SECTION 4.1

30. Set P(x) = x* 4+ axr 4 b. It is obvious that for = sufficiently large, P(z) > 0 and for x sufficiently large
negative, F(x) < 0. Thus, by the intermediate-value theorem, the equation F(x) =0 has at least one

real root.

Ifa = 0, then P'(x) = 322 + a 1s positive, except possibly at 0, where it remains nonnegative. It follows

that PP is everywhere increasing and therefore it cannot take on the value {0 more than once.

Suppose now that a < (. Ther —%v.,-"ﬁ || and %fﬁ || are consecutive roots of the equation P'(x) =0

and thus, by Exercise 27, P cannot take on the value zero more than once between these two numbers.

33. Forplz)=x"+axr+b p(r)=na""1+a, which has at most one real zero for n even (.I‘ = —%n_if) .

If there were more than two distinct real roots of p(x), then by Rolle’s theorem there would be more

than one zero of p'{z). Thus there are at most two distinet real roots of p{z).

38, (a) Let f(x) = cosx. Choose any numbers x and y, (assume r < y). By the mean-value theorem,
there is a number ¢ between = and y such that
W= 1) _ ey o cosy—cosz|
y—z ly — =l
(b) Repeat the in part (a) with f{r) =sinx.

=|— sine

=1 = |cosr—cosy

< |z -y

SECTION 4.2

1. T < —3
-1, -3<z<-1
33, flr) = =S
1, —-l<z<1
-2, 1<
J increases on (—oo, —3) and [-1, 1];
decreases on [—3, —1] and [1, o) /




62,

27.

Let f and g be functions such that f'{z) = —g(x) and ¢'{z) = fiz). Then:
(a) Differentiating f3{x) 4 g*(x) with respect to , we have
2f(2) f(z) +29(2)g(z) = —2f (x)g(2) + 29(x)f (x) = 0.
Thus, f?(x)+ g*(r) =C (constant).
(b) fi0) =0 and g(0) = 1 implies C' = 1.

(c) The functions f(r) =sin x, g(r) =cos r have these properties.

Let f(x)=cosx— (1 - % r?) for x € [0,20). Then f(0)=10and f'(r) = —sinr+r=r —sinz = 0
for = € (0,00) by Exercise 51 (b). Thus, f(z) > 0 for x £ (0, 00) which implies cosx = 1 — %1‘2 on
(0, 20).

a
{a) Let flr)=cosx—(1- %Iz + 2—1_4.?:4). Then fi0)=0 and f(r)=—sinr+zx— 1— <0 by
1, 1
Exercise 60. Therefore, f(x) < f(0) =0 on all x £(0,2¢), which implies cosz < 1 — §x“ + ﬂx"l

on (0. cc). .
i(b) 6° = ﬁ Using this for » in 1 — lxz <ecosr <1 — %.?:2 + ﬁ.t“l.
= 0.094517 < cos6” < 0.004522.

SECTION 4.3

f'(z) =cos®x —sin®xr —3cosr 4+ 2= (2cosr — 1)(cosz — 1) critical pts

el ' |

1.V _ 2. _ 5. /% .
i e . - o f(37) = 2r — V3 local min
5 § =
i 3 3 o f(37) = ¥r + 13 local max
min min



44.

P(r) =z% — 8% +22+% — 245 4 4
Flr) =40 — 247% + 440 — 24
P'{x) = 1227 — 48x + 44
Since (1) =0, F'(x) isdivisible by x —1. Division byx —1 gives
Plo)=(r—1) (4 — 20z +24) = 4(z — 1)(x — 2)(x — 3).
The critical pts are 1, 2, 3. Since
P'1)=0, P"2)=0, P"(3) =0,
P{l)=-5 1salocal min, F(2) = -4 isa local max, and P(3) = -5 is a local min.

Since P'(r) < 0 for x < 0, P decreases on (—o0, 0]. Since P(0) = 0, P does not take on the value 0 on
(—oc, 0]

Sinee P(0) = 0 and P(1) < 0, P takes on the value 0 at least once on (0, 1). Since P'{z) < 0 on (0, 1),

P decreases on [0, 1]. It follows that P takes on the value zero only once on [0, 1].

Since P'(z) = 0on (1, 2) and P'(z) < 0 on (2, 3), P increases on [1, 2] and decreases on [2, 3]. Since
P(1), Pi2), P(3) are all negative, P cannot take on the value 0 between 1 and 3.

Since FP(3) < 0 and F({100) = 0, P takes on the value (0 at least once on (3, 100]. Since F/(x) = 0 on
(3, 100}, P increases on [3, 100]. It follows that P takes on the value zero only once on [3, 100].

Since P'(z) = 0 on (100, o0}, P increases on [100, o). Since P(100) = 0, P does not take on the value
0 on [100, =).

z
It flx)=snxr+ % — 2z, then flir)=coszr+r—2 and f'(x)=—sinr+4+ 1. Since f(2)=

—0.4161 < 0 and f'(3) =0.01 =0, f" has at least one zero in (2,3). Since f"(x) = 0 for x < (2,3),
i’ 15 Increasing on this interval and so 1t has exactly one zero. Thus, f has exactly one critical point

cin (2,3).



SECTION 4.4

22, f'x)=2cos2r -1, x&(0,7): . b, =i e - + +

érr. %."r; f(0) =0 endpt min, f Ii%"rj = %v’ﬁ— %7.‘ local and abs mazx,

I (%'ﬂ'] =— %v‘ﬁ— ‘g—fr local and abs min, f{7) = —7 endpt max

25, f}'
: ; . 9 Dex<i
fllz) = 1, l=x<d
=2 -1, 4=<x=T7T

critical pts. 1. 4;
Fi0) =0 endpt max, f(1) = —2 local and abs min,

f(4) =1 local and absolute max, f(7) = —2 endpt and abs min

30. If f is not differentiable on (a, &), then f has a critical point at each point ¢ in (a, b) where f'(c] does

not exist. If f is differentiable on (a, b), then by the mean-value theorem there exists ¢ in (2, b) where

f'le)=[f(b) — fla)]/(b—a) = 0. This means ¢ is a critical point of f.



44. Let R be a rectangle with its diagonals having length ¢, and let = be the length of one of its sides.

Then the length of the other side is y = +/¢2 — 2% and the area of R is given by

Alz) =z c? — 22

Now
z? 2 — 2z
Allz)=+e2 — 22 — =
(=) S e
and
o)
Alr)=0= z = ‘?e
. . . V2o V2 2
It 1s easy to verify that A has a maximum at © = 5 & Since y = 5 ¢ when r = 5 O it follows that

the rectangle of maximum area is a square.

SECTION 4.5

Minimize o
d=1\/(s? —0) + (y - 3)2

The square-root function is increasing;

19.

d is minimal when =42 is minimal.

Diy)=y*+(y—3)%, y real
D'y) =4 +20-3)=(u—-1) ' +4y+6), D(y)=0 at y=1
Since D"(y) =12y2 4+2 = 0, thelocal min at y=1 1is the abs min.

The point (1,1} is the point on the parabola closest to (0, 3).



25. x x Maximize V

o L
[ _ I V= x(8 — 2r)(15 — 2z)
8 -2x a~ "5"_’0
- 1=, 8— 2z >0 = 0<zr<4
15 -2 .
s x — 15— 92 > 0
A
15

Vi) =120z — 4622 +42?, 0 < > < 4.
V(r) =120 - 92x + 122" = 4(3z — 5)(z — 6), V'(z)=0 at z=13.
Since V increases on (0.3) and decreases on [3.4), the abs max of V occurs when == 3.

3

The box of maximal volume is made by cutting out squares 5/3 inches on a side.

o Minimize AP+ BP+CP =5
length AP = /04 42
length BP =6 —y
length CP = /04y
Al(=-3,0) €(3,0) 13
S(y)=6—y+2/0+ 42, 0<y<6.
' 2y . _
Sy)=-14+—2__ &y =0 = y=+3.
R Sore
Since

5(0)=12, S(vV3)=6+3v3=112, and S(6) =6.5=134,
S(0)=12, S(v3)=6+33=112 d S(6)=6v5=134

the abs min of S occurs when y = /3.

To minimize the sum of the distances, take P as the point (0,v3).



40,

41.

Maximize A(x) = % (r +z)2vr? — 22

=(r+azhrif—z2 0<x<r

v TP—rr — 272
ALIJ:—rz-Iz :
L r
Alr) =0 = z=3.

Since A ncreases on [0,7 /2] and decreases on [r/2,r], A has an abs max at = = r/2;

33 ,

A(r/2) = 1

Vir) = Irr?R2 — 2, 0<r<R.

Masamize V'
V =arih
By the Pythagorean Theorem,

(2r)? 4+ b2 = (2R)?
S0

h=2VRE_ 2.

_ drr [QRZ — SrEJ

3
Vi(r) =27 |2ryRT =12 — ——
RZ _ 2

V(r)=0 = r=1R/E.

Since V' Increases on [EI. %R\;‘E] and decreases on [%RV‘E. Rj , the local max at r

the abs max.

The cylinder of maximal volume has base radius %R V6 and height

VRZ 12

RV3.

walea

—1
— 3

RVG is



SECTION 4.6

21, fx) =22+ 2c0s2x, ["(x) =2 — 4=in2u;

concave up on (0,

1
1z
: : 1 724 5 T .
pts of inflection (E"T i) and (ifr. 2T or

7) and on (57, 7), concave down on (

40, f(z) =2cx —2:7*  f"(z)=2c4+ 6z To have a point of inflection at 1 we need

ff1)=0 = 2e46=0 = c=-3

SECTION 4.7

2. (a) d (b) e
(d) y=d (e) p
50. .
10+

-.‘//‘-2 2

10 +

vertical asymptote: © = —1

oblique asymptote: y=2r 41



|
’ 'K_/
I
| y=1x
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vertical asymptote: r =1
oblique asymptote: y ==
SECTTON 4.8
10, flzi=x—x %,
Ple)y=1+z" 4> P
)= -7
+ + +
P +H 4+
0
o
. tEE - =-- v
0

asymptotes: =0, y==x




23.

P I
flz)=

(r+3)2
)= ——CF
T)=
. Sl L.J"—|—3J'5
2r —12
f"I:.i."J = —
(x+3)4
—— bttt trfmmm——=
f o - >
=3 3 x
f”: """"""""""" E“' * >
-3 8 x
asymptotes: r=-3, y=10
. sin .
flt)=——, xc&(—m,m)
"t 1l—singx ' /
Pl = COS T
S L —sinx)?
W . l—snr+ecos?zx
fllz) =

(1 —sinx)?

-~ 0+++++dne—---
' i i 'l

¥

Ju: A
- X x |
* ¢ 0 3 = = 5

. dtttttttddocd+4
- A ] 'l ] A

T X
- -‘i‘ 0 ¥ T

asymptote: I = %
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