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We devote the column this time to some recent results 
on a pair of fairly well-known problems of recreational 
mathematics that have been around for quite a while. 
The first is the problem of tiling surfaces by unequal 
squares, the second that of devising fair procedures for 
dividing a cake. The results on tiling are rather defin- 
itive, whereas the work on cake-cutting is still in a 
rather formative stage. 

Tiling of Surfaces by Unequal Squares 

The question is, or rather was, which rectangles can be 
tiled by squares no two of which have the same size. 

Figure 1 is an example of a 32 x 33 rectangle which is 
tiled by 9 such squares. This example, apparently dis- 
covered by Moron in 1925, appears in Ball's Mathemat- 
ical Recreations and Steinhaus's Mathematical Snapshots. 
In 1940, Tutte, Brooks, Smith, and Stone (Duke Math J. 
7 (1940), 312-340) were able to show that this is the 
"smallest" such example, meaning that no rectangle 
can be tiled in this way by fewer than 9 squares. They 
also showed, however, that there is exactly one other 
rectangle, 61 x 69, shown in Figure 2, which can also 
be tiled by 9 squares. The authors were actually seek- 
ing and eventually found a square which could be tiled 
in this way. For an entertaining exposition, see the 
chapter by Tutte, "Squaring the Square," in Martin 

Figure 1 
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Figure 3 

Gardner's second Scientific American Book of Puzzles and 
Diversions, Simon and Schuster, 1961. 

Now, such a "squaring" of a rectangle can be con- 
verted in a trivial way to a squaring of the cylinder, 
torus, M6bius strip, or Klein bottle by the usual iden- 
tification of opposite sides, but there are also nontrivial 
squarings of these other surfaces, even simple squar- 
ings, meaning squarings in which there is no subset of 
tiles whose union is a rectangle. Until recently, how- 
ever, it was not known whether there might be squar- 
ings of these surfaces requiring fewer than 9 squares. 
Then, in 1991, Bracewell found a squaring of the M6- 
bius strip using only 8 squares. Very recently the ques- 
tion has been completely settled by S. J. Chapman. 
Perhaps the simplest but  most surprising result is that 
a 1 x 5 M6bius strip can be tiled by 2 squares, as 
becomes obvious from Figure 3. To accommodate this 
example, one must extend the notion of a tiling to 
allow the mapping of the squares into the surface to 
self-intersect on their boundaries. 

Chapman shows that there are no 3- or 4-squarings 
of the strip but there is a unique 5-squaring (Fig. 4). 

For cylinders, the situation is interesting. Again it 
turns out that 9 squares are necessary. There are ex- 
actly two nontrivial 9-squarings of the cylinder, and 
these use exactly the squares of Figures I and 2 but in 
a different arrangement. The tiling corresponding to 
Figure 1 is shown in Figure 5. Note, for example, that 
the squares of size 10 and 15 are disjoint in the rectan- 
gle but they are contiguous on the cylinder. 

The cases considered so far involve surfaces with 
boundary,  which forces one to orient the squares with 
one side parallel to the boundary. This is no longer the 
case with the torus and Klein bottle. If one allows ar- 
bitrary orientation, then, in fact, any two squares can 
tile some torus. Namely, let the squares have sides a 
and b and consider the torus obtained from identifying 
opposite sides of a square of side c, where c 2 = a 2 + b 2. 
Figure 6 shows how to do it and at the same time 
provides a new (?) proof of the Pythagorean Theorem. 

A more symmetrical representation is given in Fig- 
ure 7. 

If one allows only tiles which are parallel to the sides 
of the square, then it turns out there are no nontrivial 
9-squarings of the torus. Any squaring of the M6bius 
strip gives a squaring of the Klein bottle. For 6 or fewer 
tiles these are the only ones, but in the case of 7 or 8 
tiles this is not known. Also it is not known whether 
there are tilings of the Klein bottle in which the tiles 
need not be parallel to the sides of the big square. 

Figure 4 

Figure 5 

Figure 6 
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Figure 7 

Chapman's techniques for these problems are quite 
different from and simpler than those of Tutte, et al. 
and depend on a clever encoding of filings by matrices 
of O's, l's, and - l ' s .  

D iv id ing  a Cake 

A cake is to be divided between n of us. We have 
different tastes. Some of us like the frosting, others are 
partial to the chocolate filling, etc. Is there a way of 
giving each of us a piece of the cake such that every 
one feels he or she has gotten as desirable a piece as 
anyone else (such an allocation of pieces is said to be 
envy-free)? Well, it depends. First, the cake must not be 
too lumpy. If all of us have our hearts set on getting the 
cherry in the middle, then it is hopeless unless the 
cherry can be split up somehow among us. This key 
property, that any piece can be split up into smaller 
pieces, corresponds to the idea that our tastes are rep- 
resented by so-called "atomless" measures, countably 
additive, etc., etc. In this model, if by a piece one 
means any measurable subset, then there is a very 
strong existence result. Not only is there an envy-free 
allocation, but there is one in which we all believe that 
everyone, ourselves included, got exactly one nth of 
the cake. Otherwise stated, there is a way  of cutting 
the cake into n pieces so that we are all indifferent as to 
which piece we get. They all look equally delicious. 
This fact proved by Dubins and Spanier (1961) is a 
consequence of a celebrated and moderately high- 
powered theorem of Lyapunov which says that the 
range of a vector measure is convex. 

Now as a practical matter, arbitrary measurable 
pieces of cake may not be so easy to come by. A more 

down-to-earth model, therefore, has been treated by 
Stromquist (1980), where the cake may be taken to be 
an interval and the pieces are required to be subinter- 
vals. Perhaps a loaf of bread is a more apt illustration 
for this case. Using a fixed-point theorem, it is shown 
that envy-free allocations will always exist. Fixed-point 
theorems, however, are notoriously nonconstructive, 
and Stromquist's result gives no indication of how one 
might arrive at the desired culinary dissection. 

A rather different approach to the problem asks not 
just for the existence of envy-free allocations but  for a 
procedure, or a protocol as we shall call it, which leads 
to such an allocation. The prototypical example is the 
procedure for the trivial two-person case where one of 
us divides the cake into two parts and the other 
chooses the part he prefers. This method has the ob- 
viously desirable property that if either of us ends up 
feeling he has been gypped, he has only himself to 
blame. It has long been an open problem to try to 
devise protocols with this property for the n-person 
case. The best result along these lines is an elegant 
three-person protocol due to John Selfridge which will 
now be described. We denote  the players by #1,  
#2, #3. 

Three-Person Protocol 

Step I: #1 "trisects" the cake into 3 parts equally ac- 
ceptable to him. 

If #2  and #3  prefer different pieces, we are through. 
Otherwise, say they both prefer A and #2  prefers A to 
B which she likes at least as much as C. Thus, 

Step II: #2  trims a "sliver" (S) from A leaving A' so 
that A' and B are equally acceptable to her. 

Step III: #3  chooses his preferred piece among A', B, 
and C. 
Case 1. #3  chooses A'. Then #2  chooses B and #1 gets 
C (no envy so far). 

It remains to divide up the sliver which is like the 
original problem, except that now #1 will not be en- 
vious even if #3  gets the whole sliver. 
Step IV: #2  trisects S. 
Step V: #3  chooses, then #1 chooses, then #2. 
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Case//. #3 does not choose A'. Then #2 gets A' and 
the procedure is as before, except this time #3 trisects 
and #2 chooses first. 

This procedure has a number of nice properties. 
First, it is economical, requiring at most 5 cuts. Fur- 
ther, like the I-cut-you-choose protocol, it makes min- 
imal assumptions on what the players are able to do; 
namely, (1) given any piece and an integer k, it is as- 
sumed that a player can divide the piece into k sub- 
pieces equally acceptable to him, and (2) if a player 
prefers one piece to another, she can trim off part of 
the first piece in such a way that what is left and the 
second piece are equally acceptable to her. Finally, 
preferences are required to be only weakly additive, 
meaning that if A, B, and X, Y are disjoint pieces and 
a player prefers A to X and B to Y, then he also prefers 
A U B t o X U Y .  

Up to now, no protocol satisfying the desired con- 
ditions is known, even for the case of four players. 
However, recent work by Steven Brams and Alan Tay- 
lor seems to indicate that some progress is being made. 
The authors present what they call a finite algorithm 
for arriving at an envy-free allocation. Their procedure, 
however, is quite complicated and seems to require 
that players be able to measure numerically the value 
of any piece of cake. Further, even for the four-player 
case, there is no a priori upper bound on the number of 
cuts which may be required. Thus, for example, if the 
value of piece A to some player is greater than that of 
piece B by one part in a million, then it may require a 
million cuts to arrive at the desired allocation using the 
proposed algorithm. One might hope that procedures 
of simplicity comparable to that of the Selfridge proto- 
col could be devised for the general case. As this is 
being written, however, the new work is still at the 
early (preprint) stages, and perhaps substantial simpli- 
fications will be found in the course of time. 

pieces they strictly prefer. Obviously, it would be de- 
sirable for the final allocation to be undominated as 
well as envy-free. A general question, then, is whether 
in a given model it is always possible to satisfy both of 
these conditions. In this connection, recall that in the 
Stromquist formulation all pieces were required to be 
subintervals of an interval (unlike the earlier example 
in which my allocation was the union of two disjoint 
intervals). For these Stromquist allocations, we have, 
in fact, 

THEOREM. An envy-free Stromquist allocation is auto- 
matically undominated. 

Proof. Let P be an envy-free partition of the interval 
into n subintervals and let Q be any other such n-par- 
tition. Now, if P and Q are distinct n-partitions of an 
interval, then there must be some interval I of P which 
strictly contains some interval J of Q (think about it for 
a minute). But then whoever gets J in the allocation Q 
will not be strictly better off than she was under P, for 
she likes I at least as well as J and she likes the piece 
she got under  P at least as well as I since P was envy- 
free. Q.E.D. 

Which brings us to the problem of the pie. Suppose 
a pie is to be divided among three people and the 
pieces are required to be traditional pie portions, 
namely, sectors. 

Dividing a Pie: an Unsolved Problem 

An allocation may be envy-free but have other unde- 
sirable properties. As an example, suppose you and I 
are to divide a loaf of bread which again we will take to 
be an interval, and suppose the loaf is symmetric about 
its midpoint in both of our measures. Then if we divide 
it in two at the midpoint, we have a Spanier-Dubins 
allocation in which we both agree that each of us got 
exactly half the cake. Suppose, however, that I like 
crust, so that I particularly want to get the two ends of 
the loaf, whereas you prefer not to have these parts. 
Then each of us would be strictly better off if we tri- 
sected the loaf in some way and you took the middle 
part while I took the two end intervals. 

In general, we will say an allocation is dominated if 
there is another allocation which gives all players 

Does there necessarily always exist an allocation which 
is both envy-free and undominated? 

Addendum on the Variational Method 

There is, of course, an inexhaustible supply of prob- 
lems that can be solved by variational methods, the 
subject of the last issue's column, but I missed a lovely 
two-examples-in-one case which was suggested to me 
by Clifford Gardner. It has the special virtue that it 
provides a simple but elegant application of calculus 
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and would fit in at around the third week of a tradi- 
tional freshman course. (The NSF has been spending 
millions in recent years on trying to improve the teach- 
ing of calculus, so I am pleased to be able here to 
contribute my own two cents' worth.) 

Consider the discrete heat-flow problem. Given a graph 
like the one shown below, where some of the nodes 
are held at fixed temperatures (3, 5 and -2) ;  the laws 
of heat flow require that the (steady-state) temperature 
of every remaining node shall satisfy the mean value 
property, namely, that its temperature shall be the av- 
erage of the temperatures of the nodes to which it is 
connected. 

Uniqueness (by the maximum principle!): Suppose there 
were two sets of temperatures satisfying the mean 
value property. Then so would their difference, and 
the difference temperatures at the fixed nodes would 
be zero. Now consider a node where this difference 
temperature is a maximum. Then by the mean value 
property, all its neighbors must also be at this temper- 
ature, and likewise all its neighbors' neighbors, so 
eventually we will reach one of the fixed-temperature 
nodes (we assume the graph is connected); so the max- 
imum is zero. Likewise the minimum. 

Q.E.D. 

Question 
How do we know that such a set of temperatures will 
always exist, and if so are they unique? 

(Of course, this is a problem of solving a system of 
linear equations, but our students will not get to this 
until their sophomore year.) 

Answer 
Existence: Let t i be the temperature at node i, and con- 
sider the function f ( t  1 . . . . .  tn) = E (t i tj) 2, summed 
over all pairs of neighboring nodes (this is the thermal 
energy of the system); choose values of the t's which 
minimize this function. To see that these values satisfy 
the desired condition, note that if the temperatures at 
all nodes except tk are held fixed at the minimizing 
values, then tk must minimize f as a function of one 
variable, and setting the derivative with respect to t k 
equal to zero gives the result. 

Ah, you say, but  how do we know that the mini- 
mum exists? My answer is that mathematics got along 
for two thousand years without worrying about such 
questions and there is no reason to inflict them on 
freshmen. For those who want to be mathematics ma- 
jors, there will be time enough when they get to be 
juniors to force them, kicking and screaming in some 
cases, to worry about these matters. 
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