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Somos Sequence Update 
Some readers may  recall that in the winter  issue I re- 
ported on some sequences defined by a simple recur- 
sion that for unexplained reasons always seemed to 
yield integer terms. The sequences were originally in- 
troduced by Michael Somos and can be described as 
follows: Given an integer k/> 4 a Somos (k) sequence is 
characterized by the recursion 

from Dean Hickerson. The proofs are quite elemen- 
tary, so we will present the one for (2), the a rgument  
for (3) and (4) being similar. They involve finding ra- 
tional functions that are invariant  unde r  the recursions. 
For (2) we define a new sequence (bn) for n />  k by 

a n  + a n - k  
bn = (5) 

a n _ l a n -  2 . . . a n - k + 1  

a n a n - k  = X l a n  1an k + l  q- X 2 a n - 2 a n - k + 2  

q- . . . q- X r a n -  r a n - k + r  

(1) and the claim is that the b n are constants,  that is, b n+ 1 
= b,. To see this note that 

w h e r e r =  [ ~ ] a n d t h e x i a r e g i v e n i n t e g e r s .  

Since in (1), a n is def ined in terms of the preceding k 
terms, one must  choose initial values for a 0, a 1 . . . . .  

a k -  1. 

When I simply refer to Somos (k), I will mean  a k-se- 
quence in which all the x i and initial ag are unity.  It was 
first observed numerically and later proved that  Somos 
4, 5, 6, 7 always have integer terms whereas Somos 8, 
9 and presumably all the rest do not. But there still 
remains a doubly-infinite family of Somos sequences 
that appear to have integer terms, a l though this has 
not been proved (see winter  column for details). 

Motivated by the Somos phenomena ,  Dana Scott 
discovered that sequences with initial values uni ty  and 
the following recursions have integer terms: 

2 2 
a n a n -  k a n - 1  + a n _  2 + + a 2 = �9 �9 �9 n - k + 1  (2) 

anan-k = a n -  l a n -  2 + an-  3an-4 (3) 
-f- . . . q- a n _ k + 2 a n _ k + l  

for k odd. 
The integer property  also holds for 

a n a n = k  = a n - l a n - 2  q- a n - 2 a n - 3  (4) 
q- . . . q- a n _ k + 2 a n _ k +  1 

Proofs of integrality of (2), (3) and (4) have now been 
found by Raphael Robinson with an assist at one point 
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an(an + an-k)  = (an+l + an-k+l )an  k+l (6) 

2 because from (2) both sides of (6) are equal to a2n + a ,_  1 
+ + a 2 Dividing both sides by a n a  n 1 

�9 �9 �9 n - k + 1  . . . .  

an_k+ 1 gives b n = b,+ 1. But from the initial conditions 
b k = k hence bn = k, so from (5) we have 

a ,  = k(an_lan_  2 . . . an_k+ 0 - a , _  k (7) 

which gives a new recursion for the a n where the right- 
hand  side is a polynomial (rather than  a rational func- 
tion) of the a i, so integrality follows, as does the fact 
that the sequence reduced mod  m is periodic for any m. 

But while some problems have now been solved, 
further numerical explorations by Robinson brought  to 
light a host  of new structural properties of Somos se- 
quences, some of them number-theoretic,  others ana- 
lytic. Since these results will appear elsewhere, I will 
just ment ion a few of them. First, as ment ioned at the 
end of the earlier column, all Somos sequences that  
give integers appear to be periodic w h e n  reduced rood 
m for any m. Robinson proved this for Somos 4 and 5 
but not  for 6 and 7. For 4 and 5 the period as a function 
of m seems unpredictable, but  the following striking 
relation was observed: For all m except 2 the period 
rood m k is equal to m k -  1 times the period mod  m. For 
2 a somewhat  more complicated pattern holds. (At this 
point  I will s top qual i fy ing every  s t a t emen t  wi th  
"seems to,"  which is to be unders tood.)  Robinson also 
investigated which primes divide the various terms of 
the sequences and found that for Somos 4 and 5 (but 
not for 6 and  7), the terms divisible by a given prime 
were equally spaced. Thus in Somos (4) every fifth 
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term is even, every seventeenth term is divisible by 11 
and none is divisible by 5, while in Somos (5) every 
tenth term is divisible by 5 but none is divisible by 7. 

In a different direction, Robinson investigated ana- 
lytic properties of the sequences for arbitrary k and 
initial values and found in all cases tested that there 
were (unique) constants C and D such that 

an = C ~n-D)2 ~(n) (8) 

where 6(n) has an oscillation with a well-defined pe- 
riod. The constants C and D depend on the initial val- 
ues as well as on k but in an apparently unpredictable 
manner. Learning of Robinson's data, Clifford Gard- 
ner succeeded in finding explicit formulas for Somos 4 
and 5 in terms of Jacobi elliptic functions, so in some 
sense the problem is starting to come full circle, since 
Somos originally discovered his sequences while 
studying properties of elliptic functions and was aware 
of some of the phenomena described here. 

To a non-expert the analytic and number-theoretic 
properties of the Somos sequences seem unrelated, but 
perhaps algebraic-number theorists who are accus- 
tomed to such things will be able to make a connection. 
In any case, it is intriguing to see more and more prop- 
erties of these sequences being revealed by numerical 
exploration. 

Unconditionally Secure Protocols 
One of the exciting mathematical developments of the 
past decade was the discovery of so-called uncrackable 
public key codes. These are codes with the character- 
istic that everyone knows the method of encryption, 
but the amount of calculation required for an outsider 
to break the code is thought to be beyond present com- 
putational capabilities. In the best-known example, 
breaking the code was equivalent to being able to find 
the factors of, say, a 100-digit number, which was be- 
lieved to be computationally infeasible. 

A more recent but less well known development 
with somewhat the same flavor involves methods of 
conveying certain information that depends on other 
information that must remain secret. In these cases, 
however, it is literally impossible for anyone but a 
mind-reader to learn the secrets. Here is a simple ex- 
ample. Some people P1 . . . . .  Pn, say, the members of 
a mathematics department, are interested in learning 
their average salary but they are not willing to reveal 
their own salaries to anyone else. How can this be 
done? I put the problem to some of my colleagues and 
they were not able to come up with an answer. I also 
mentioned it at a social gathering and rather quickly a 
young woman who hadn ' t  had a mathematics course 
since high school (and claimed she'd failed 9th grade 
algebra) proposed the following simple solution: P1 
chooses an arbitrary number x and tells it to P2 who 
adds his salary and tells the total to P3 who adds her 

Some people  P1, �9 � 9  P , ,  say, the members of 
a mathematics  department,  are interested in 
learning their average salary  but  they are not  
wi l l ing to reveal their own salaries to anyone 
else. H o w  can this be done? 

salary and tells it to P4, and so on, until Pn adds his 
salary and tells it to P1 who adds her salary, subtracts 
x, divides by n and announces the result. Clearly no 
one has learned anything about anyone else's salary 
except what can be inferred from knowing the average. 

Now while it is true that in the above scheme no 
person acting alone can discover anything about the 
other people's salaries, the situation changes if people 
are allowed to collude. For example, if P1 reveals x to 
P3 then P3 will know P2's salary. Thus the scheme, or 
protocol as it is called, is said to be 1-private but not 
2-private. One may then ask if there are any 2-private 
protocols for this problem. The answer is that, in fact, 
there is an n-private protocol which is also easy to 
describe. A protocol is called n-private if no subset of 
the people by colluding can learn anything about the 
complementary set except what can be inferred from 
their knowledge of the average. Here is how it works. 
Let s i be the salary of Pi. Each Pi chooses n numbers sij 
subject only to the condition that they sum to si, and 
deals sij to Pj. Now each Pi announces the sum tj of the 
numbers in his hand. The sum of the tj is of course the 
sum of the si, as desired. The situation is represented 
by the matrix S = (sij) where the/th r o w  sum is S i and 
t h e  jth column sum is tj. 

S 1 

$2 

Sk 

S. 

t 1 t 2 t k t .  

$11 $12 Slk Sln 

Skl Sk2 Skk Skn 

Snl Sn2 

Sk 

SHtz 

To see that the protocol is n-private, suppose, say, 
the first k players collude. Then they will know all 
entries of S except those in the lower (n - k) x (n - k) 
submatrix Sk and they will know as well tk+ 1 . . . . .  t n, 
SO they will know the column sums of S k. But if one 
knows only the column sums cj of a matrix then the 
row sums r i can be any numbers subject only to the 

5 0  THE MATHEMATICAL INTELLIGENCER VOL. 13, NO. 4, 1991 



condition Y~r  i = Y~Cj, SO the colluding players will know 
only the sum of the other players' salaries, which they 
would know anyway from knowing the sum of all the 
salaries. 

The sum protocol can be used to learn other things, 
for example, the distribution of salaries, that is, the 
number of people at each salary level, without reveal- 
ing who they are. To find out how many people have 
salary x, do the sum protocol where Pi's secret number 
is 1 or 0 according as his salary is or is not equal to x, 
and repeat the protocol for all values of x. A more 
efficient method is for Pi to choose the secret number 
(n + 1) si. When the sum is computed it is expressed in 
base (n + 1) and the coefficient of (n + 1) x will be the 
number of people whose salary is x. The same trick can 
be used for a secret ballot. Suppose the candidates for 
some office are labeled 1 through m. A person who 
wants to vote for candidate k should use the secret 
number (n + 1) k. The sum protocol then gives the vote 
count. 

What about other functions? For example, the max- 
imum rather than the sum of the salaries? If an upper 
bound ~ of the salaries is known the following proce- 
dure suggests itself. Use the sum protocol to find out 
how many people have salary ~. If the answer is zero 
try again with ~ - I and so on until the sum is positive. 
The trouble is that one learns too much. One learns not 
only the maximum salary but also the number of peo- 
ple who earn the maximum. Is it possible to learn the 
maximum and nothing more? In the same spirit, is it 
possible to learn only the winning candidate(s) in an 
election but nothing about the distribution of votes? 
And a simple arithmatical question: the sum of n num- 
bers can be computed n-privately--What about the 
product? 

The answer to all of these questions is the same and 
is quite surprising. There exist t-private protocols for 
all of them if and only if t is less than n/2. Such proto- 
cols might be called minority-private. The existence of 
minority-private protocols was proved by Ben-Or, 
Goldwasser, and Wigderson [2] and independently by 
Chaum, Cr6peau, and Damgard [3]. Given secret num- 
bers s 1 . . . . .  s n that may take on some finite set of 
values, it is shown that any function of the s i can be 
computed minority-privately. It suffices to consider 
functions on a sufficiently large finite field. A minority- 
private protocol is given for multiplication, which is 
somewhat more complicated than that for addition. 
(Everything we have described up to now could prob- 
ably be understood by a competent 7th grader. The 
multiplication protocol is about at the level of an un- 
dergraduate abstract algebra course.) Once one has ad- 
dition and multiplication, one has polynomials and 
hence all functions on a finite field. It seems to be the 
case that by suitable encoding most problems of the 
sort one is interested in can be transformed into a prob- 
lem of calculating a function from integers to integers, 

although this is not immediately obvious, for example, 
in the secret-ballot problem where one wants to know 
only which candidate won the election. 

Perhaps even more striking than the sufficiency is 
the necessity of the condition t < n/2. This means there 
is no protocol, for example, for computing the product 
of n secret numbers that can maintain secrecy if half or 
more of the participants decide to collude. In fact, es- 
sentially the only functions that can be computed ma- 
jority-privately are functions that can be obtained using 
only the sum protocol. This was first shown by Chor 
and Kushilevitz [4] for Boolean functions and then by 
Beaver [1] for general integer-valued functions. Notice 
that we have nowhere up to now said what a protocol 
actually is, but have simply exhibited examples. This is 
fine as long as one is proving existence theorems. By 
way of analogy, to show that there is a "formula" for 
the roots of third and fourth degree polynomials one 
simply displays them and checks that they work. On 
the other hand, in order to show non-existence of such 
expressions for higher degree polynomials, a strict for- 
malization of the problem is necessary. In the same 
way, to prove non-existence of majority-private proto- 
cols, one must have precise definitions of protocols 
and privacy and then develop the necessary theory to 
deal with these concepts; and the arguments are con- 
siderably more involved than those for existence. 

As a special case of Beaver's result we see that when 
there are only two people, essentially nothing can be 
learned privately, as, for example, whether they have 
the same secret number. On the other hand, from the 
existence theorem we know that if a third party P3 
enters the picture and is able to give and receive mes- 
sages, then P1 and P2 can learn whether or not they 
have the same number 1-privately, and P3 will not 
even know whether the answer is yes or no. 

There is a good deal more to the theory than has 
been mentioned. For example if one does not require 
unconditional security but only "uncrackability" in the 
sense described in the first paragraph, then it has been 
shown that any function can be computed n-privately, 
including the situation where there are only two peo- 
ple. In the so-called "millionaires problem" of Yao [5], 
for example, P1 and P2 can learn which of them has the 
larger salary and nothing else. 

To conclude let me return to the 7th grade level and 
describe a 1-private protocol that computes the maxi- 
mum salary. For this we bring in an outsider P0 who 
chooses some secret number x 0. The rules are then the 
following: if Pi's salary is ~ (the upper bound), she 
chooses some arbitrary positive number x i. If not her 
secret number is 0. Now do the sum protocol. If the 
sum is not x o, then P0 announces that ~ is the maxi- 
mum. If the sum is x 0, play again, replacing ~ by ~ - 1, 
and so on until the maximum is found. Notice that it is 
necessary to bring in Po because if the others played 
the game without him and at some stage the sum 
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turned out to be x i, then Pi would know that she was 
the only one getting the maximum. Similarly, the pro- 
tocol with P0 is only 1-private, because if P0 gets to- 
gether with a person earning the maximum salary, 
then the two of them will know whether or not anyone 
else is also earning this maximum. 

I want to express my thanks to Donald Beaver of 
AT&T for much of the material I have presented and to 
Michael Hirsch of UC Berkeley for bringing this inter- 
esting subject to my attention. It seems there are more 
kinds of mathematics in heaven and on earth than are 
dreamed of in all your volumes of Bourbaki. 
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A True Story 

Once upon a time there was a little girl named Clara 
who was barely three years old and had just learned 
how to count. She could tell how many chairs there 
were in the living room and the number of steps down 
from the front porch. One day her father decided to 
test her. "Look" he said, "I've brought you these four 
lollipops," but he handed her only three. Clara took 
the lollipops and dutifully counted, "One, two, four." 
Then she looked up a bit puzzled and asked, "Where's 
the third one?" 

Problems 

Rational primes: Quickie 91-5 by W. Sierpifiski 
(submitted by S. H. Weintraub). 

Call a rational number a prime rational if it is the quo- 
tient of (integer) primes. Show that the set of prime 
rationals is dense in the positive reals. 
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