2008 summer course, C-language

Homework 2
Exercise 1 (2’s complement): we have shown that signed integer of 2’s complement under size = 4-bits ranges from -8 to 7, the complete mapping between decimal and 2’s complement is

	decimal
	2’s complement (binary)
	decimal
	2’s complement (binary)

	0
	0 0 0 0
	-8
	1 0 0 0

	1
	0 0 0 1
	-7
	1 0 0 1

	2
	0 0 1 0
	-6
	1 0 1 0

	3
	0 0 1 1
	-5
	1 0 1 1

	4
	0 1 0 0
	-4
	1 1 0 0

	5
	0 1 0 1
	-3
	1 1 0 1

	6
	0 1 1 0
	-2
	1 1 1 0

	7
	0 1 1 1
	-1
	1 1 1 1

Now answer the following questions

(1) 2’s complement representation of 0 is unique

(2) for general
[image: image1.wmf]nbits

-

, signed integer of 2’s complement ranges from
[image: image2.wmf]1

2

n

-

-

 to
[image: image3.wmf]1

21

n

-

-

.

(3) Suppose integer is of size 4-bits, a number
[image: image4.wmf]x

 has 2’s complement representation
[image: image5.wmf]2'

1010

s

x

=

, how can we know its decimal value? (Hint: do 2’s complement for
[image: image6.wmf]2'

s

x

 again)
Exercise 2: read page 153~155 in textbook to know conversion specification, we usually use

	character
	Argument type ; printed as

	d
	int; decimal number

	c
	int ; single character

	s
	char * ; print characters from the string until a ‘\0’

	f
	double, fixed representation

	e,E
	double, scientific representation

Exercise 3 (limit of integer type): use Visual Studio to create a project, named as limit_test, and write codes to test size and limits of data type in Table 1. You can refer codes in Figure 1. Explain how do you why the minimum value you fill-in is actual minimum.
Table 1: fill-in the blanks by writing code in your computer, note that data type is implementation defined, just take data in MSDN library as reference, you must confirm them in your computer.
Case 1: your PC
CPU =

OS (operating system) =

Compiler =

	Type
	Bytes
	Minimum value
	Maximum value

	(signed) short (int)
	
	
	

	(signed) int
	
	
	

	(signed) long (int)
	
	
	

	unsigned short
	
	
	

	unsigned int
	
	
	

	unsigned long
	
	
	

[image: image7]
Case 2: workstation
CPU =

OS (operating system) =

Compiler =

	Type
	Bytes
	Minimum value
	Maximum value

	(signed) short (int)
	
	
	

	(signed) int
	
	
	

	(signed) long (int)
	
	
	

	unsigned short
	
	
	

	unsigned int
	
	
	

	unsigned long
	
	
	

Exercise 4 (escape sequence): read section 2.3 (page 37~38) to know escape sequence and use Visual Studio to create a project, named as char_test, and write codes to find out integral value of escape sequence, like Figure 2.

(1) What is execution result, are the results consistent with ASCII table?
(2) If we change NUM_ESCAPE_CHAR = 6 and sweep 12 elements in array “word”, like Figure 3. Compare these results with results of (1), what’s the difference? Can you find out potential bug of this code?

[image: image8]

[image: image9]
Exercise 5 (string constant): use Visual Studio to create a project, named as string_const, and write codes to find relationship between string constant and character array, like

[image: image10]
(a) why second “printf” does not print “hello, world!”, could you explain this?
(b) May you modify second “printf” such that you can print “hello, world!”? Hint: you can print character by character if you know size of the string.

(c) Why we need string terminator ‘\0’ ?

(d) Read A2.6 in page 194

Exercise 6 (string concatenation): use Visual Studio to create a project, named as strcat_test, and search for “strcat” in MSDN library, find theme “strcat,wcscat” as following figure, copy the source code in that theme, see Figure 5, verify the result.

[image: image11]

[image: image12]
How about if we modify statement “char string[80];” to “char string[10];”? Can you explain the execution result?
Exercise 7 (convert single precision binary format to decimal value)
convert following binary representation into normalized decimal value
[image: image13.wmf]2

E

vsm

=´´

[image: image14]
Exercise 8 (transformation between string and integral/floating)
In the course, we draw a picture to show transformation between string and integral/floating as Figure 6, we know that convert string to integral/floating is easy since standard C support library function atoi, atof, atol to do this.

[image: image15]
(1) use MSDN library to search for atoi, atof and atol, and test example shown in MSDN library, what do you learn in these examples.
(2) Can you implement the converse way, that is, convert integral/floating to a string?
Exercise 9 (potential bug of equality operator): Test the code in Figure 7, C-language accept such coding style, try to invert “x = 1” to “1 = x”, what is compilation error in g++ and icpc?

[image: image16]
Exercise 10 (bitwise operator): consider 8-bit operation,
(1)
[image: image17.wmf]''

aa

=

 and
[image: image18.wmf]1

b

=-

 what is
[image: image19.wmf]&

ab

,
[image: image20.wmf]|

ab

 and
[image: image21.wmf]^

ab

? write a program to demonstrate this and interpret the result.
(2) Can you use AND operation to implement modulo operation, for example
[image: image22.wmf] % 4

a

?
Exercise 11 (shift operator): in the course, we define type of a_left_shift_1 (which is
[image: image23.wmf] 1

a

<<

) as int, why? Can we define it as char as you see in Figure 8, what’s the difference?

[image: image24]
Exercise 12 (shift operator versus multiplication): Can you use shift operator to implement multiplication or division on an integer number? Write program to test your idea.
Exercise 13 (type conversion): try all combination of rules of type conversion in textbook, do you thank that explicitly casting done by program himself is a good habit?
�

Figure � SEQ Figure * ARABIC �1�: codes to test size and limits of data type “short”.

�

Figure � SEQ Figure * ARABIC �2�: display character and hexadecimal value of escape sequence.

�

Figure � SEQ Figure * ARABIC �3�: array size is declared too small to contains all escape sequences.

�

Figure � SEQ Figure * ARABIC �4�: string constant versus character array.

�

�

�

Figure � SEQ Figure * ARABIC �5�: example code in theme “strcat,wcscat”

�

Figure � SEQ Figure * ARABIC �6�: convert string to integral/floating is easy by standard library.

�

Figure � SEQ Figure * ARABIC �7�: x == 1 or 1 == x, which one is better

�

Figure � SEQ Figure * ARABIC �8�: define a_left_shift_1 as char.

PAGE
6

[image: image25.png]#include <stdio.h>
#include <limits.h>

int main(int arge, char xargy[]
<
short x_sint ; // x_sint is signed short integer

printf(“size of short - %d bytes\n", sizeof(short))

x_sint = SHRT_MAX 3 // SHRT_MAX is defined in File limits.h
printf(“naxinun of short - %d\n", x_sint)
x_sint = SHRT_HAX + 1

printf(“naxinun(short) + 1

%\, x_sint);

printf(“naxinun(short) + 1

%d\n”, SHRT_max + 1|);

return 0 ;

[image: image26.png]#include <stdio.h>
Hdefine NUM_ESCAPE_CHAR 12

int main(int arge, charx argu[])
<
int i g
char word[NUM_ESCAPE_CHAR] ;
word[0] = *\a*

word[4]
word[8]

5 word[1] = "\b* ;
AP 3word[5] = CAE' 3
N2 3 word[9] = U\ 3

For (i =8 ;i < NUM_ESCAPE_CHAR
printf("%c - Bx%x\n", word[i]
>

return 0 ;

word[2] = ‘\F'
word[6] = *\u’
word[18] = *

3 ieg
, word[i]);

word[3] =
word[7]
5 word[11]

o
e
e

[image: image27.png]#include <stdio.h>

Hdefine NUM_ESCAPE_CHAR 6

int main(int arge, charx argu[])

<

int i3

char word[NUM_ESCAPE_CHAR] ;
N
ne s
N

word[0]
word[4]
word[8]

“\a' 3 word[1]
“\P' 3 word[5]
\?* 5 word[9]

For (1= 034<12 5 de)g
printf("%c = Bx%x\n", word[i]

¥

return 0 ;

e
o
e

word[2]
word[6]
word[18]

. word[i]);

5 word[3]
5 word[7]

word[11]

o
e
e

[image: image28.png]#include <stdio.h>

int main(int arge, charx argy[]
<
char p1[]

ello, world” ; /* compiler would decide size of p1 x/

PrintE("%s\n", p1); /* %s : print string e/

p112] -
printe("%s\n”, p1);

3 /% renove \O of p1 x/

return 0 ;

[image: image29.png]sign exponent (8 bits)
i

fraction (23 bits)

1]1{o]oo[o]1{o]1f1]1]o[1]1

o 1]o]

31 23
Bit values for he [EEE 754 32bi foat -118.625

=-118.625

[image: image30.png]streat, wescat " Search |

st

< Longusgss Ot
. Techmology: Cr# Librsies (atve)
v Content Type: A1

Sesched or st Sorthy: Resk Y

streat, wescat, _mbsat (CRT)

Run-Time Libary Refersnce st weseat, _mbseat See 415 Example Collapse Al Expand Al Language .. aredeprecated becauss more secure
versions ae available; see stoat_s wescat 5 _mbscat_s char ¥stroat char stiDestination, const

Sowee: C Run-Time Library Reference

strcat, weseat

Platform Builer for Misrosoft Windows CE 5.0 stvat, wossat Append a sring. char ¥ttt char %stDestinstion, constchar *stSource);wehar_t
Hyescat(wehar_t ¥stiDestination, const wehar_t ¥siSoue); Parameters tiDestination

Sowne: Windows CE 5.0: Developiag an Application

[image: image31.png]tincluds <scring.h>
tincluds <stdio n>

void main(veid)
i
char string(a0);
scring,
scring,
scring,
scring,
"Sering

[image: image32.png]string

atof atoi atol

float / double int long

string

[image: image33.png]#include <stdio.h>

int main(int arge, charx argy[]

<
it x -5
i Cx =1
printf("x (<%d) is equal to 1\n", x)
selse(
printf("x (<%d) is NOT equal to 1\n", x)
>
return 0 ;

[image: image34.png]#include <stdio.h>

int main(int arge, char xargu[])

<
char a = ‘a' 3
char a_right_shift_1-a > 1 ;
char a_left_shift 1 = a <13
printf(t AT, a) 3
printf(" a ", a_right_shift_1)
printf(" a *, a_left_shift_1)
return 0 ;

_1274553638.unknown

_1276515100.unknown

_1276515127.unknown

_1276515152.unknown

_1276515397.unknown

_1276516178.unknown

_1276515144.unknown

_1276515116.unknown

_1274553841.unknown

_1274688528.unknown

_1274553664.unknown

_1274553584.unknown

_1274553595.unknown

_1274553560.unknown

