19–32 In these problems you are asked to find a function that models a real-life situation, and then use the model to answer questions about the situation. Use the guidelines on page 215 to help you.

- **19. Maximizing a Product** Consider the following problem: Find two numbers whose sum is 19 and whose product is as large as possible
 - is 19 and whose product is as large as possible.(a) Experiment with the problem by making a table like the one following, showing the product of different pairs of numbers that add up to 19. On the basis of the evidence in
 - (b) Find a function that models the product in terms of one of the two numbers.

your table, estimate the answer to the problem.

- (c) Use your model to solve the problem, and compare with your answer to part (a).
- **20. Minimizing a Sum** Find two positive numbers whose sum is 100 and the sum of whose squares is a minimum.
- **21. Fencing a Field** Consider the following problem: A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He does not need a fence along the river (see the figure). What are the dimensions of the field of largest area that he can fence?
 - (a) Experiment with the problem by drawing several diagrams illustrating the situation. Calculate the area of each configuration, and use your results to estimate the dimensions of the largest possible field.

First number	S~econd number	Product
1	18	18
2	17	34
3	16	48
÷	:	÷

- (b) Find a function that models the area of the field in terms of one of its sides.
- (c) Use your model to solve the problem, and compare with your answer to part (a).

- **22. Dividing a Pen** A rancher with 750 ft of fencing wants to enclose a rectangular area and then divide it into four pens with fencing parallel to one side of the rectangle (see the figure).
 - (a) Find a function that models the total area of the four pens.
 - (b) Find the largest possible total area of the four pens.
 - **23. Fencing a Garden Plot** A property owner wants to fence a garden plot adjacent to a road, as shown in the figure. The fencing next to the road must be sturdier and costs \$5 per foot, but the other fencing costs just \$3 per foot. The garden is to have an area of 1200 ft².
 - (a) Find a function that models the cost of fencing the garden.
 - (b) Find the garden dimensions that minimize the cost of fencing.
 - (c) If the owner has at most \$600 to spend on fencing, find the range of lengths he can fence along the road.

30. Minimizing Time A man stands at a point *A* on the bank of a straight river, 2 mi wide. To reach point *B*, 7 mi downstream on the opposite bank, he first rows his boat to point *P* on the opposite bank and then walks the remaining distance *x* to *B*, as shown in the figure. He can row at a speed of 2 mi/h and walk at a speed of 5 mi/h.

- (a) Find a function that models the time needed for the trip.
- (b) Where should he land so that he reaches *B* as soon as possible?

- **31. Bird Flight** A bird is released from point *A* on an island, 5 mi from the nearest point *B* on a straight shoreline. The bird flies to a point *C* on the shoreline and then flies along the shoreline to its nesting area *D* (see the figure). Suppose the bird requires 10 kcal/mi of energy to fly over land and 14 kcal/mi to fly over water.
 - (a) Use the fact that

energy used = energy per mile \times miles flown

to show that the total energy used by the bird is modeled by the function

$$E(x) = 14\sqrt{x^2 + 25} + 10(12 - x)$$

(b) If the bird instinctively chooses a path that minimizes its energy expenditure, to what point does it fly?

32. Area of a Kite A kite frame is to be made from six pieces of wood. The four pieces that form its border have been cut to the lengths indicated in the figure. Let *x* be as shown in the figure.

(a) Show that the area of the kite is given by the function

$$A(x) = x(\sqrt{25 - x^2} + \sqrt{144 - x^2})$$

(b) How long should each of the two crosspieces be to maximize the area of the kite?

- 77. Stadium Revenue A baseball team plays in a stadium that holds 55,000 spectators. With the ticket price at \$10, the average attendance at recent games has been 27,000. A market survey indicates that for every dollar the ticket price is lowered, attendance increases by 3000.
 - (a) Find a function that models the revenue in terms of ticket price.
 - (b) Find the price that maximizes revenue from ticket sales.
 - (c) What ticket price is so high that no revenue is generated?
 - **78. Maximizing Profit** A community bird-watching society makes and sells simple bird feeders to raise money for its conservation activities. The materials for each feeder cost \$6, and the society sells an average of 20 per week at a price of \$10 each. The society has been considering raising the price, so it conducts a survey and finds that for every dollar increase, it loses 2 sales per week.
 - (a) Find a function that models weekly profit in terms of price per feeder.
 - (b) What price should the society charge for each feeder to maximize profits? What is the maximum weekly profit?

DISCOVERY = DISCUSSION = WRITING

- **79. Vertex and** *x***-Intercepts** We know that the graph of the quadratic function f(x) = (x m)(x n) is a parabola. Sketch a rough graph of what such a parabola would look like. What are the *x*-intercepts of the graph of *f*? Can you tell from your graph the *x*-coordinate of the vertex in terms of *m* and *n*? (Use the symmetry of the parabola.) Confirm your answer by expanding and using the formulas of this section.
- **80. Maximum of a Fourth-Degree Polynomial** Find the maximum value of the function

$$f(x) = 3 + 4x^2 - x^4$$

[*Hint*: Let $t = x^2$.]

3.2 POLYNOMIAL FUNCTIONS AND THEIR GRAPHS

Graphing Basic Polynomial Functions ► End Behavior and the Leading Term ► Using Zeros to Graph Polynomials ► Shape of the Graph Near a Zero ► Local Maxima and Minima of Polynomials

In this section we study polynomial functions of any degree. But before we work with polynomial functions, we must agree on some terminology.

POLYNOMIAL FUNCTIONS

A polynomial function of degree *n* is a function of the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where *n* is a nonnegative integer and $a_n \neq 0$.

The numbers $a_0, a_1, a_2, \ldots, a_n$ are called the **coefficients** of the polynomial.

The number a_0 is the constant coefficient or constant term.

The number a_n , the coefficient of the highest power, is the **leading coefficient**, and the term $a_n x^n$ is the **leading term**.

We often refer to polynomial functions simply as *polynomials*. The following polynomial has degree 5, leading coefficient 3, and constant term -6.

