[ Mathematical Entertainments

Somos Sequence Update

Some readers may recall that in the winter issue I re-
ported on some sequences defined by a simple recur-
sion that for unexplained reasons always seemed to
yield integer terms. The sequences were originally in-
troduced by Michael Somos and can be described as
follows: Given an integer k = 4 a Somos (k) sequence is
characterized by the recursion

ady_x = X180y 180 —k+1 + Xoly 28y —k+2 (1)
+ ..+ XA, 0,

k
where r = [5] and the x; are given integers.

Since in (1), 4,, is defined in terms of the preceding k
terms, one must choose initial values for ay, a1, . . .,
1.

When I simply refer to Somos (k), I will mean a k-se-
quence in which all the x; and initial 4; are unity. It was
first observed numerically and later proved that Somos
4, 5, 6, 7 always have integer terms whereas Somos 8,
9 and presumably all the rest do not. But there still
remains a doubly-infinite family of Somos sequences
that appear to have integer terms, although this has
not been proved (see winter column for details).

Motivated by the Somos phenomena, Dana Scott
discovered that sequences with initial values unity and
the following recursions have integer terms:
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Ay = 8y-19y-2 + 30,4 (3)
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for k odd.
The integer property also holds for
Ay -k = Ay—18,-2 + 8p_28y—3 (4)
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Proofs of integrality of (2), (3) and (4) have now been
found by Raphael Robinson with an assist at one point
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from Dean Hickerson. The proofs are quite elemen-
tary, so we will present the one for (2), the argument
for (3) and (4) being similar. They involve finding ra-
tional functions that are invariant under the recursions.
For (2) we define a new sequence (b,) for n = k by

a4, + 0,k

b =
S ST M S ©)

and the claim is that the b, are constants, that is, b, , 4
= b,. To see this note that

an(an + an-k) = (an+1 + an—k+1)an7k+1 (6)

because from (2) both sides of (6) are equal to a% + a5_;
+ ...+ a3_,,, Dividing both sides by a,4, | . . .
A, _i+1 8ives b, = b, ;. But from the initial conditions
b, = k hence b,, = k, so from (5) we have
a, = k(an~1an~2 st arz—k+1) — 4k (7)
which gives a new recursion for the a, where the right-
hand side is a polynomial (rather than a rational func-
tion) of the a;, so integrality follows, as does the fact
that the sequence reduced mod m is periodic for any m.
But while some problems have now been solved,
further numerical explorations by Robinson brought to
light a host of new structural properties of Somos se-
quences, some of them number-theoretic, others ana-
lytic. Since these results will appear elsewhere, I will
just mention a few of them. First, as mentioned at the
end of the earlier column, all Somos sequences that
give integers appear to be periodic when reduced mod
m for any m. Robinson proved this for Somos 4 and 5
but not for 6 and 7. For 4 and 5 the period as a function
of m seems unpredictable, but the following striking
relation was observed: For all m except 2 the period
mod m* is equal to m*~! times the period mod m. For
2 a somewhat more complicated pattern holds. (At this
point I will stop qualifying every statement with
“seems to,” which is to be understood.) Robinson also
investigated which primes divide the various terms of
the sequences and found that for Somos 4 and 5 (but
not for 6 and 7), the terms divisible by a given prime
were equally spaced. Thus in Somos (4) every fifth
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term is even, every seventeenth term is divisible by 11
and none is divisible by 5, while in Somos (5) every
tenth term is divisible by 5 but none is divisible by 7.

In a different direction, Robinson investigated ana-
lytic properties of the sequences for arbitrary k and
initial values and found in all cases tested that there
were (unique) constants C and D such that

a, = C"~D7 ¢(n) (8)

where &(n) has an oscillation with a well-defined pe-
riod. The constants C and D depend on the initial val-
ues as well as on k but in an apparently unpredictable
manner. Learning of Robinson’s data, Clifford Gard-
ner succeeded in finding explicit formulas for Somos 4
and 5 in terms of Jacobi elliptic functions, so in some
sense the problem is starting to come full circle, since
Somos originally discovered his sequences while
studying properties of elliptic functions and was aware
of some of the phenomena described here.

To a non-expert the analytic and number-theoretic
properties of the Somos sequences seem unrelated, but
perhaps algebraic-number theorists who are accus-
tomed to such things will be able to make a connection.
In any case, it is intriguing to see more and more prop-
erties of these sequences being revealed by numerical
exploration.

Unconditionally Secure Protocols

One of the exciting mathematical developments of the
past decade was the discovery of so-called uncrackable
public key codes. These are codes with the character-
istic that everyone knows the method of encryption,
but the amount of calculation required for an outsider
to break the code is thought to be beyond present com-
putational capabilities. In the best-known example,
breaking the code was equivalent to being able to find
the factors of, say, a 100-digit number, which was be-
lieved to be computationally infeasible.

A more recent but less well known development
with somewhat the same flavor invoives methods of
conveying certain information that depends on other
information that must remain secret. In these cases,
however, it is literally impossible for anyone but a
mind-reader to learn the secrets. Here is a simple ex-
ample. Some people P, . . ., P,, say, the members of
a mathematics department, are interested in learning
their average salary but they are not willing to reveal
their own salaries to anyone else. How can this be
done? I put the problem to some of my colleagues and
they were not able to come up with an answer. I also
mentioned it at a social gathering and rather quickly a
young woman who hadn’t had a mathematics course
since high school (and claimed she’d failed 9th grade
algebra) proposed the following simple solution: P;
chooses an arbitrary number x and tells it to P, who
adds his salary and tells the total to P; who adds her
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Some people P,, . . ., P,, say, the members of
a mathematics department, are interested in
learning their average salary but they are not
willing to reveal their own salaries to anyone
else. How can this be done?

salary and tells it to P,, and so on, until P, adds his
salary and tells it to P, who adds her salary, subtracts
x, divides by n and announces the result. Clearly no
one has learned anything about anyone else’s salary
except what can be inferred from knowing the average.

Now while it is true that in the above scheme no
person acting alone can discover anything about the
other people’s salaries, the situation changes if people
are allowed to collude. For example, if P, reveals x to
P, then P, will know P,’s salary. Thus the scheme, or
protocol as it is called, is said to be I-private but not
2-private. One may then ask if there are any 2-private
protocols for this problem. The answer is that, in fact,
there is an n-private protocol which is also easy to
describe. A protocol is called n-private if no subset of
the people by colluding can learn anything about the
complementary set except what can be inferred from
their knowledge of the average. Here is how it works.
Let s; be the salary of P;. Each P; chooses n numbers s;;
subject only to the condition that they sum to s;, and
deals s; to P;. Now each P; announces the sum ¢, of the
numbers in his hand. The sum of the ¢, is of course the
sum of the s;, as desired. The situation is represented
by the matrix S = (s;) where the i row sum is s; and
the /™ column sum is t;.

tl t2 tk tn

S |51 512 S1k S1n

5

Sk | Sk Sk Skk Skn
Sk

sn snl Sn2 S,m

To see that the protocol is n-private, suppose, say,
the first k players collude. Then they will know all
entries of S except those in the lower (n — k) X (n — k)
submatrix S, and they will know as well £, ., . . . , £,
so they will know the column sums of 5;. But if one
knows only the column sums ¢; of a matrix then the

j
row sums 7; can be any numbers subject only to the



condition 2r; = Zc;, so the colluding players will know
only the sum of the other players’ salaries, which they
would know anyway from knowing the sum of all the
salaries.

The sum protocol can be used to learn other things,
for example, the distribution of salaries, that is, the
number of people at each salary level, without reveal-
ing who they are. To find out how many people have
salary x, do the sum protocol where P;’s secret number
is 1 or 0 according as his salary is or is not equal to x,
and repeat the protocol for all values of x. A more
efficient method is for P; to choose the secret number
(n + 1)*. When the sum is computed it is expressed in
base (n + 1) and the coefficient of (n + 1)* will be the
number of people whose salary is x. The same trick can
be used for a secret ballot. Suppose the candidates for
some office are labeled 1 through m. A person who
wants to vote for candidate k should use the secret
number (1 + 1)*. The sum protocol then gives the vote
count.

What about other functions? For example, the max-
imum rather than the sum of the salaries? If an upper
bound 5 of the salaries is known the following proce-
dure suggests itself. Use the sum protocol to find out
how many people have salary 5. If the answer is zero
try again with 5§ — 1 and so on until the sum is positive.
The trouble is that one learns too much. One learns not
only the maximum salary but also the number of peo-
ple who earn the maximum. Is it possible to learn the
maximum and nothing more? In the same spirit, is it
possible to learn only the winning candidate(s) in an
election but nothing about the distribution of votes?
And a simple arithmatical question: the sum of # num-
bers can be computed n-privately—What about the
product?

The answer to all of these questions is the same and
is quite surprising. There exist t-private protocols for
all of them if and only if ¢ is less than n/2. Such proto-
cols might be called minority-private. The existence of
minority-private protocols was proved by Ben-Or,
Goldwasser, and Wigderson [2] and independently by
Chaum, Crépeau, and Damgard [3]. Given secret num-
bers s;, . .., s, that may take on some finite set of
values, it is shown that any function of the s; can be
computed minority-privately. It suffices to consider
functions on a sufficiently large finite field. A minority-
private protocol is given for multiplication, which is
somewhat more complicated than that for addition.
(Everything we have described up to now could prob-
ably be understood by a competent 7th grader. The
multiplication protocol is about at the level of an un-
dergraduate abstract algebra course.) Once one has ad-
dition and multiplication, one has polynomials and
hence all functions on a finite field. It seems to be the
case that by suitable encoding most problems of the
sort one is interested in can be transformed into a prob-
lem of calculating a function from integers to integers,

although this is not immediately obvious, for example,
in the secret-ballot problem where one wants to know
only which candidate won the election.

Perhaps even more striking than the sufficiency is
the necessity of the condition ¢ < n/2. This means there
is no protocol, for example, for computing the product
of n secret numbers that can maintain secrecy if half or
more of the participants decide to collude. In fact, es-
sentially the only functions that can be computed ma-
jority-privately are functions that can be obtained using
only the sum protocol. This was first shown by Chor
and Kushilevitz [4] for Boolean functions and then by
Beaver [1] for general integer-valued functions. Notice
that we have nowhere up to now said what a protocol
actually is, but have simply exhibited examples. This is
fine as long as one is proving existence theorems. By
way of analogy, to show that there is a “formula’ for
the roots of third and fourth degree polynomials one
simply displays them and checks that they work. On
the other hand, in order to show non-existence of such
expressions for higher degree polynomials, a strict for-
malization of the problem is necessary. In the same
way, to prove non-existence of majority-private proto-
cols, one must have precise definitions of protocols
and privacy and then develop the necessary theory to
deal with these concepts; and the arguments are con-
siderably more involved than those for existence.

As a special case of Beaver’s result we see that when
there are only two people, essentially nothing can be
learned privately, as, for example, whether they have
the same secret number. On the other hand, from the
existence theorem we know that if a third party P;
enters the picture and is able to give and receive mes-
sages, then P; and P, can learn whether or not they
have the same number 1-privately, and P; will not
even know whether the answer is yes or no.

There is a good deal more to the theory than has
been mentioned. For example if one does not require
unconditional security but only “uncrackability” in the
sense described in the first paragraph, then it has been
shown that any function can be computed n-privately,
including the situation where there are only two peo-
ple. In the so-called “‘millionaires problem” of Yao [5],
for example, P; and P, can learn which of them has the
larger salary and nothing else.

To conclude let me return to the 7th grade level and
describe a 1-private protocol that computes the maxi-
mum salary. For this we bring in an outsider P, who
chooses some secret number x,. The rules are then the
following: if P/s salary is 5§ (the upper bound), she
chooses some arbitrary positive number x;. If not her
secret number is 0. Now do the sum protocol. If the
sum is not x;, then P, announces that 5 is the maxi-
mum. If the sum is x, play again, replacing sby s — 1,
and so on until the maximum is found. Notice that it is
necessary to bring in P, because if the others played
the game without him and at some stage the sum
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turned out to be x;, then P, would know that she was
the only one getting the maximum. Similarly, the pro-
tocol with P, is only 1-private, because if P, gets to-
gether with a person earning the maximum salary,
then the two of them will know whether or not anyone
else is also earning this maximum.

I want to express my thanks to Donald Beaver of
AT&T for much of the material I have presented and to
Michael Hirsch of UC Berkeley for bringing this inter-
esting subject to my attention. It seems there are more
kinds of mathematics in heaven and on earth than are
dreamed of in all your volumes of Bourbaki.
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A True Story

Once upon a time there was a little girl named Clara
who was barely three years old and had just learned
how to count. She could tell how many chairs there
were in the living room and the number of steps down
from the front porch. One day her father decided to
test her. “Look” he said, “I've brought you these four
lollipops,” but he handed her only three. Clara took
the lollipops and dutifully counted, “One, two, four.”
Then she looked up a bit puzzled and asked, “Where’s
the third one?”

Problems

Rational primes: Quickie 91-5 by W. Sierpinski
(submitted by S. H. Weintraub).
Call a rational number a prime rational if it is the quo-

tient of (integer) primes. Show that the set of prime
rationals is dense in the positive reals.
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Solutions

Derivatives eventually zero: Problem 91-1 by
E. M. E. Wermuth (Jiilich, Germany)

Let f be a C*-function defined on some open interval
(a,b) such that for every x in (a,b) there is an integer
n(x) such that f"®(x) = 0. Show that f is a polyno-
mial. (For multidimensional versions of the problem
and its history see MR90e:26040.)

Solution by Proposer (slightly rephrased)

Call f locally polynomial at x if there is a polynomial P
such that f = P in some neighborhood of x. Now if
f is locally polynomial at each point of some open
subinterval (c,d), then it is given by a single polyno-
mial in (c,d); for if P is the local polynomial at some
point x, then the set of points x" where f(x') = P(x’)
is both open and closed in (c,d) since fis C”. Let A be
the closed set of all points x such that f is not locally
polynomial at x. We must show that A is empty.
First, A contains no isolated points; for if ¢ were
isolated in A, then f would be given by a polynomial
in the component of (a,b)\A to the right of ¢ and by
a polynomial in the component to the left of ¢, and
these two polynomials would have to be the same
since f e C”.

LetA, = {xeA | f(x) = 0}. Then A = U _, A, by
hypothesis and the result will follow from Baire’s
theorem if we can show that each closed subset A,
of A is nowhere dense in A. So suppose that for
some n and for some open interval , AN I C A,.
From the previous paragraph every x in ANl is an
accumulation point of A,, hence by Rolle’s theorem
f¥x) = 0 for k = n for all x in ANI. But then this
must also be the case for all x in I, since in each
component of \A, f is a polynomial and the poly-
nomials can have degree at most n — 1 (if the degree
were k = n, f* would be a non-zero constant in this
component, so we would have f®(x) # 0 for some x
in AN, an endpoint of this component). But if f*(x)
= 0 for all x in I and for all k = n, then f is a poly-
nomial on the interval , so ANI = . A




