
Matrix transpose

Author : Lung-Sheng Chien

National Tsing Hua university, R.O.C (Taiwan)

Mail: d947207@oz.nthu.edutw

Abstract: we provide 2D transpose and 3D transpose in this document, source code of 2D

transpose comes from SDK and then we use the same idea to build 3D transpose of the form

Experiment shows that our 3D result has “good” performance comparable with 2D result

(2D transpose is optimized version)

1

Transpose on 3D data

Objective: given 3D data ()1 2 31: ,1: ,1:X n n n , we want to do transpose operation under () (), , , ,y z x x y z←

such that () ()1 2 3 2 3 11: ,1: ,1: 1: ,1: ,1:X n n n Y n n n→ with utilization of coalesce property.

Observation: it is similar to 2D transpose, if we only consider x-z slice when fixed y

() () , , , , X y zYzyx x→ x

z

z

x

The simplest way is (1) use 2D grid to represent (x, z) slice and do transpose operation along y

() ()

2 1:

 for each threads in - slice, do transpose

 , , , ,

for y n

x z

X idx y idz Y y idz idx

endfor

=

→ we must use share memory to decrease latency

Remark: motivation of transpose on 3D data comes from 3D FFT (see Sine_transform_3D.ppt)

2

Transpose 3D: framework [1]

Objective: define a framework to do xyz2yzx transpose operation and use different kind of techniques

The number of grids in z-direction to cover x-z slice is (n3 + BLOCK_DIM-1)/ BLOCK_DIM

The number of grids in x-direction to cover x-z slice is (n1 + BLOCK_DIM-1)/ BLOCK_DIM

1
n

3n

BLOCK_DIM

BLOCK_DIM
1

3

_ 1
2

_

_ 1
2

_

n BLOCK DIM
Gx

BLOCK DIM

n BLOCK DIM
Gz

BLOCK DIM

+ −
≡ =

+ −
≡ =

3

y = 1 y = 2 y = 3 y = 4

y = 5 y = 6 y = 7

()

()

2
1 2 2

1

2 1

,

 ,

n
k floor n k ceil

k

then grid k Gz k Gx

 
≡ ≡  

 

= ⋅ ⋅

2 7n =

()1 2

7
7 2, 4

2
k floor k ceil

 
= = = = 

 

Assume n2 = 7 (7 x-z slice), then what is configuration of grid?

Trick: we can do better grid configuration such that resource utilization is highest

()

()

1 2

2
2

1

1 2 2 2 1

 : 1:1

 1, , ,

for k floor n

n
k ceil

k

if k k n then grid k Gz k Gx break

end

= −

 
=  

 

− ≤ = ⋅ ⋅

Then we waste one block at most

Express 1 1

2 2

.

.

blockIdx x Gz s t

blockIdx y Gx s t

= ⋅ +

= ⋅ +
such that

()

()

1 2

1 2

, : index to y-direction

, : index to - slice

s s

t t x z

()1

1 1

. /

.

s floorf blockIdx x Gz

t blockIdx x Gz s

=

= − ⋅
where

Transpose 3D: framework [2]

4

y = 0 y = 1 y = 2 y = 3

y = 4 y = 5 y = 6

() ()1 2, 0,0s s =()0,0 ()1,0 ()2,0 ()3,0

()0,1 ()1,1 ()2,1 ()3,1

y = 0

2 2 1yIndex s k s= +

where ()2 1,grid k Gz k Gx= ⋅ ⋅

coarse grid

2 # of coarse grid along z

 . /

k

gridDim x Gz

=

=

() ()1 2, 0,0t t =

()1 2,s s yIndex→

() ()1 2, 1,0t t =

() ()1 2, 0,1t t =
() ()1 2, 1,1t t =

()1 2,t t may be regarded as local block ID

()1 2,t t

BLOCK_DIM

BLOCK_DIM

threadIdx

() () ()

1

2

1 2 3

1 3

_ .

_ .

 , 1, 1 since 1: ,1: ,1:

 0 , 0

zIndex t BLOCK DIM threadIdx x

xIndex t BLOCK DIM threadIdx y

subject zIndex xIndex k i X n n n

xIndex n zIndex n

= ⋅ +

= ⋅ +

≡ − −

≤ < ≤ <

Fixed y, real (x, y, z) to shared memory 1
() () () ()2 3 3, , 1 1 1row major i j k i n n j n k− = − + − + −

Transpose 3D: framework [3]

5

[][] ()

1

3

 1:

 1:

 , ,

for i n

for k n

shared i k X i j k

endfor

endfor

=

=

← 1

1

1

xIndex i

yIndex j

zIndex k

= −

= −

= −

()1 2 31: ,1: ,1:X n n n () ()

[][] []

()

1 3

2 3 3

 and

 _

 . . : _

__syncthreads

if xIndex n zIndex n

index in xindex n n yIndex n zIndex

shared threadIdx y threadIdx x X index in

endif

< <

= ⋅ + ⋅ +

=

x

z

shared memory

z

x

2 Transpose data in shared memory to ()2 3 11: ,1: ,1:Y n n n

() [][]

3

1

 1:

 1:

 , ,

for k n

for i n

Y j k i shared i k

endfor

endfor

=

=

←
z

x

shared memory

z

x

()1 2,t t

Transpose

()2 1,t t

z

z

x

Transpose 3D: framework [4]

66

2

1

_ .

_ .

xIndex t BLOCK DIM threadIdx x

zIndex t BLOCK DIM threadIdx y

= ⋅ +

= ⋅ +

BLOCK_DIM

BLOCK_DIM

X

Transpose

BLOCK_DIM

BLOCK_DIM

Y
x

z

1

2

_ .

_ .

zIndex t BLOCK DIM threadIdx x

xIndex t BLOCK DIM threadIdx y

= ⋅ +

= ⋅ +

() ()

[] [][]

1 3

3 1 1

 and

 _

 _ : . .

if xIndex n zIndex n

index out yindex n n zIndex n xIndex

Y index out shared threadIdx x threadIdx y

endif

< <

= ⋅ + ⋅ +

=() () () ()3 1 1, , 1 1 1row major j k i j n n k n i− = − + − + −

()2 3 11: ,1: ,1:Y n n n

