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We All  Make Mistakes 

Some of us more than others, so it may be comforting 
to realize that occasionally even the great mathemati- 
cians have published erroneous results. Readers are 
invited to contribute examples of this phenomenon, 
where a mistake should mean not just a gap in a proof 
or a case of meaning one thing and writing another, 
but rather an explicit assertion that is false. Are there 
any such examples in the work of Gauss, I wonder? 
R. M. Robinson has called my attention to a lapse by 
Minkowski in which he asserts that the difference set 
of a tetrahedron is an octahedron. In his 1906 paper 
"'Dichteste gitterf6rmige Lagerung kongruenter K6r- 
per," Nachrichten der K6nig. Gesellschafl der Wissenschaf- 
ten zu G6ttingen 5(1904), 311-355, Minkowski writes 

For example, if K is a tetrahedron, then �89 + K') be- 
comes an octahedron with faces parallel to the faces of the 
tetrahedron. 

Here K' is "the reflection of K with respect to the 
point O." 

It's a curious sort of error since the polyhedron in 
question clearly has 12 rather than 6 vertices, namely 
all pairs a, - a r i # j, where the a. are the vertices of 
the tetrahedron. The correct polyhedron is in fact the 
convex hull of the midpoints of the 12 edges of a cube, 
so it has eight triangular and six square faces. 

Paradoxes and a Pair of Boxes 

What is a paradox? Perhaps the best-known examples 
in mathematics are Russell's paradox and the Banach- 
Tarski paradox, but  it should be noted that the nature 
of these two results is very different. The Banach- 
Tarski Theorem is considered paradoxical because it 
shows that sets can behave in a way very different 
from our intuitive notions about them. Russell's par- 
adox, on the other hand, shows that starting from 
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what seem to be plausible axioms one can arrive at a 
contradiction. The proper term for this is not paradox 
but antinomy, which, according to Webster, is "a con- 
tradiction between two apparently equally valid prin- 
ciples or between inferences correctly drawn from 
such principles," while a paradox is "a statement that 
is seemingly contradictory or opposed to common 
sense and yet is perhaps true." 

In the examples to follow the first two are antin- 
omies and the last two are paradoxes. 

1. The other box. You are presented with two boxes, 
each containing a certain amount of money that has 
been placed there by the following rule. A fair coin 
was tossed until it fell tails. If n heads were tossed 
then one of the boxes contain 3" dollars and the other 
3,+ 1. You are allowed to open one of the boxes and 
count its contents. You may then either pocket this 
money or switch and take the money in the as yet un- 
opened box. What should you do? Well, clearly if the 
box you open contains one dollar you should take the 
three dollars in the other box. Now suppose the box 
you open contains 3" dollars. Then one easily sees that 
the other box will contain 3"-1 or 3" + 1 dollars with re- 
spective probabilities 2~ and 1/3, so your expectation 
from switching is 

2 3,_1 + 1 3,+1 = 11 3" > 3", 

so y o u  m a x i m i z e  y o u r  e x p e c t e d  w i n n i n g s  b y  
switching; so, assuming you are an expectation maxi- 
mizer, this is what  you will do. (The debate as to 
whether expectation maximizing is "reasonable" is of 
course beside the point, since we are concerned here 
only with the mathematics and not with its implica- 
tions for behavior.) But now, since you know in ad- 
vance you will always switch, there is no point in 
was t ing  t ime opening and counting:  you  should  
simply choose "the other box" to begin with, and the 
same argument then shows that whichever box you 
choose, you would have been better off expectation- 
wise to have chosen the other. 

Readers will have noticed that this game has a defi- 
nite Petersburgian flavor in that the expected win- 
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nings in the game are infinite. The novelty of this 
variant is the fact that it seems to lead to a contradic- 
tion and thus we are dealing with an antinomy rather 
than a mere paradox. 

2. Beat the house. A somewhat similar example was 
told to me by Lester Dubins, who is uncertain as to its 
origin. In a certain casino one can play the following 
game. The house posts a positive integer n. In this 
game it is you the customer who is invited to toss the 
fair coin until it falls tails. If you tossed n - 1 times 
then you pay the house 8"-1 dollars, but if you tossed 
n + 1 times you win 8" dollars from the house. In all 
other cases the payoff is zero. Since the probability of 
tossing exactly n times is 1/2", your expected winnings 
are 8"/2" + 1 _ 8"-1/2"-1 = 4"-1 for n > 1, and 2 for n = 
1, so your expected gain, which is the house's ex- 
pected loss, is positive. But now it turns out that the 
house arrived at the number n by tossing that same 
fair coin and counting the number of tosses up to and 
including the first tails. Thus, you and the house are 
behaving in a completely symmetric manner. Each of 
you tosses the coin and if the number  of tosses 
happens to be the consecutive integers n and n + 1, 
then the n-tosser pays the (n + 1)-tosser 8" dollars. 
But we have just seen that the game is to your advan- 
tage as measured by expectation no matter what 
number the house announces. How can there be this 
asymmetry in a completely symmetric game? 

3. The other box again. (A mild modification of an ex- 
ample due to David Blackwell.) This time the boxes 
contain not money but each box contains an integer 
(perhaps printed on a card), and the only thing you 
know about them is that they are distinct. You draw 
one of them at random and are then supposed to 
guess whether the other is higher or lower. Is there 
anything you can do so that you will have a better 
than even chance of guessing correctly? Surprisingly 
the answer is yes, provided you have some mecha- 
nism for randomizing as, for example, a true coin to 
toss. To be specific, suppose you have a spinner like 
those used in children's board games. You should 
proceed to spin and then record the angle 0 between 
the initial and final position of the pointer. Now draw 
your number and guess higher or lower according as 
cot 0/2 is greater or less than the number you drew. 
Let us assume for convenience that 0 has the uniform 
distribution on [0,2~r). Claim: If the two numbers are p 
> q, then the probability that you will guess correctly 
is 1/2 + (cot-lq _ cot-lp)/2~r. Namely, q < cot 0/2 < p 
if and only if 2 cot-lp < 0 < 2 cot-lq and from unifor- 
mity this has probability ~/ = (cot-lq - cot-lp)/~r. In 
this case because of the guessing rule you will be right 
no matter which number you draw. In the other cases 
where 0 is either greater or less than both p and q your 
probability of guessing right is one-half, since you are 
equally likely to draw p or q. Thus your probability of a 
correct guess is 1/2(1 - -,/) + ~/ = 1/2 + ~/2 as claimed. 

Mathematically the argument above is air-fight but it 
raises some interesting philosophical questions about 
the applicability of probability theory in decision 
making.  For example, suppose  you don ' t  have a 
spinner but are wearing a watch, the old-fashioned 
nondigital kind, and choose 0 to be the angle between 
the minute  and hour hand  in order to make your  
guess. Is this in any sense a kind of randomization 
and if not why not? Or, suppose instead of numbers 
the boxes contain stones of different weights and you 
have a balance so you can compare weights but no 
scale for making measurements. You draw a stone and 
must guess whether the other is heavier or lighter. Is 
there anything you can do? This might lead one to 
think that randomization is possible only for quantita- 
tive comparisons, meaning that one must associate 
numbers with the objects drawn, but this need not be 
true either. Suppose, for example, the boxes contain 
slices of pie. Then a spinner is just what you need. 
Guess bigger or smaller depending on whether the 
spinner angle is greater or less than the angle of the 
slice you draw. This can be determined by direct vi- 
sual comparison. There is no need for a protractor and 
numbers are not involved in any way. 

4. The other's number. This time the integers in the 
boxes are positive and consecutive. Each player draws 
one and is supposed to f ind out the opponen t ' s  
number by the following procedure. The players are 
equipped with a blank card and a pencil. If at any time 
a player knows her opponent's number, she writes it 
on her blank card and wins the game. If neither player 
knows the other's number, they exchange blank cards 
and start over. The assertion is that, with perceptive 
players, this game will terminate. More precisely we 
have 

THEOREM. If the two numbers are n and n + 1, then the 
player holding n will win after n - 1 exchanges. 

The proof is by induction. If n = 1 then the player 
holding 1 will know the opponent 's number is 2 and 
the game ends with no exchanges. Now assume the 
conclusion is true up to n and suppose the lower 
number is n + 1. Then the player holding this number 
knows that if her opponent holds n he will end the 
game after the (n - 1)st exchange (induction hy- 
pothesis), so when he doesn't do this she knows after 
the exchange that he must hold n + 2 and she wins. 

The paradoxical point is this: suppose the numbers 
held are, say, 72 and 73. Then neither player knows 
the other's number and both are aware of their oppo- 
nent's ignorance so they know for sure that the first 
stage of the game will be an exchange of cards; so 
when this indeed takes place they have apparently 
gained no new knowledge, yet since the game is now 
one step closer to termination, something must have 
changed. What was it? 
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Problems 

Supporting cords of convex sets (91-2) by Serge 
L. Tabacnikov (Moscow, USSR). 

Let A,B be plane convex sets with A C int B. Prove 
there are at least two cords of B that are tangent to A at 
their midpoints. 

Boomerang problem: Quickie (91-3) (origin 
unknown to column editor; information would 
be appreciated). 

A boomerang is a nonconvex quadrilateral. Prove that it 
is impossible to tile a convex polygon with a finite 
number of (not necessarily congruent) boomerangs. 

Two contributions from Lee Sallows 

letter frequencies are determined and then substituted 
for these, the new version then furnishing the argu- 
ment for the next iteration, and so on. The result is a 
series of approximations tending toward the goal. I 
like to picture this process as a machine that takes sen- 
tences as input and yields sentences as output, the 
latter coupled back to the input via a feedback loop. 
This makes it easier to see that a self-descriptive sen- 
tence is effectively a virus able to subvert the machine 
so as to get itself perpetually reproduced. Such a sen- 
tence has only to appear once at the input in order to 
trigger a closed loop of period 1 and thus be regurgi- 
tated ad nauseam (if you see what I mean). The only 
trouble is, there are still other viruses that will prob- 
ably infect the machine first! These are the sentence 
chains of longer period, in any one of which it may 
easily become ensnared, and thus be prevented from 
converging onto a self-descriptor. How can we immu- 
nize the machine against such interloopers? 

My answer is a modified machine that will scramble 
possible cycles through performing non-repetitively: 
Instead of correcting every total on every pass, I have 
it correct a single total chosen at random each time. 
Now no recurrent cycle can survive such irregular ex- 
changes, except of course in the special case where the 
totals remain unchanged because already correct: a 
self-descriptor! [Note here the complete analogy with 
a neural network settling into a stable solution state, 
while avoiding latch-up in pseudo-solut ion states 
through "jiggling."] In fact the " random" selection 
need not be truly random, provided only that the rep- 
etition period of its own pattern be longer than that of 
any possible loop the machine may fall into. Hence, 
any conventional pseudo-random number generator 
serves well. A few million iterations (mutations) nor- 
mally suffice to evolve (naturally select) a viable solu- 
tion (virus) provided one exists. If not we can try again 
with a modified text." 

Sallows" second contribution involves neither letters 
nor numbers  and is presented below without com- 
ment. 

First the following: 
"This computer-generated sentence contains two 

hundred forty-seven letters: four a's, one b, four c's, 
five d's, forty-four e's, nine f's, three g's, seven h's, 
eleven i's, one j, one k, three l's, two m's, twenty-nine 
n's, nineteen o's, two p's, one q, fourteen r's, thirty- 
one s's, twenty-five t's, seven u's, eight v's, seven w's, 
two x's, six y's, and one z." 

Now that you've had a chance to verify the correct- 
ness of the sentence you may wonder how the com- 
puter generated it. Here is Sallows' description of how 
it's done. 

"The algorithm that generated the above sentence 
implements an iterated function. Starting with a sim- 
ilar text, but using randomly selected totals, its true 

THE MATHEMATICAL INTELLIGENCER VOL 13, NO 2, 1991 3 3  




