~ - + w  a + ( n - 1 )  4 V ~ + w  2. (7) 

For  the  shoe  shop  (SS) s tyle ,  as in F igure  4, the  lacing 
is 

A o  --* Bn --~ A n  --'-> B n - 1  ~ A n - 1  ~ " " " 

B3 --'," A3 ~ B2 ~ A2 --~ B1 --* A1 --~ Bo (8) 

and  w e  f ind  tha t  the  to ta l  l eng th  is 

Lss = Lss(n, v, w) 
n w  + nX/--~ + w 2 + X,/n2v 2 + w 2. (9) 

W e  can  genera l i ze  the  s i tua t ion  as fol lows.  Let  a and  
13 d e n o t e  p e r m u t a t i o n s  of  {1, 2, 3 . . . . .  n}: 

a = {al, a2, . . . .  an}, (10) 
/3 = {/31,/32 . . . . .  ~ } .  

To  t h e m  wil l  c o r r e s p o n d  the lac ing  

A0 ~ B~I ~ A~I ~ B~2 ~ A ~  --~ B/33 --~ �9 �9 �9 
--* Ann_, --~ B& --,  A ~  --*/3o, (11) 

a n d  this wi l l  h a v e  tota l  l eng th  

Figure 3. European straight lacing. Figure 4. Shoe-shop quick lacing. 

THE MATHEMATICAL INTELLIGENCER VOL 17, NO. 4, 1995 37 



L = V'/3~-v 2 + w 2 + V(a l  -/3~)2v 2 + w a 

q- V( j~2  --  O/1)2V 2 q- W 2 q- V(Or --  ~2)2V 2 q- W 2 

q- �9 �9 �9 q -Vr (~n  - Ogn_l)2V 2 q- W 2 q- VO/2V 2 q- W 2. (12) 

For the three special lacings shown above, the partic- 
ular permutations are 

aaM = {all even numbers increasing; then all 
odd numbers decreasing}, 

/3AM = {all odd numbers increasing; then all 
even numbers decreasing}; 

(13) 

OeEU --  ~EU = J~AM, (14) 

ass =/3ss = {all numbers decreasing}. (15) 

The simplicity of these permutations is indeed remark- 
able. 

THEOREM 1. I f  v = 0 or w = O, for all positive n, 

LAM = LEU = LSS. (16) 

I f v > - O a n d w > - O ,  

LAM(1, V, W) = LEU(1, V, W) = LSS(1, v, w), (17) 

and, if v > 0 and w > O, 

LAM(2, v, W) < LEU(2, V, W) = Lss(2, v, w). (18) 

Finally, if v > O, w > O, and n > 2, 

LAM < LEU < LSS. (19) 

This theorem can be proved, using (4), (7), and (9), by 
the careful analysis of cases and elimination of radicals. 
The proof is left as an exercise for the reader. (It is given 
by  the author in a technical report [1].) 

The  Lattice Representat ion  

Let us make a lattice of alternating parallel, equidistant 
sets A and B, as shown in Figure 5. Given any lacing s 
we can represent it, as is shown for our three standard 
examples, by a polygonal (piecewise straight) line L 
moving always downward across the new lattice, visit- 
ing the eyelet points only once each. 

The first line segment in the order of lacing, Ao ~ B~,, 
is unchanged; the next, B~I --+ A,,,, is replaced by its mir- 
ror image in the original B line; the next A~1 --+ B&, is 
moved downward by two lattice intervals, parallel to it- 
self (i.e., it is a twice-repeated mirror image), and so on; 
the last segment, A~ n --+ B0, returns to the image of B0 in 
the B line displaced downward  by 2n intervals. Clearly, 
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Figure 5. Lattice representation of the three standard lacings. 

the total length of the representation L will equal the 
original total length of L the lacing ~ itself. 

That the "American" (AM) lacing is better than the 
"European" (EU) lacing is now immediately apparent, 
by a straightforward application of the triangle in- 
equality (see Figure 6). 

The two representations, LAM and LEU coincide in sev- 
eral places. Where they differ, replicas of a triangle P Q R  
occur, and it is clear that PR < P Q  + QR, so that the first 
inequality in (19) follows, without further algebra! 

That the EU lacing is better than the SS lacing is a lit- 
tle harder to prove (see Figure 7). First, we observe that 
the representations LEU and Lss have in common just 
two diagonal segments, moving by one lattice interval 
in both directions (slopes + w/v),  and n (vertical) seg- 
ments, moving by one vertical lattice interval w only. If 
we omit all of these common intervals, shifting the sep- 

Figure 6. Comparison of AM and EU lacing. 



of the path from Bn to B0. The form of the path corre- 
sponding to a typical general lacing is illustrated in 
Figure 10. The path LAM corresponding to the AM lac- 
ing is also shown. In this particular example, as before, 
n = 7 and the lacing is 

Ao --+ B2 --+ A7 --+ B4 --+ A6 --+ B1 -+ A1 --+ B3 --+ A3 
--+ B6 --+ A5 -+ B5 --+ A4 --+ B7 --+ A2 --+ Bo. (20) 

Its length is [compare (12) and collect similar radicals] 

Figure 7. Comparison of EU and SS lacing. 

L = 3w + 2X/-~ - + w 2 + 4X/4v 2 + w 2 

+ 3 X / ~  + w 2 + 3X/25v a + w 2. (21) 

In general, let the lacing have total length 

L = ~ NkX/k2v 2 + W 2, (22) 
k = - - n  

where, clearly, 
n ~  

~. Nk = 2n + 1 (23) 
k = - n  

is the net total number of downward displacements (i.e., 
the number of steps, since each step has a downward 
displacement by one lattice interval w), and 

~, kNk = 2n (24) 
k =  - - n  

is the net total number of rightward displacements by 
one lattice interval v. For the AM lacing, it is clear that 

Figure 8. Comparison of EU and SS lacing--reduced repre- 
sentations. 

arated lower segment upward (and in the first two cases, 
sideways also), parallel to themselves, to rejoin the up- 
per segment, and thus subtracting equal lengths from each 
representation, we obtain reduced representations, L~u 
and L~s. The result is shown in Figure 8. Each repre- 
sentation now consists of a singly-broken line (just two 
successive line segments--a zig and a zag). 

Now perform the "reflection trick" again, this time in 
the horizontal coordinate direction, so that the leftward 
segment of each representation is reflected about the 
vertical. The resulting representation lines are denoted 
by L**EU and L**ss (see Figure 9). 

We can now simply observe that L~*u is just a single 
straight segment UV, whereas L** ss consists of two 
straight segments, UW and WV, so that, again by the 
triangle inequality, (19) clearly holds. 

No = 1, N1 = 2n, all other Nk = 0. (25) 

THEOREM 2. The AM lacing has the shortest possible to- 
tal length L, and it is the unique optimum lacing. 

Proof. Let L be the reflected representation of an arbi- 
trary lacing ~s and let L be its total length. 

(i) If No -> 1, let us remove any one corresponding 
(vertical) step from ~; and let us remove the sole verti- 
cal step from s162 rejoining the separated pieces of the 
representations by parallel displacement, as before; then 

O p t i m i z a t i o n  

We adopt the lattice representation described above (see Figure 9. Comparison of EU and SS lacing--reflected repre- 
Figures 5-7) and apply the "reflection trick" to the part sentations. 
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It cannot be that Nk > 0 only for positive values of k; 
for then, by  (23) and (24), we would have that 

Z k N k -  Z Nk = N2 + 2N3 
k = l  k = l  

+ . . .  + (n - 1)Nn = 1, (27) 

which is impossible, since all Nk >-- O. Therefore, there is 
at least one step with a negative (leftward) horizontal dis- 
placement, and thus there is a first leftward step, ST, in 
the downward  order. It obviously cannot be either the 
first or the last step of the representation. Hence, it is 
preceded by a rightward step, RS, forming an angle 
pointing to the right. 

Now (see the enlarged detail of Figure 12), let F and 
G be the respective lattice points in which the vertical 

Figure 10. General lacing--reflected representations 

Figure 12. Magnified detail of Figure 11. 

Figure 11. Case of No = 0---no vertical segment. 

the two new representations, L t and LtAM, still share 
their end points, and both lengths are just w less than 
they were. Now L ~  is clearly minimal, being the 
straight line connecting these end points. Therefore, for 
all ~ ,  

L ~  -< L. (26) 

(ii) Suppose now that No = 0. This is illustrated in 
Figure 11. 
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lines through R and T meet the horizontal line through 
S. Then 

IFR I = IGTI = w (28) 

and 

IFSI >- v and IGSI >- v. (29) 

Through G, draw a line parallel to TS, and let it meet 
RS (as it must) at X. Now draw a vertical line (parallel 
to RF) through X to meet TS at Y. Clearly, XYTG is a 
parallelogram, and therefore IXYI = IGT I = w, by (28). 1 

Thus we can replace the polygonal segment RST of 
the representation L by the polygonal segment RXYT,  
and by the triangle inequality, 

IXYI <. IXSI + ISYI; (30) 

1Note, too, that XYFR is also a parallelogram, since the opposite sides, 
XY and RF, are equal and parallel. 



so that the modified representation L ~- say, is shorter 
than L. But now L ~- has a vertical segment of length w; 
so, by the same argument as in case (i), the inequality 
(26) prevails. 

NOTE: The representative polygonal line L • is, gen- 
erally, not a representation of any lacing, since it does not, 
in general, join lattice points; but this does not matter, 
since, at this stage of the argument, we are only con- 
cerned with the length of the line. 

We have now proved that, if ~MIN is any lacing of 
minimal length, then it and its (horizontally reflected) 
representation LMIN will have a total length equal to that 
of the AM lacing, that is, by (4), 

LMIN = LAM = W + 2nX/-~ + w 2. (31) 

(iii) Finally, we prove t i e  uniqueness of the optimal 
lacing ~M~. The arguments presented in cases (i) and 
(ii) show that any minimal lacing ~ M I N  will satisfy (25); 
that is, its (horizontally reflected) representation LMIN 
will have 2n straight segments, moving diagonally 
down-and-to-the-right by one lattice interval, and one 
vertical segment. However,  the position of this vertical 

segment in the chain does not matter to the total length 
LMIN, as is indicated in (31). 

Nevertheless, since LMIN is not just any lattice poly- 
gon, but the representation of a lacing, it must pass 
through the vertical lattice line corresponding to index 
n just twice (corresponding to the eyelets An and Bn), 
and this is the only lattice line which is not duplicated 
by  the reflection transformation, since it is the reflection 
line. Therefore, since the representation moves monot- 
onely right (i.e., never to the left), the solitary verti- 
cal segment is constrained to be precisely in the index 
n position, as in LAM. This completes the proof of 
Theorem 2. [] 
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