

© 2010 Pearson Education, Inc.

lame	Class	Date
	Conceptual Integrated Scie	nce — Explorations
Chapter 3 Newton's Se	cond Law of Motion—Force and	Acceleration
1. A crate filled with delicious junk food rests on a h floor. Only gravity and the support force of the flo as shown by the vectors for weight W and normal		ood rests on a horizontal ort force of the floor act on it, ght W and normal force N .
- And - And	a. The net force on the crate is	[zero] [greater than zero].
V M	b. Evidence for this is	
N P P	 A slight pull P is exerted on the c A force of friction f now acts, 	crate, not enough to move it.
R. Total	a. which is [less than] [equal	to] [greater than] P .
f	b. Net force on the crate is [zer	o] [greater than zero].
	 Pull P is increased until the crate so that it moves with constant ve 	begins to move. It is pulled locity across the floor.
	a. Friction f is [less than] [eq	ual to] [greater than] P.
- CH	b. Constant velocity means accele	ration is [zero] [more than zero
t tw	c. Net force on the crate is [less th	an] [equal to] [more than] zero
Ν	4. Pull P is further increased and is	now greater than friction f .
The Part Part	a. Net force on the crate is [less that zero.	an] [equal to] [greater than]
	b. The net force acts toward the toward the [left] [right].	right, so acceleration acts
TW	 If the pulling force P is 150 N and what is the magnitude of f ? 	the crate doesn't move,
6. If the pulling force P is 20	0 N and the crate doesn't move, what	t is the magnitude of f ?
 7. If the force of sliding friction at constant velocity? 	on is 250 N, what force is necessary t	o keep the crate sliding
8. If the mass of the crate is	50 kg and sliding friction is 250 N, wh	nat is the acceleration of the
crate when the pulling for	ce is	
250 N? 30	0 N? 500 N?	

Classwork (1st Law)

- 1. A physics book weighing 22 N is at rest on an inclined plane of 30°. It is in static equilibrium. Find the <u>normal</u> force and the <u>friction</u> acting on the book.
- 2. You pull a sled with a force of 70.0N at an angle 30° above the horizontal. Resolve your force into its horizontal and vertical components.
- 3. An object falls from a tree. Its weight is 4 N. The wind blows it to the right with 3 N. Find the net force on the object in

a)< , > notation and

b) magnitude and direction notation

Second Law

Classwork (2nd and 3rd Laws)

The forces acting on a sailboat are 120
 N north and 50 N east. If the boat has a mass of 200 kg, what are the magnitude and direction of the boat's acceleration?
 Also write the acceleration as < , >
 Compare the force of the bus on the bug and the force of the bug on the bug.
 Compare their accelerations.

3. What is the weight of the Earth with respect to you? Why is it that when you jump, you come down but the Earth does not go up?