Ch. 8 In-Class Project #2 # **See Section 8.3 For Reference** This sheet contains pictures of machines. For your table, make a poster to fill in the chart for your types of machines. Draw and color your own pictures. Table #1: **LEVERS** | Table #1. | LEVERS | | T | T | 1 | | |-----------|-----------------|---|---|----------------------------------|---------------------------|----------------------| | | MACHINE
TYPE | PICTURE F _{in} D _{in} =F _{out} D _{out} (DRAW the input and output force vectors) | MECHANICAL ADVANTAGE (MA >=< 1) And Why? | Changes DIRECTION? ✓ Yes X No | Changes SIZE? ✓ Yes X No | REAL-LIFE
EXAMPLE | | LEVER | First-Class | Input force Load Fulcrum | MA > 1
Input swings
over bigger
distance | √ | √ | Output
force | | | | ? | ? | ? | ? | ? | | | Second-Class | ? | | | | | | | Third-Class | ? | | | | | ## Ch. 8 In-Class Project #2 # **See Section 8.3 For Reference** This sheet contains pictures of machines. For your table, make a poster to fill in the chart for your types of machines. Draw and color your own pictures. Table #2: PULLEYS | Table #2. | 1 OLLL 13 | | | | | | |-----------|---------------------|---|--|-------------------------------------|---------------------------|--| | | MACHINE
TYPE | PICTURE F _{in} D _{in} =F _{out} D _{out} (DRAW the input and output force vectors) | MECHANICAL
ADVANTAGE | Change S DIRECTI ON? ✓ Yes X No | Changes SIZE? ✓ Yes X No | REAL-LIFE
EXAMPLE | | PULLEY | Fixed | ? | MA = ?
Why? | | | | | | Movable | Input force Output force | MA = 2 Because the weight of the load is shared by 2 ropes, and you are only pulling 1 rope. | X | ✓ | How would
you use it in a
treehouse? | | | Block and
Tackle | ? | MA = ?
Why? | | | | ## Ch. 8 In-Class Project #2 # **See Section 8.3 For Reference** This sheet contains pictures of machines. For your table, make a poster to fill in the chart for your types of machines. Draw and color your own pictures. Table #3: MORE MACHINES | MACHINE
TYPE | PICTURE $F_{in}D_{in} = F_{out}D_{out}$ (DRAW the input and output force vectors) | MECHANICAL
ADVANTAGE | Changes DIRECTI ON? ✓ Yes X No | Changes SIZE? ✓ Yes X No | REAL-LIFE
EXAMPLE | |-------------------|---|---|---------------------------------|---------------------------|----------------------| | WHEEL AND
AXLE | Draw picture.
Label force arrows
Label distances in MA formula | MA = ?
MA <u><=></u> 1?
Why? | | | | | INCLINED
PLANE | Fin R | MA = R/H MA ≥1 The output force is over a small H distance, so the output force must be bigger. | ✓ | ✓ | Piano ramp | | WEDGE | Draw picture.
Label force arrows
Label distances in MA formula | MA = ?
MA <u><=></u> 1?
Why? | | | | | SCREW | Draw picture.
Label force arrows
Label distances in MA formula | MA = ?
MA <u><=></u> 1?
Why? | | | |