Mathematical Entertainments

This column is interested in publishing mathematical mater-
ial which satisfies the following criteria, among others:

1. It should not require technical expertise in any special-
ized area of mathematics.

2. The topics treated should when possible be comprehen-

Has this ever happened to you? You've just finished pa-
tiently trying to explain some beautiful result of pure
mathematics to a group of nonmathematicians, hoping
that you've conveyed something of the flavor of this
pearl of truth and beauty, and then after a pause some-
one says, “Yes, but what has any of this got to do with
everyday life?”. After much thought I've decided the
correct response is to say “Nothing. That's what’s so
nice about it. After all, Every Day Life is often a drag,
so we do mathematics for the same reason we listen to
music or ski down a mountain, to get away from and
above and beyond Every Day Life.”

But now I must admit that every once in a while it
works out the other way and EDL turns out to be a source
of unexpectedly interesting mathematics. A nice exam-
ple of this is the following item, written by guest colum-
nist John H. Halton.
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The Shoelace Problem

John H. Halton

In a number of discussions of how shoes should be
laced, it became apparent that no one seemed to have
the definitive answer. Shoes were laced and relaced,
passions flared, and shoes were even thrown. ... The
author decided that an appeal to mathematics was in-
dicated.

This problem is a restriction of the Traveling Salesman
Problem. We are given a set of 2(n + 1) points (the lace-
holes or eyelets) arranged in a bi-partite lattice, as shown
in Figure 1.

The problem is to find the shortest path from Ag to
By, passing through every eyelet just once, in such a way
that points of the subsets
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Figure 1. The shoe (a schematic).
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alternate in the path.

Three standard lacing strategies are shown in Fig-
ures 24,

For the American (AM) style, as in Figure 2, if 7 is
odd, the lacing is

Ag—>Bi—>Ay—>B3—> Ay — -
—A,-1—>B,>A,—>B,-1—>A,»—>B, 1>
— A3 — By — A1 — By; )]

if n is even, the lacing is, similarly,

Ao—)Bl——)A2—>B3—>A4—>' M
- A, »—>B,_1—>A,—>B, A, 1—>B, >
— A3 — B, — A1 > By; 3)

and it is easily verified that, in either case, the total
length of lace used is

w+ 2nV12 + w2 4

LAM = Lm(n, v, w) =

Figure 2. American zig zag lacing.

Figure 3. European straight lacing.

For the European (EU) style, as in Figure 3, when n
is odd, the lacing is

Ag—>B1—>A;>B3—> A3 >
Ayn2—B,» A, -»B,_ 1> A,-1—> B3>
— B2 — Az — By; ©)
when 7 is even, the lacing is, similarly,
A0—>Bl—>A]—)B3—>A3—> A
—-Ay-1—>B,»A;,—» By 2> A, 2> By_4— -

— By — Ay — Bg; ©®

and, with a little more thought, we see that, in both
cases, the total length of lace is

Lgy = Lgy(n, v, w)

=nw 2V +w? + n — DV4Ar? + u? @

For the shoe shop (SS) style, as in Figure 4, the lacing
is -

Ap—B,—> A, > B> Ay -
- B3> A3 > B> A, —>Bi—>A1—>B ®

and we find that the total length is

Lsg = Lss(n, v, w)

=nw + nV? + w? + Vn2? + u. C))

We can generalize the situation as follows. Let a and
B denote permutations of {1,2, 3, ..., n}:

CY:{alfazl---,an}/

10
B:{BlIBZI"'IBn}' (10)
To them will correspond the lacing
Ag— Bg,— Ay — Bp,— Ay, > Bg,— - -
- Aan‘l - BB,. - Aan — By, a1n

and this will have total length

Figure 4. Shoe-shop quick lacing.
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L=V +w? + V(e — B)%? + w?
+ V(B — e + w? + V(ag — B%2 + u?
+ o V(B — 1) + P + VaZi? + u? (12)

For the three special lacings shown above, the partic-
ular permutations are

aam = {all even numbers increasing; then all
odd numbers decreasing},

(13)
Bam = {all odd numbers increasing; then all
even numbers decreasing};
agu = Peu = Bam, (14)
ass = Bss = {all numbers decreasing}. (15)

The simplicity of these permutations is indeed remark-
able. o

THEOREM 1. Ifv =0 or w =0, for all positive n,

Lam = Lgy = Lss. (16)
Ifo=0and w=0,
Lam(1, v, w) = Lguy(1, v, w) = Les(1, v, w), (17)
and, ifv>0and w> 0,
Lam(2, v, w) < Lgy(2, v, w) = Lss(2, v, w).  (18)
Finally, ifv>0,w>0,and n> 2,
Lam < Lpy < Lgs. (19)

This theorem can be proved, using (4), (7), and (9), by
the careful analysis of cases and elimination of radicals.
The proof is left as an exercise for the reader. (It is given
by the author in a technical report [1].)

The Lattice Representation

Let us make a lattice of alternating parallel, equidistant
sets A and B, as shown in Figure 5. Given any lacing &,
we can represent it, as is shown for our three standard
examples, by a polygonal (piecewise straight) line L
moving always downward across the new lattice, visit-
ing the eyelet points only once each.

The first line segment in the order of lacing, Ao — Bg,
is unchanged; the next, Bg, — A,,, is replaced by its mir-
ror image in the original B line; the next A,, — Bg, is
moved downward by two lattice intervals, parallel to it-
self (i.e., it is a twice-repeated mirror image), and so on;
the last segment, A,, — By, returns to the image of By in
the B line displaced downward by 2n intervals. Clearly,
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Figure 5. Lattice representation of the three standard lacings.

the total length of the representation L will equal the
original total length of L the lacing & itself.

That the “American” (AM) lacing is better than the
“European” (EU) lacing is now immediately apparent,
by a straightforward application of the triangle in-
equality (see Figure 6).

The two representations, Laym and Lgy coincide in sev-
eral places. Where they differ, replicas of a triangle PQR
occur, and it is clear that PR < PQ + QR, so that the first
inequality in (19) follows, without further algebra!

That the EU lacing is better than the SS lacing is a lit-
tle harder to prove (see Figure 7). First, we observe that
the representations Lgy and Lgg have in common just
two diagonal segments, moving by one lattice interval
in both directions (slopes * wj/v), and n (vertical) seg-
ments, moving by one vertical lattice interval w only. If
we omit all of these common intervals, shifting the sep-

| “Eurdpean” lacing
S 1

Figure 6. Comparison of AM and EU lacing.
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Figure 8. Comparison of EU and SS lacing—reduced repre-
sentations.

arated lower segment upward (and in the first two cases,
sideways also), parallel to themselves, to rejoin the up-
per segment, and thus subtracting equal lengths from each
representation, we obtain reduced representations, Lty
and L%s. The result is shown in Figure 8. Each repre-
sentation now consists of a singly-broken line (just two
successive line segments—a zig and a zag).

Now perform the “reflection trick” again, this time in
the horizontal coordinate direction, so that the leftward
segment of each representation is reflected about the
vertical. The resulting representation lines are denoted
by LE¥u and L' (see Figure 9).

We can now simply observe that Ly is just a single
straight segment UV, whereas L% consists of two
straight segments, UW and WV, so that, again by the
triangle inequality, (19) clearly holds.

Optimization

We adopt the lattice representation described above (see
Figures 5-7) and apply the “reflection trick” to the part

of the path from B, to By. The form of the path corre-
sponding to a typical general lacing is illustrated in
Figure 10. The path Lawm corresponding to the AM lac-
ing is also shown. In this particular example, as before,
n =7 and the lacing is

Ag— B, > Ay —> By — Ag— By — A; — B3 — Az
—>B6—>A5—<)B5—>A4—>B7—>A2—>Bo. (20)

Its length is [compare (12) and collect similar radicals]

L=3w+2Ve? + w2 + 4V4r? + u?

+3V902 + w? + 3V250% + u?. @
In general, let the lacing have total iength
L =ki NIRRT, 22)
where, clearly,
kf Ne=2n+1 (23)

is the net total number of downward dispiacements (e,
the number of steps, since each step has a downward
displacement by one lattice interval w), and

Zn: ka= 2n

k=—n

(24)

is the net total number of rightward displacements by
one lattice interval v. For the AM lacing, it is clear that

No=1,N; =2n, all other N.=0 25)
THEOREM 2. The AM lacing has the shortest possible to-
tal length L, and it is the unique optimum lacing.

Proof. Let L be the reflected representation of an arbi-
trary lacing &£, and let L be its total length.

(i) If Ng = 1, let us remove any one corresponding
(vertical) step from ¢, and let us remove the sole verti-
cal step from £ zum, rejoining the separated pieces of the
representations by parallel displacement, as before; then

ke
Lsa

Figure 9. Comparison of EU and SS lacing—reflected repre-
sentations.
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Figure 10. General lacing—reflected representations
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Figure 11. Case of Ny = 0—no vertical segment.

the two new representations, L' and Li, still share
their end points, and both lengths are just w less than
they were. Now L}y is clearly minimal, being the
straight line connecting these end points. Therefore, for
all &,

(ii) Suppose now that Ny = 0. This is illustrated in
Figure 11.
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It cannot be that Ni > 0 only for positive values of k;
for then, by (23) and (24), we would have that

n

ika—ZNk=N2+2N3
k=1 k

=1
+---+(nm—-1DN,=1, (27)
which is impossible, since all N = 0. Therefore, there is
at least one step with a negative (leftward) horizontal dis-
placement, and thus there is a first leftward step, ST, in
the downward order. It obviously cannot be either the
first or the last step of the representation. Hence, it is
preceded by a rightward step, RS, forming an angle
pointing to the right.

Now (see the enlarged detail of Figure 12), let F and
G be the respective lattice points in which the vertical

o~y
N

\_js(/\f*

/

=>

Figure 12. Magnified detail of Figure 11.

lines through R and T meet the horizontal line through
S. Then

IFR| = |GT| = w (28)

and

|FS|=v and |GS|=wv. (29)
Through G, draw a line parallel to TS, and let it meet
RS (as it must) at X. Now draw a vertical line (parallel
to RF) through X to meet TS at Y. Clearly, XYTG is a
parallelogram, and therefore |XY| = |GT| = w, by (28).

Thus we can replace the polygonal segment RST of
the representation L by the polygonal segment RXYT,
and by the triangle inequality,

IXY| < |XS| + |SY; (30)

Note, too, that XYFR is also a parallelogram, since the opposite sides,
XY and RF, are equal and parallel.
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so that the modified representation L* say, is shorter
than L. But now L™ has a vertical segment of length w;
so, by the same argument as in case (i), the inequality
(26) prevails.

NOTE: The representative polygonal line L* is, gen-
erally, not a representation of any lacing, since it does not,
in general, join lattice points; but this does not matter,
since, at this stage of the argument, we are only con-
cerned with the length of the line.

We have now proved that, if £y is any lacing of
minimal length, then it and its (horizontally reflected)
representation Lymy will have a total length equal to that
of the AM lacing, that is, by (4),

LM1N=LAM=ZU+2H 2 + w2, (31)

(iii) Finally, we prove the unigueness of the optimal
lacing ¥ypmy. The arguments presented in cases (i) and
(ii) show that any minimal lacing £y will satisfy (25);
that is, its (horizontally reflected) representation Ly
will have 2n straight segments, moving diagonally
down-and-to-the-right by one lattice interval, and one
vertical segment. However, the position of this vertical

segment in the chain does not matter to the total length
Ly, as is indicated in (31).

Nevertheless, since Ly is not just any lattice poly-
gon, but the representation of a lacing, it must pass
through the vertical lattice line corresponding to index
n just twice (corresponding to the eyelets A, and B,),
and this is the only lattice line which is not duplicated
by the reflection transformation, since it is the reflection
line. Therefore, since the representation moves monot-
onely right (i.e., never to the left), the solitary verti-
cal segment is constrained to be precisely in the index
n position, as in Lam. This completes the proof of
Theorem 2. [
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