Mathematical Entertainments

We devote the column this time to some recent results
on a pair of fairly well-known problems of recreational
mathematics that have been around for quite a while.
The first is the problem of tiling surfaces by unequal
squares, the second that of devising fair procedures for
dividing a cake. The results on tiling are rather defin-
itive, whereas the work on cake-cutting is still in a
rather formative stage.

Tiling of Surfaces by Unequal Squares

The question is, or rather was, which rectangles can be
tiled by squares no two of which have the same size.
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Figure 1 is an example of a 32 X 33 rectangle which is
tiled by 9 such squares. This example, apparently dis-
covered by Moron in 1925, appears in Ball's Mathemat-
ical Recreations and Steinhaus’s Mathematical Snapshots.
In 1940, Tutte, Brooks, Smith, and Stone (Duke Math ].
7 (1940), 312-340) were able to show that this is the
“smallest” such example, meaning that no rectangle
can be tiled in this way by fewer than 9 squares. They
also showed, however, that there is exactly one other
rectangle, 61 X 69, shown in Figure 2, which can also
be tiled by 9 squares. The authors were actually seek-
ing and eventually found a square which could be tiled
in this way. For an entertaining exposition, see the
chapter by Tutte, “Squaring the Square,” in Martin

Figure 2
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Figure 3

Gardner’s second Scientific American Book of Puzzles and
Diversions, Simon and Schuster, 1961.

Now, such a “squaring” of a rectangle can be con-
verted in a trivial way to a squaring of the cylinder,
torus, Mobius strip, or Klein bottle by the usual iden-
tification of opposite sides, but there are also nontrivial
squarings of these other surfaces, even simple squar-
ings, meaning squarings in which there is no subset of
tiles whose union is a rectangle. Until recently, how-
ever, it was not known whether there might be squar-
ings of these surfaces requiring fewer than 9 squares.
Then, in 1991, Bracewell found a squaring of the Mé-
bius strip using only 8 squares. Very recently the ques-
tion has been completely settled by S.]. Chapman.
Perhaps the simplest but most surprising result is that
a 1 X 5 Mobius strip can be tiled by 2 squares, as
becomes obvious from Figure 3. To accommodate this
example, one must extend the notion of a tiling to
allow the mapping of the squares into the surface to
self-intersect on their boundaries.

Chapman shows that there are no 3- or 4-squarings
of the strip but there is a unique 5-squaring (Fig. 4).

For cylinders, the situation is interesting. Again it
turns out that 9 squares are necessary. There are ex-
actly two nontrivial 9-squarings of the cylinder, and
these use exactly the squares of Figures 1 and 2 but in
a different arrangement. The tiling corresponding to
Figure 1 is shown in Figure 5. Note, for example, that
the squares of size 10 and 15 are disjoint in the rectan-
gle but they are contiguous on the cylinder.

The cases considered so far involve surfaces with
boundary, which forces one to orient the squares with
one side paralle] to the boundary. This is no longer the
case with the torus and Klein bottle. If one allows ar-
bitrary orientation, then, in fact, any two squares can
tile some torus. Namely, let the squares have sides a
and b and consider the torus obtained from identifying
opposite sides of a square of side ¢, where @ = 4* + b~
Figure 6 shows how to do it and at the same time
provides a new (?) proof of the Pythagorean Theorem.

A more symmetrical representation is given in Fig-
ure 7.

If one allows only tiles which are parallel to the sides
of the square, then it turns out there are no nontrivial
9-squarings of the torus. Any squaring of the Mobius
strip gives a squaring of the Klein bottle. For 6 or fewer
tiles these are the only ones, but in the case of 7 or 8
tiles this is not known. Also it is not known whether
there are tilings of the Klein bottle in which the tiles
need not be parallel to the sides of the big square.

Figure 4
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Figure 7

Chapman'’s techniques for these problems are quite
different from and simpler than those of Tutte, et al.
and depend on a clever encoding of tilings by matrices
of 0’s, 1’s, and —1’s.

Dividing a Cake

A cake is to be divided between n of us. We have
different tastes. Some of us like the frosting, others are
partial to the chocolate filling, etc. Is there a way of
giving each of us a piece of the cake such that every
one feels he or she has gotten as desirable a piece as
anyone else (such an allocation of pieces is said to be
envy-free)? Well, it depends. First, the cake must not be
too lumpy. If all of us have our hearts set on getting the
cherry in the middle, then it is hopeless unless the
cherry can be split up somehow among us. This key
property, that any piece can be split up into smaller
pieces, corresponds to the idea that our tastes are rep-
resented by so-called “atomless”” measures, countably
additive, etc., etc. In this model, if by a piece one
means any measurable subset, then there is a very
strong existence result. Not only is there an envy-free
allocation, but there is one in which we all believe that
everyone, ourselves included, got exactly one nth of
the cake. Otherwise stated, there is a way of cutting
the cake into n pieces so that we are all indifferent as to
which piece we get. They all look equally delicious.
This fact proved by Dubins and Spanier (1961) is a
consequence of a celebrated and moderately high-
powered theorem of Lyapunov which says that the
range of a vector measure is convex.

Now as a practical matter, arbitrary measurable
pieces of cake may not be so easy to come by. A more
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down-to-earth model, therefore, has been treated by
Stromquist (1980), where the cake may be taken to be
an interval and the pieces are required to be subinter-
vals. Perhaps a loaf of bread is a more apt illustration
for this case. Using a fixed-point theorem, it is shown
that envy-free allocations will always exist. Fixed-point
theorems, however, are notoriously nonconstructive,
and Stromquist’s result gives no indication of how one
might arrive at the desired culinary dissection.

A rather different approach to the problem asks not
just for the existence of envy-free allocations but for a
procedure, or a protocol as we shall call it, which leads
to such an allocation. The prototypical example is the
procedure for the trivial two-person case where one of
us divides the cake into two parts and the other
chooses the part he prefers. This method has the ob-
viously desirable property that if either of us ends up
feeling he has been gypped, he has only himself to
blame. It has long been an open problem to try to
devise protocols with this property for the n-person
case. The best result along these lines is an elegant
three-person protocol due to John Selfridge which will
now be described. We denote the players by #1,
#2, #3.

Three-Person Protocol

Step I: #1 “trisects” the cake into 3 parts equally ac-

ceptable to him.

If #2 and #3 prefer different pieces, we are through.
Otherwise, say they both prefer A and #2 prefers A to
B which she likes at least as much as C. Thus,

Step II: #2 trims a “sliver’” (S) from A leaving A’ so
that A’ and B are equally acceptable to her.

[ [o]- - I
Step III: #3 chooses his preferred piece among A’, B,
and C.

Case 1. #3 chooses A’. Then #2 chooses B and #1 gets
C (no envy so far).

It remains to divide up the sliver which is like the
original problem, except that now #1 will not be en-
vious even if #3 gets the whole sliver.

Step IV: #2 trisects S.
Step V: #3 chooses, then #1 chooses, then #2.

#1] —» A

#2 —




Case 1I. #3 does not choose A’. Then #2 gets A’ and
the procedure is as before, except this time #3 trisects
and #2 chooses first.

This procedure has a number of nice properties.
First, it is economical, requiring at most 5 cuts. Fur-
ther, like the I-cut-you-choose protocol, it makes min-
imal assumptions on what the players are able to do;
namely, (1) given any piece and an integer k, it is as-
sumed that a player can divide the piece into k sub-
pieces equally acceptable to him, and (2) if a player
prefers one piece to another, she can trim off part of
the first piece in such a way that what is left and the
second piece are equally acceptable to her. Finally,
preferences are required to be only weakly additive,
meaning that if A, B, and X, Y are disjoint pieces and
a player prefers A to X and B to Y, then he also prefers
AUBtoXUY.

Up to now, no protocol satisfying the desired con-
ditions is known, even for the case of four players.
However, recent work by Steven Brams and Alan Tay-
lor seems to indicate that some progress is being made.
The authors present what they call a finite algorithm
for arriving at an envy-free allocation. Their procedure,
however, is quite complicated and seems to require
that players be able to measure numerically the value
of any piece of cake. Further, even for the four-player
case, there is no a priori upper bound on the number of
cuts which may be required. Thus, for example, if the
value of piece A to some player is greater than that of
piece B by one part in a million, then it may require a
million cuts to arrive at the desired allocation using the
proposed algorithm. One might hope that procedures
of simplicity comparable to that of the Selfridge proto-
col could be devised for the general case. As this is
being written, however, the new work is still at the
early (preprint) stages, and perhaps substantial simpli-
fications will be found in the course of time.

Dividing a Pie: an Unsolved Problem

An allocation may be envy-free but have other unde-
sirable properties. As an example, suppose you and I
are to divide a loaf of bread which again we will take to
be an interval, and suppose the loaf is symmetric about
its midpoint in both of our measures. Then if we divide
it in two at the midpoint, we have a Spanier-Dubins
allocation in which we both agree that each of us got
exactly half the cake. Suppose, however, that I like
crust, so that [ particularly want to get the two ends of
the loaf, whereas you prefer not to have these parts.
Then each of us would be strictly better off if we tri-
sected the loaf in some way and you took the middle
part while I took the two end intervals.

In general, we will say an allocation is dominated if
there is another allocation which gives all players

pieces they strictly prefer. Obviously, it would be de-
sirable for the final allocation to be undominated as
well as envy-free. A general question, then, is whether
in a given model it is always possible to satisfy both of
these conditions. In this connection, recall that in the
Stromquist formulation all pieces were required to be
subintervals of an interval (unlike the earlier example
in which my allocation was the union of two disjoint
intervals). For these Stromquist allocations, we have,
in fact,

THEOREM. An envy-free Stromquist allocation is auto-
matically undominated.

Proof. Let P be an envy-free partition of the interval
into n subintervals and let Q be any other such n-par-
tition. Now, if P and Q are distinct n-partitions of an
interval, then there must be some interval I of P which
strictly contains some interval | of Q (think about it for
a minute). But then whoever gets ] in the allocation Q
will not be strictly better off than she was under P, for
she likes I at least as well as ] and she likes the piece
she got under P at least as well as I since P was envy-
free. Q.E.D.

Which brings us to the problem of the pie. Suppose
a pie is to be divided among three people and the
pieces are required to be traditional pie portions,
namely, sectors.

Does there necessarily always exist an allocation which
is both envy-free and undominated?

Addendum on the Variational Method

There is, of course, an inexhaustible supply of prob-
lems that can be solved by variational methods, the
subject of the last issue’s column, but I missed a lovely
two-examples-in-one case which was suggested to me
by Clifford Gardner. It has the special virtue that it
provides a simple but elegant application of calculus
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and would fit in at around the third week of a tradi-
tional freshman course. (The NSF has been spending
millions in recent years on trying to improve the teach-
ing of calculus, so I am pleased to be able here to
contribute my own two cents’ worth.)

Consider the discrete heat-flow problem. Given a graph
like the one shown below, where some of the nodes
are held at fixed temperatures (3, 5 and —2); the laws
of heat flow require that the (steady-state) temperature
of every remaining node shall satisfy the mean value
property, namely, that its temperature shall be the av-
erage of the temperatures of the nodes to which it is
connected.

Question
How do we know that such a set of temperatures will
always exist, and if so are they unique?

(Of course, this is a problem of solving a system of
linear equations, but our students will not get to this
until their sophomore year.)

Answer

Existence: Let t; be the temperature at node i, and con-
sider the function f(t;, . . . ,t,) = 2 (t; — tj)z, summed
over all pairs of neighboring nodes (this is the thermal
energy of the system); choose values of the t's which
minimize this function. To see that these values satisfy
the desired condition, note that if the temperatures at
all nodes except t, are held fixed at the minimizing
values, then #, must minimize f as a function of one
variable, and setting the derivative with respect to f;
equal to zero gives the result.

Ah, you say, but how do we know that the mini-
mum exists? My answer is that mathematics got along
for two thousand years without worrying about such
questions and there is no reason to inflict them on
freshmen. For those who want to be mathematics ma-
jors, there will be time enough when they get to be
juniors to force them, kicking and screaming in some
cases, to worry about these matters.
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Uniqueness (by the maximum principle!): Suppose there
were two sets of temperatures satisfying the mean
value property. Then so would their difference, and
the difference temperatures at the fixed nodes would
be zero. Now consider a node where this difference
temperature is a maximum. Then by the mean value
property, all its neighbors must also be at this temper-
ature, and likewise all its neighbors’ neighbors, so
eventually we will reach one of the fixed-temperature
nodes (we assume the graph is connected); so the max-
imum is zero. Likewise the minimum.

Q.E.D.

The Patron Saint of
Mathematics
R. J. Duffin

God created the world and the integers, all in seven
days. He then ordered two of his biotechnicians,
James and Francis, to construct a genetic code for
the fractional numbers. Moreover, they were to give
special prominence to His favorite number, .

Because the world was created in seven days they
chose a code with seven bases instead of the bio-
chemical foursome A,G,T,C. The bases are called
1,2,3,4,5,6,7. For any number x they devised an
algorithm to give the sequence of bases X;, X,,
X3, . . ., Xy in a code called signature seven:

X,, = Next[7 Frac(nx)] forn =1, 2, 3, etc.

Here Frac(y) gives the fractional part of a number y
and Next[y] gives the smallest integer at least as
large as y.

When finished, they presented their handiwork
at a Seminar lecture titled “Il equals 1234567.” They
found signature seven of 7

IT, = Next[7 Frac(nw)] for seventy signature
places to be

IT = 12345671234567 . . . 1234567.

This is 10 perfect copies of m. The Boss was so
pleased that He promoted James and Francis to
Archangels on the spot.

At the Seminar, Satan gave a devilish smile be-
cause they had not gone far enough to detect a flaw
which he had secretly introduced. The flaw is the
numerophage virus, irrationality. This virus is reces-
sive; often lying dormant waiting to strike.

Irrationality is a serious disease of the System of
the World. Mathematicians proclaim that they can
cure this malady. At least they profit by treating
symptoms. So Satan is their patron and benefactor.
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