Mathematical Entertainments

We All Make Mistakes

Some of us more than others, so it may be comforting
to realize that occasionally even the great mathemati-
cians have published erroneous results. Readers are
invited to contribute examples of this phenomenon,
where a mistake should mean not just a gap in a proof
or a case of meaning one thing and writing another,
but rather an explicit assertion that is false. Are there
any such examples in the work of Gauss, I wonder?
R. M. Robinson has called my attention to a lapse by
Minkowski in which he asserts that the difference set
of a tetrahedron is an octahedron. In his 1906 paper
“Dichteste gitterformige Lagerung kongruenter Kor-
per,” Nachrichten der Konig. Gesellschaft der Wissenschaf-
ten zu Gottingen 5(1904), 311-355, Minkowski writes

For example, if K is a tetrahedron, then %(K + K') be-
comes an octahedron with faces parallel to the faces of the
tetrahedron.

Here K' is “the reflection of K with respect to the
point O.”

It's a curious sort of error since the polyhedron in
question clearly has 12 rather than 6 vertices, namely
all pairs 4, — a,, i # j, where the 4, are the vertices of
the tetrahedron. The correct polyhedron is in fact the
convex hull of the midpoints of the 12 edges of a cube,
so it has eight triangular and six square faces.

Paradoxes and a Pair of Boxes

What is a paradox? Perhaps the best-known examples
in mathematics are Russell’s paradox and the Banach-
Tarski paradox, but it should be noted that the nature
of these two results is very different. The Banach-
Tarski Theorem is considered paradoxical because it
shows that sets can behave in a way very different
from our intuitive notions about them. Russell’s par-
adox, on the other hand, shows that starting from
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what seem to be plausible axioms one can arrive at a
contradiction. The proper term for this is not paradox
but antinomy, which, according to Webster, is “a con-
tradiction between two apparently equally valid prin-
ciples or between inferences correctly drawn from
such principles,” while a paradox is ““a statement that
is seemingly contradictory or opposed to common
sense and yet is perhaps true.”

In the examples to follow the first two are antin-
omies and the last two are paradoxes.

1. The other box. You are presented with two boxes,
each containing a certain amount of money that has
been placed there by the following rule. A fair coin
was tossed until it fell tails. If n heads were tossed
then one of the boxes contain 3” dollars and the other
3"*+1, You are allowed to open one of the boxes and
count its contents. You may then either pocket this
money or switch and take the money in the as yet un-
opened box. What should you do? Well, clearly if the
box you open contains one dollar you should take the
three dollars in the other box. Now suppose the box
you open contains 3" dollars. Then one easily sees that
the other box will contain 3*~! or 3#*! dollars with re-
spective probabilities % and ¥, so your expectation
from switching is

2 1 11
Z an-1 _3n+l = __3n > 3n
33 +33 93 31,

so you maximize your expected winnings by
switching; so, assuming you are an expectation maxi-
mizer, this is what you will do. (The debate as to
whether expectation maximizing is “reasonable” is of
course beside the point, since we are concerned here
only with the mathematics and not with its implica-
tions for behavior.) But now, since you know in ad-
vance you will always switch, there is no point in
wasting time opening and counting: you should
simply choose “the other box” to begin with, and the
same argument then shows that whichever box you
choose, you would have been better off expectation-
wise to have chosen the other.

Readers will have noticed that this game has a defi-
nite Petersburgian flavor in that the expected win-
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nings in the game are infinite. The novelty of this
variant is the fact that it seems to lead to a contradic-
tion and thus we are dealing with an antinomy rather
than a mere paradox.

2. Beat the house. A somewhat similar example was
told to me by Lester Dubins, who is uncertain as to its
origin. In a certain casino one can play the following
game. The house posts a positive integer n. In this
game it is you the customer who is invited to toss the
fair coin until it falls tails. If you tossed n — 1 times
then you pay the house 8"~! dollars, but if you tossed
n + 1 times you win 8" dollars from the house. In all
other cases the payoff is zero. Since the probability of
tossing exactly n times is 1/2", your expected winnings
are 8"/2n+1 — gn-1/2n-1 = gn-1forp >1,and 2 forn =
1, so your expected gain, which is the house’s ex-
pected loss, is positive. But now it turns out that the
house arrived at the number n by tossing that same
fair coin and counting the number of tosses up to and
including the first tails. Thus, you and the house are
behaving in a completely symmetric manner. Each of
you tosses the coin and if the number of tosses
happens to be the consecutive integers n and n + 1,
then the n-tosser pays the (n + 1)-tosser 8" dollars.
But we have just seen that the game is to your advan-
tage as measured by expectation no matter what
number the house announces. How can there be this
asymmetry in a completely symmetric game?

3. The other box again. (A mild modification of an ex-
ample due to David Blackwell.) This time the boxes
contain not money but each box contains an integer
(perhaps printed on a card), and the only thing you
know about them is that they are distinct. You draw
one of them at random and are then supposed to
guess whether the other is higher or lower. Is there
anything you can do so that you will have a better
than even chance of guessing correctly? Surprisingly
the answer is yes, provided you have some mecha-
nism for randomizing as, for example, a true coin to
toss. To be specific, suppose you have a spinner like
those used in children’s board games. You should
proceed to spin and then record the angle 6 between
the initial and final position of the pointer. Now draw
your number and guess higher or lower according as
cot 0/2 is greater or less than the number you drew.
Let us assume for convenience that 6 has the uniform
distribution on [0,27). Claim: If the two numbers are p
> g, then the probability that you will guess correctly
is¥2 + (cot~lg — cot~1p)2m. Namely, g < cot 62 < p
if and only if 2 cot~!p < 6 < 2 cot~1g and from unifor-
mity this has probability y = (cot™1g — cot~!p)/w. In
this case because of the guessing rule you will be right
no matter which number you draw. In the other cases
where 8 is either greater or less than both p and g your
probability of guessing right is one-half, since you are
equally likely to draw p or g. Thus your probability of a
correct guess is ¥2(1 — y) + y = 1/2 + v/2 as claimed.
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Mathematically the argument above is air-tight but it
raises some interesting philosophical questions about
the applicability of probability theory in decision
making. For example, suppose you don’t have a
spinner but are wearing a watch, the old-fashioned
nondigital kind, and choose 6 to be the angle between
the minute and hour hand in order to make your
guess. Is this in any sense a kind of randomization
and if not why not? Or, suppose instead of numbers
the boxes contain stones of different weights and you
have a balance so you can compare weights but no
scale for making measurements. You draw a stone and
must guess whether the other is heavier or lighter. Is
there anything you can do? This might lead one to
think that randomization is possible only for quantita-
tive comparisons, meaning that one must associate
numbers with the objects drawn, but this need not be
true either. Suppose, for example, the boxes contain
slices of pie. Then a spinner is just what you need.
Guess bigger or smaller depending on whether the
spinner angle is greater or less than the angle of the
slice you draw. This can be determined by direct vi-
sual comparison. There is no need for a protractor and
numbers are not involved in any way.

4. The other’s number. This time the integers in the
boxes are positive and consecutive. Each player draws
one and is supposed to find out the opponent’s
number by the following procedure. The players are
equipped with a blank card and a pencil. If at any time
a player knows her opponent’s number, she writes it
on her blank card and wins the game. If neither player
knows the other’s number, they exchange blank cards
and start over. The assertion is that, with perceptive
players, this game will terminate. More precisely we
have

THEOREM. If the two numbers are nand n + 1, then the
player holding n will win after n — 1 exchanges.

The proof is by induction. If n = 1 then the player
holding 1 will know the opponent’s number is 2 and
the game ends with no exchanges. Now assume the
conclusion is true up to n and suppose the lower
number is n + 1. Then the player holding this number
knows that if her opponent holds 7 he will end the
game after the (n — 1)st exchange (induction hy-
pothesis), so when he doesn’t do this she knows after
the exchange that he must hold n + 2 and she wins.

The paradoxical point is this: suppose the numbers
held are, say, 72 and 73. Then neither player knows
the other’s number and both are aware of their oppo-
nent’s ignorance so they know for sure that the first
stage of the game will be an exchange of cards; so
when this indeed takes place they have apparently
gained no new knowledge, yet since the game is now
one step closer to termination, something must have
changed. What was it?



Problems

Supporting cords of convex sets (91-2) by Serge
L. Tabacnikov (Moscow, USSR).

Let A,B be plane convex sets with A C int B. Prove
there are at least two cords of B that are tangent to A at
their midpoints.

Boomerang problem: Quickie (91-3) (origin
unknown to column editor; information would
be appreciated).

A boomerang is a nonconvex quadrilateral. Prove that it
is impossible to tile a convex polygon with a finite
number of (not necessarily congruent) boomerangs.

Solutions

The modified Fermat problem: Quickie
(90-7)

by Flejberk Jaroslav (Pardubice,
Czechoslovakia).

For any two relatively prime positive integers n
and k, show that the equation x" + y" = z*has a
solution in positive integers x, y and z.

Solution by B. M. M. de Weger (University
of Twente, The Netherlands).

Since n and k are coprime, there are positive in-
tegers a,b withbk — an = 1. Thenx = y = 24, 2
= 2% is a solution.

Two contributions from Lee Sallows

First the following;:

“This computer-generated sentence contains two
hundred forty-seven letters: four a’s, one b, four c’s,
five d’s, forty-four ¢’s, nine f’s, three g’s, seven h's,
eleven i’s, one j, one k, three I's, two m’s, twenty-nine
n’s, nineteen o’s, two p’s, one ¢, fourteen r’s, thirty-
one s’s, twenty-five t's, seven u’s, eight v's, seven w’s,
two x’s, six y’s, and one z.”

Now that you've had a chance to verify the correct-
ness of the sentence you may wonder how the com-
puter generated it. Here is Sallows’ description of how
it's done.

“The algorithm that generated the above sentence
implements an iterated function. Starting with a sim-
ilar text, but using randomly selected totals, its true

letter frequencies are determined and then substituted
for these, the new version then furnishing the argu-
ment for the next iteration, and so on. The result is a
series of approximations tending toward the goal. I
like to picture this process as a machine that takes sen-
tences as input and yields sentences as output, the
latter coupled back to the input via a feedback loop.
This makes it easier to see that a self-descriptive sen-
tence is effectively a virus able to subvert the machine
so as to get itself perpetually reproduced. Such a sen-
tence has only to appear once at the input in order to
trigger a closed loop of period 1 and thus be regurgi-
tated ad nauseam (if you see what I mean). The only
trouble is, there are still other viruses that will prob-
ably infect the machine first! These are the sentence
chains of longer period, in any one of which it may
easily become ensnared, and thus be prevented from
converging onto a self-descriptor. How can we immu-
nize the machine against such interloopers?

My answer is a modified machine that will scramble
possible cycles through performing non-repetitively:
Instead of correcting every total on every pass, I have
it correct a single total chosen at random each time.
Now no recurrent cycle can survive such irregular ex-
changes, except of course in the special case where the
totals remain unchanged because already correct: a
self-descriptor! [Note here the complete analogy with
a neural network settling into a stable solution state,
while avoiding latch-up in pseudo-solution states
through “jiggling.”] In fact the ““random” selection
need not be truly random, provided only that the rep-
etition period of its own pattern be longer than that of
any possible loop the machine may fall into. Hence,
any conventional pseudo-random number generator
serves well. A few million iterations (mutations) nor-
mally suffice to evolve (naturally select) a viable solu-
tion (virus) provided one exists. If not we can try again
with a modified text.”

Sallows’ second contribution involves neither letters
nor numbers and is presented below without com-
ment.
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