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Abstract: in [3], we improve SGEMM (matrix multiplication on single precision) of Volkov's code [1]. We test 

C AB=
 

on square matrices A, B and C. Our method reaches 440Gflop/s on TeslaC1060 whereas Volkov's code 

reaches 346 Gflop/s, which is 55.45% of peak performance (Volkov criticizes my experiment because he gets 60% of 

peak performance on GTX280, I am sorry that I cannot explain this difference so far). 

 In this paper, we extend the idea in SGEMM to CGEMM (matrix multiplication on complex type) and reach 

445.7Gflop/s whereas CUBALS reaches 277.7Gflop/s, we have 37.69% improvement. Basic idea is to utilize amazing 

pattern, "MOV reg, [smem]" followed by two "MAD dest, src1, src2, src3". Volkov conjectures that such pattern 

would activate dual issue, he says "One of them is streaming data from shared memory to registers behind 

register-only multiply-and-adds. Moves from shared memory to registers may go via SFUs on GT200, which would 

utilize "dual-issue" capability. This would avoid using the slow multiply-and-adds with shared memory operands, so 

might be faster. " in the thread 

http://forums.nvidia.com/index.php?showtopic=47689&pid=1002936&mode=threaded&start=#entry1002936 on 

NVIDIA's online forum. In this work, we confirm this conjecture.  

 Although we reach 445.7Gflop/s on CGEMM, this number is near 439.467 Gflop/s we have in SGEMM [3], we 

still believe that CGEMM may reach 500 Gflop/s in some way.  

 The technique in this paper comes from workaround in [3], 

replace MAD with shared memory operand, "MAD dest, [smem], src2, src3", by two operations. First one is 

movement from shared memory to register, "MOV reg, [smem]", and the other is MAD without shared memory 

operand, "MAD dest, src1, src2, src3". 

but we re-write rank-1 update in assembly code level (not inline assembly in PTX file but assembly code defined by 

Wladimir J. van der Laan, author of decuda/cudasm). This is a big breakthrough that we can design desired pattern 

ourselves, try many combinations of MOV, MUL, MAD, ADD in rank-1 update. This may give us a clue to add some 

patterns into compiler optimization.  

 Same as SGEMM in [3], we deliver CUDA binary code on 64-bit platform (it does not work on 32-bit platform). 

The CGEMM we deliver can work for any dimension. I must offer my heartfelt thanks to Wladimir J. van der Laan 

and Sylvain Collange, their package, decuda/cudasm, is crucial to this work. 
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Introduction 

Matrix-multiplication C AB=  is a basic operation in BLAS library. Vasily Volkov and James W. Demmel provide a 

faster algorithm in 2008 [1]. We improve Volkov's code on SGEMM in [3] and in this paper, we further improve 

CGEMM based on Volkov's program.  

 In this work, we focus on C AB Cα β= +
 

where size of A is m k× , size of B is k n× , and size of C is m n× . 

Three matrices are stored by column-major and have leading dimension ,  ,  lda ldb ldc . Moreover matrices are 

allocated in linear memory, no texture memory is used.  

 Basic operation in CGEMM is c a b c= × + where a, b, c are complex number. Volkov's method keeps a in 

register and fetches b from shared memory but uses only one MAD operation to execute c a b c= × +  in SGEMM. 

However in CGEMM, a MAD operation on "complex" should be decomposed to several basic operations on "float". 

This give us a lot of degree of freedom to design a "good" pattern to execute "complex c = a * b + c". That is why we 

can achieve 445.7Gflop/s whereas CUBALS only reaches 277.7Gflop/s.  

 In this work, we try to invoke dual issue to hide a MUL operation into a MAD operation. Unfortunately, no 

benefit is seen because of RAW (Read-After-Write) hazard. On the contrary huge speedup appears if we use amazing 

pattern, "MOV reg, [smem]" followed by two "MAD dest, src1, src2, src3", found in [3]. 

 The remaining sections are organized as follows: some preliminaries are introduced in section 1, including 

SPEC of GT200 (TeslaC1060, GTX285 and GTX295), pipeline latency and throughput of MAD operation, latency 

and throughput of global DRAM, block version of matrix-multiplication and outer-product based algorithm. Then we 

compare Volkov's code with CSGEMM in CUBLAS (CUDA 2.3) in section 2. Also we estimate peak performance of 

Volkov's code and propose how to invoke dual issue. Our man two ideas are introduced in section 3, one is using 

amazing pattern, the other is to avoid RAW hazard. In section 4, we mention method 1 which embed amazing pattern, 

and its variant, method1_variant, which is used to verify effectiveness of amazing pattern. Moreover we explain how 

to design a pattern in assembly level under help of package decuda/cudasm. Structure and performance of method 2 

variant is shown in section 5, it is designed to avoid RAW hazard. In section 6, we try to combine advantages of idea 1 

and idea 2. Finally we have some conclusions in section 7. 
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1  preliminary  

1.1 SPEC of GT200 

In this work we use three GPUs listed in Table 1 to measure performance of CGEMM. All three GPUs belong to 

GT200 series but GTX brand does overclocking core frequency and memory speed. Under dual issue [5], one SP can 

deliver one MAD ( c a b c= × + ) operation and one MUL ( c a b= × ) operation every clock (in fact, SM can issue one 

MAD and one MUL in 4 cycles per warp). So peak performance is three flops per clock since MAD is combination of 

multiplication and addition (its flop count is two) and flop count of MUL is one. 

Single precision peak performance = ( ) ( ) ( )240 1.3  . 3  core core freq flop count× ×  

 Main cost in SGEMM is MAD and dual issue [8] can be neglected since it is unlikely to merge MAD and MUL 

in flight due to few MUL operations in SGEMM. However we may activate dual issue in CGEMM since one 

"c+=a*b" has 4 MUL and 4 ADD, it is intuitive that CGEMM would reach higher Gflop/s. Unfortunately, CUBLAS 

(CUDA 2.3) has better Gflop/s on SGEMM (SGEMM reaches 344Gflop/s whereas CGEMM reaches 277.7Gflop/s), 

that is why we focus on CGEMM again. 

 Even CGEMM can utilize power of dual issue, it is impossible to exceed single precision performance without 

dual issue (shown later in section 2.3). Hence we also report single precision performance without dual issue which is 

upper bound of CGEMM that we can pursue. 

Single precision performance without dual issue = ( ) ( ) ( )240 1.3  . 2  core core freq flop count× ×  

 GTX2951 GTX285 TeslaC1060 

# of Streaming Processor 240 240 240 

Core Frequency 1242MHz 1476 MHz 1.3 GHz 

Memory Speed 999MHz 1242 MHz 800 MHz 

Memory Interface 448-bit (7 channel) 512-bit (8 channel) 512-bit (8 channel) 

Memory Bandwidth (GB/s) 112 159 102 

SP, peak (Gflop/s) 894   1063   933  

SP without dual issue  596.2   708.5  624  

DRAM (MByte) 896 1024 4096 

Table 1: The list of the GPUs in this paper. SP is single precision performance. 

 

1.2 pipeline latency and throughput 

From result of micro-benchmarking in [9], we can summarize latency and throughput of some instructions in Table 2. 

Instruction Type Latency (cycles) Throughput (cycles/warp) 

 MOV reg, [gmem]  530  4 

 MOV [smem], reg  36 4 

 ADD, SUB Float 24 4 

                                                 
1 Although GTX925 has two GPU units (assembly of two GTX275), proposed CGEMM is executed in single GPU 
such that we only repost SPEC of one GPU.  
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 MAD dest, src1, src2, src3  Float 31.5 4 

 MAD dest, [smem], src2, src3 Float 34.6 6 

Table 2: latency and throughput of arithmetic instructions on TeslaC1060, authors in [9] use (ops/clock) as unit of 

throughput whereas we use (cycles/warp) as unit.  

Remark 1: we have confirmed these numbers in [3].  

 

1.3 notation of matrices and partition of grid, block 

We adopt notations in Figure 1 which is the same as we use in [3]. Assume that A, B and C are m k× , k n×  and 

m n×  matrices respectively. Partition these matrices into M K× , K N×  and M N×  grids of bm bk× , bk bn×  

and bm bn×  blocks. Formally 
1M

M

m b
M

b

 + −
=  
 

, 
1K

K

k b
K

b

 + −
=  
 

 and 
1N

N

n b
N

b

 + −
=  
 

. We use register file or 

on-chip shared memory to store 
,bm bkA  (sub-block of matrix A) and 

,bk bnB  (sub-block of matrix B), also always use 

registers to store 
,bm bnC  (sub-block of matrix C, should keep 

,bm bnC  in registers since it is destination operand of 

MAD operation ), then all four kinds of CGEMM, including C AB Cα β= + , TC A B Cα β= + , TC AB Cα β= + , 

T TC A B Cα β= +  require two-steps computation: 

Step 1: fetch K blocks of matrices A and B into 
,bm bkA  and 

,bk bnB  respectively, then compute 
, , ,bm bn bm bk bk bn

k

C A B=∑ , 

, , ,

T

bm bn bm bk bk bn

k

C A B=∑ , 
, , ,

T

bm bn bm bk bk bn

k

C A B=∑  or 
, , ,

T T

bm bn bm bk bk bn

k

C A B=∑  

Step 2: update 
( ),
|

bm bn
C  which is global matrix C at block index ( ),bm bk  by  

( ) ( ),, ,
| |bm bnbm bn bm bn

C C Cα β= + . 

We can summarize complexity of data transfer and float-point computation in SGEMM as 

(1) read/write C: 
M NMN b b mn× =  

(2) read A to register/shared memory: 
1

M K

N

MN K b b mnk
b

× × = , independent of dimension k. 

(3) read B to register/shared memory: 
1

K N

M

MN K b b mnk
b

× × = , independent of dimension k. 

(4) number of flop ( c a b c= ⋅ + ): ( )8 4 4 K M NMNK b b b MUL ADD mnk× × + =  independent of grid dimension. 

 . . . . . .c x a x b x a y b y c x← × − × +   2 MUL and 2ADD 

 . . . . . .c y a x b y a y b x c y← × + × +   2 MUL and 2ADD 

 

Moreover in this work, we focus discussion on C AB=  but deliver source code to deal with C AB Cα β= + .  

Remark 2: CGEMM is more compute-intensive than SGEMM because flops of CGEMM is 8 times flops of SGEMM 

but CGEMM is only two times size of SGEMM when dimension of matrices are the same. 
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1.4 outer-product based algorithm 

In this work, we inherit framework of Volkov's source code but modify it in order to avoid local memory usage. 

Volkov's code uses outer-product2 formulation ( ) ( ) ( )

 for 1:

    for 1:

        ,

    endfor

 endfor

s k

j n

C j A s B s j

=
 =

+ =




 
which fetches one column of matrix A 

into registers and then save one movement from shared memory to register. If matrix A is stored as column-major, then 

such access pattern is coalesced. Hence the algorithm is good for C AB Cα β= +  
and TC AB Cα β= +  where A, B 

and C are column-major.  

To sum up, we can write down pseudo-code of two outer-product formulations in Figure 2. In this work we adopt 

algorithm ( )I  and parameters of grid and block are depicted in Figure 3. 

Remark 3: in Figure 3, we use registers c[32] to represent 16 complex numbers, real part locates at even index and 

imaginary part locates at odd index, ( ) [ ] [ ], , 2 1 2 1bm bnC i j c j c j= + − ⋅ +  . Moreover in order to save number of 

transactions of matrix B, we use shared memory b1 to represent real part and b2 to represent imaginary part, i.e. 

( ) [ ][ ] [ ][ ], , 1 1 2bk bnB i j b i j b i j= + − ⋅  

 

                                                 
2 difference between inner-product based algorithm and outer-product based algorithm is described in [3]. We don't 
implement inner-product based algorithm, it may has better Gflop/s than that of SGEMM because CGEMM is more 
compute-intensive than SGEMM. 

Figure 1: dimension of matrices A, B, C and execution configuration. 
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2 CUBLAS versus Volkov's code 

2.1 modification of Volkov's code 

In this work, we use Volkov's code with boundary condition checker in [3] but minor modification to match 

framework in Figure 3. We have known that Volkov's code uses outer-product formulation, algorithm ( )I  in Figure 2, 

Figure 3: parameters of grid and block in ( I ) of Figure 2 

 

 

Figure 2: pseudo-code of two outer-product formulations. left panel comes from figure 4 in [1] 



 8

and term by term correspondence in Figure 4 can be described as following: 

(1) load 16x16 block of matrix B into shared memory float b1[16][16] and float b2[16][16] such that 

( ) [ ][ ] [ ][ ], , 1 1 2bk bnB i j b i j b i j= + − ⋅ . One thread block has 64 threads (vector length = 64), each thread loads four 

elements (526/64 = 4) in b1 or b2. If we use complex b[16][16] and use "b[inx][iny+i] = B[i*idb]" , then the number 

of global memory transaction on matrix B is doubled due to interleaving property of complex type. Here variable sel is 

used to check boundary condition. 

(2) each thread loads one element (8 bytes) of A (64 threads load one column of 
,bm bkA ) and then does rank-1 update, 

[ ] [ ] [ ][ ] [ ]0c j A b i j c j= ⋅ +  for 0 :15j = , where [ ] ( ),0 :15 ,0 :15bm bnc C threadID=  is one row of 
,bm bnC . 

" Complex A_reg = A[0]" uses 128-byte transaction (each thread loads 8 bytes), this can be confirmed by result of 

decuda (" Complex A_reg = A[0]" is translated to "mov.b64 reg, g[reg]" ).  

(3) store 
,bm bnC

 
into matrix C. In order to utilize 128-byte transaction, we use two-step coding 

Step 1: compute  regcomplex cc cα←  by 

 
[ ] [ ]

[ ] [ ]

. . 2 . 2 1

. . 2 . 2 1

cc x x c j y c j

cc y y c j x c j

α α

α α

← ⋅ − ⋅ +

← ⋅ + ⋅ +
 

Step 2: store cc  to global matrix C by 

 [ ]C ldc cc+ =  // use 128-byte transaction 

 

 

 

Figure 4: program structure of Volkov's code 
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Furthermore in order to simplify discussion, we use carton picture to describe grid information of Volkov's code as you 

see in Figure 5 (we alias 
,bm bkA ,

,bk bnB ,
,bm bnC  as A, B and C respectively, just simplify notation, nothing special). 

Under such picture, one can know 64,  16,  16M K Nb b b= = =  and then  

(1) read A to register: 
1

16N

mnk
mnk

b
= ,  

(2) read B to shared memory: 
1

64M

mnk
mnk

b
=  , and  

(3) number of flop of c a b c= ⋅ + : 8mnk . 

 . . . . . .c x a x b x a y b y c x← × − × +   2 MUL and 2ADD 

 . . . . . .c y a x b y a y b x c y← × + × +   2 MUL and 2ADD 

 

One point should be kept in mind: there are two MAD operations in "single precision", one is "MAD dest, src1, src2, 

src3" and the other is "MAD dest, [smem], src2, src3" where dest, src1, src2 and src3 are registers but [smem] is 

shared memory. From experience in SGEMM [3], we know compiler nvcc always choose shared-memory MAD. This 

property also holds in CGEMM. nvcc uses 2 MUL, 2 MAD and 2 ADD to implement "complex c+=a*b " in Figure 6. 

Our expectation is to hide 2 MUL operations by dual issue, then effective flop count is only 2 MAD and 2ADD per 

"complex c+=a*b ". We will discuss this in section 2.3. 

 

 

Figure 6: (I) operation of "complex c+=a*b". (II) corresponding operations in Volkov's code, the 

execution sequence is MUL, MAD, ADD. (III) assembly representation of (II) from decuda. 

 

Figure 5: carton picture of grid information of Volkov's code. 
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2.2 comparison between CUBLAS and Volkov's code 

In this work, we take Volkov's code as baseline and compare our method with it because our method is based on 

Volkov's code. First we compare performance of Volkov's code with CUBLAS in CUDA 2.3. To show comparison, we 

report two numbers, one is Gflop/s and the other is performance improvement.  

Definition 1: in Volkov’s code, one "complex c+=a*b " has 8 flops, so we define flop count as 
( )

8
/

mnk
Gflop s

time s
=

 

 

Definition 2: let R be ratio of Gflop/s, defined by 
time of Volkov's code   of cublas

time of cublas  of Volkov's code

Gflop
R

Gflop
= = , then 1 R−  

is performance improvement. 

 Figure 7 shows Gflop/s over 5: 4096N =  and Table 3 shows Gflop/s on specific dimension 

256,512,1024,2048,4096N = . Clearly, Volkov's code has better performance than CUBLAS, about 20% 

improvement. There are two points that CUBLAS is not good. First, compared with SGEMM, performance of 

CUBLAS on CGEMM is poor than performance on SGEMM which reaches 344Gflop/s. This is not reasonable since 

CGEMM can utilize power of dual issue but SGEMM cannot. Second, both SGEMM and CGEMM in CUBLAS have 

large variation on graph of Gflop/s. We believe that such variation comes from number of memory transactions which 

strongly depends on leading dimension of matrices, even in SGEMM, Volkov's code has fluctuation on Gflop/s. 

However CGEMM is more compute-intensive than SGEMM, if one adopts the same algorithm, why does not 

CGEMM have uniform performance? (Volkov's code has uniform performance on CGEMM.) 

 Hence it is reasonable to take Volkov's code as baseline since performance of Volkov's is more uniform than 

performance of CUBLAS. Someone may ask "Could you convince me that Volkov's code can be improved further, 

because it is 20% faster than CUBLAS?". There are two main reasons  

(1) number of registers per thread of Volkov's code is 51, so number of active threads per SM is only 256. From 

experience on SGEMM [3], register usage of CGEMM of Volkov's code should be the same as register usage of 

SGEMM of method 1 in [3]. If we can organize register usage ourselves, then only 48 registers per thread are required 

to compile CGEMM. If register count is 48, then number of active threads can achieve 320. 

(2) Volkov's code on CGEMM has the same performance as on SGEMM in Table 4. Again this is not reasonable 

because CGEMM should utilize dual issue. We will discuss theoretical bound of Volkov's code under dual issue in 

section 2.3 

N CGEMM,CUBLAS (Gflop/s) CGEMM, Volkov (Gflop/s) R 

256 210.317 187.892 1.1194 

512 260.288 265.591 0.9800 

1024 273.432 329.555 0.8297 

2048 276.788 342.854 0.8073 

4096 277.708 348.489 0.7969 

Table 3: CGEMM comparison between CUBLAS and Volkov's code for N = 256, 512, 1024, 2048, 4096 on 

TeslaC1060. 
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N SGEMM, CUBLAS (Gflop/s) SGEMM, Volkov (Gflop/s) R 

256 198.92 207.67 0.9563 

512 222.59 226.90 0.9810 

1024 281.39 274.60 1.0248 

2048 331.03 324.94 1.0187 

4096 344.15 342.65 1.0044 

Table 4: SGEMM comparison between CUBLAS and Volkov's code on TeslaC1060. 

 

2.3 theoretical performance of Volkov's code 

CGEMM is compute-intensive, it is reasonable to neglect overhead of data transfer (or assume that we can hide 

memory latency in arithmetic pipeline) and focus on how many arithmetic operations are done. We have shown 

number of flops per "complex c+=a*b " in CGEMM is 8, or equivalently say 4 MADs. We can also estimate lower 

bound and upper bound of Volkov's code, the former is considered without dual issue (left panel in Figure 8) and the 

latter is considered with dual issue (right panel in Figure 8). Moreover we know cost of each operation shown in Table 

2, let use define  

(1) cost of "MAD dest, src1, src2, src3" as 
, 4 /MAD regT cycle warp=  

(2) cost of "MAD dest, [smem], src2, src3" as 
, ,1.5 6 /MAD smem MAD regT T cycle warp= =  

(3) cost of "MUL dest, src1, src2" as 
, 4 /MUL regT cycle warp=  

(4) cost of "MUL dest, [smem], src2" as 
, ,1.5 6 /MUL smem MUL regT T cycle warp= =  

(5) cost of "ADD dest, src1, src2" as 
, 4 /ADD regT cycle warp=  

Also single precision performance without dual issue on TeslaC1060 is 624 Gflop/s, or say 

,

1 
624 /

MAD reg

MAD
Gflop s

T
=  

(1) without dual issue 

 

Figure 7: left panel is Gflop/s of CUBLAS (CUDA 2.3) and Volkov's code. Right panel is performance 

improvement. Platform is TeslaC1060. 
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peak performance is 

, , , ,

4 4 4
624 / 312 /

2 2 2 8 8MUL smem MAD smem ADD reg MAD reg

MAD MAD
Gflop s Gflop s

T T T T
= = × =

+ +
 

(2) with dual issue 

peak performance is 

, , ,

4 4 4
624 / 499.2 /

2 2 5 5MAD smem ADD reg MAD reg

MAD MAD
Gflop s Gflop s

T T T
= = × =

+
 

 

Remark 4: from Table 3, Volkov's code only reaches 348.489 Gflop/s which is near 312Gflop/s, this means that 

Volkov's code does not utilize dual issue very well. Of course we can remove effect of fewer active threads per SM so 

far. 

 

2.4 MUL and MAD interleaving manually 

If one looks at assembly code (from result of decuda, not PTX code) of Volkov's code, then nvcc does not produce 

regular pattern for rank-1 update  

 for( int i = 0; i < 16; i++ ){  

  Complex A_reg = A[0] ; A += lda ; 

// rank-1 update for c[j] += a[i] * b[i][j] 

  for( int j = 0 ; j < 16 ; j++){ 

   float b_reg_x = b1_ptr[j] ; 

   float b_reg_y = b2_ptr[j] ; 

// c[j] += A_reg * b_reg ; 

   c[2*j  ] += (A_reg.x * b_reg_x - A_reg.y * b_reg_y) ;      

   c[2*j+1] += (A_reg.y * b_reg_x + A_reg.x * b_reg_y) ; 

  }        

  b1_ptr += 17 ; // b1_ptr = &b1[i][0]   

  b2_ptr += 17 ; // b2_ptr = &b2[i][0]   

 }    

and experimental result only shows 348.489 Gflop/s. It is reasonable to manipulate pattern of rank-1 update ourselves 

if we can write assembly instructions at will and cudasm can work well. As we know, if we want to activate dual issue, 

 

Figure 8: left panel (no dual issue): 8 flops per "complex c+=a*b ", including 2 MUL, 2 ADD, 2MAD. 

right panel (with dual issue): 6 flops since 2 MUL is hidden in dual issue. 
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then best approach is to interleave MUL and MAD [6]. In (a) of Figure 9, we re-write one "c = a * b + c", 

 c[2*j  ] += (A_reg.x * b_reg_x - A_reg.y * b_reg_y) ;      

 c[2*j+1] += (A_reg.y * b_reg_x + A_reg.x * b_reg_y) ; 

, which has two MUL, two MAD and two ADD, to a sequence of "MUL, MAD, MUL, MAD, ADD, ADD". We call 

this method as "volkov + unroll 1", here "unroll" means that we unroll the loop of rank-1 update. 

 

Similarly we can unroll two consecutive "c = a * b + c" . In (b) of Figure 9, we unroll the loop 

// rank-1 update for c[j] += a[i] * b[i][j] 

  for( int j = 0 ; j < 16 ; j++){ 

   float b_reg_x = b1_ptr[j] ; 

   float b_reg_y = b2_ptr[j] ; 

// c[j] += A_reg * b_reg ; 

   c[2*j  ] += (A_reg.x * b_reg_x - A_reg.y * b_reg_y) ;      

   c[2*j+1] += (A_reg.y * b_reg_x + A_reg.x * b_reg_y) ; 

  }      

two times and then MUL-MAD interleaving sequence becomes longer. We call this method as "volkov + unroll 2". We 

 

Figure 9: rearrange assembly instructions such that MUL and MAD are interleaved each other in a long 

sequence. 
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expect that the longer a MUL-MAD interleaving sequence is, the faster the program is. In order to keep register count 

less than 64, we can unroll the loop 8 times, so "volkov + unroll 8" should be fastest, and near optimal performance 

499.2 Gflop/s. However this conjecture is wrong, from Table 5, "volkov + unroll 8" is the slowest among all methods.  

 volkov Volkov + 

unroll 1 

Volkov + 

unroll 2 

Volkov + 

unroll 4 

Volkov + 

unroll 8 

Registers per thread 51 48 48 51 59 

Active threads per SM 256 320 320 256 256 

Gflop/s for N = 4096 348.489 347.991 347.615 325.859 325.628 

Table 5: profile CGEMM, C = A*B for square matrices with dimension N = 4096 on TeslaC1060. We expect that the 

longer a MUL-MAD interleaving sequence is, the faster the program is. However our desired pattern "volkov + unroll 

8" is slower than original volkov (optimization by nvcc).  

I think that what disables dual issue is RAW (Read-After-Write) hazard. In David Kanter's article, NVIDIA's GT200: 

Inside a Parallel Processor, Shader Multiprocessor Architecture is depicted in Figure 10.  

 

It says that warp instructions are fetched into a multithreaded instruction buffer, which probably contains 32 or 64 

entries – one to two entries per warp in-flight. In GT200 architecture, maximum number of active warps per SM is 32 

(or equivalently maximum number of active threads per SM is 1024), in this paper we assume that instruction buffer 

has 64 entries such that each warp can put two consecutive instructions into this buffer. The author, David Kanter,, 

also describes two properties on execution of instructions, 

Property 1: The instruction issue logic is responsible for selecting a warp instruction to issue each cycle. Each cycle 

the issue logic selects and forwards the highest priority ‘ready to execute’ warp instruction from the buffer. 

 

Figure 10: Shader Multiprocessor Architecture in [7]  
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Prioritization is determined with a round-robin algorithm between the 32 warps that also accounts for warp type, 

instruction type and other factors. 

Property 2: A warp which has multiple ready instructions can continue to issue until the scoreboarding blocks further 

progress or another warp is selected for issue. (or called out-of-order completion). For example, a warp could issue a 

long latency memory instruction, followed by a computational instruction and in that case, the computation would end 

up writing back its results before the memory instruction. 

 

 For simplicity, let us assume pipeline latency is 12 cycles (it should be 24 cycles at least) and only three warps 

per SM. First we consider "volkov + unroll 1", first two instructions per warp are put into instruction buffer (blue 

rectangle in Figure 11) since we have assume that each warp can put two consecutive instructions into instruction 

buffer. It is easy to show that three warps execute their first MUL instruction in turn (according to property 1, 

round-robin), no dual issue is invoked due to RAW hazard.  

 After completion of first MUL instruction of three warps, we may expect dual issue if priority scheme of 

instruction issue logic is good. In Figure 12, we can combine MAD of warp 0 and MUL of warp 1 to be a dual-issue 

packet and executed at the same time. Similarly, MAD of warp 1 and MUL of warp 2 are executed in dual issue sense. 

Finally MAD of warp 2 and MUL of warp 0 are executed. Then we only use 24 cycles to execute 6 MUL and 3 MAD, 

that means that we save cost of 3 MUL. Hence peak performance of "volkov + unroll 1" is  

, , , ,

4 4 4
624 / 384 /

2 2 6.51 6.5MUL smem MAD smem ADD reg MAD reg

MAD MAD
Gflop s Gflop s

T T T T
= = × =

+ +
 

However "volkov + unroll 1" only reaches 348Gflop/s, much smaller than 384 Gflop/s. Either our interpretation is 

 

Figure 11: Gatt chart of three warps in one SM. blue rectangle is a window in instruction buffer which 

contains two consecutive instructions of each warp. The first instruction MUL, is executed warp-by-warp 

due to RAW hazard. At this time dual issue is disable.  
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wrong or instruction issue logic does not do well.  

 

 

3 basic idea 

From above discussion, we know Volkov's code is not optimal, combination of instructions and hazards must be taken 

care. Under manipulation of assembly code ourselves, register count per thread is not greater than 48, so number of 

active threads per SM is 320. We propose three ideas to improve CGEMM, 

 

Idea 1: use amazing pattern, "MOV reg, [smem]" followed by two "MAD dest, src1, src2, src3", which is found in 

SGEMM [3]. In SGEMM, such pattern is deduced from "two c = a*b +c shares one movement from shared memory 

to register". However in CGEMM, one "c = a*b +c" can produce this pattern if we modify  

 

Figure 13: amazing pattern in [3], "MOV reg, [smem]" and followed by two "MAD dest, src1, src2, src3".  

 

Figure 12: Gatt chart after completion of first MUL instruction. Now window moves one instruction 

further and dual issue can be invoked now if priority scheme is good enough. MAD of warp 0 can 

combine MUL of warp 1 to be a dual-issue packet and so on. 
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. . . . . .

. . . . . .

c x a x b x a y b y c x

c y a x b y a y b x c y

← × − × +

← × + × +
  to 

( )

( )

. . . . . .

. . . . . .

c x a x b x a y b y c x

c y a x b y a y b x c y

← × − ×

← × + × +

−
. We will describe this form in method 1 and 

method1_variant. 

 

Idea 2. remove RAW hazard to increase possibility of dual issue. In order to achieve this goal, we only use one MUL 

per "c = a*b +c" (original Volkov's code use 2 MUL per "c = a*b +c"). method 2_varinat uses this idea. 

 

Idea 3: mix idea 1 and idea 2 to increase possibility of dual issue without RAW hazard. method 3 and method 4 use 

this idea. 

 

Remark 5: Although we design method 1, method 2, method 3 and method 4, they have same block structure as 

Volkov's code in Figure 5 except pattern of rank-1 update. 

 

4  idea 1: amazing pattern in method 1 

If we write "complex c = a*b +c" as 
( )

( )

. . . . . .

. . . . . .

c x a x b x a y b y c x

c y a x b y a y b x c y

← × − ×

← × + × +

−
, then two amazing patterns are generated. In 

Figure 14, we load element of matrix A to 64-bit register, say ( ) [ ]0 1$ ,$ 0r r A←  
corresponding to C code "Complex 

A_reg = A[0]". Note that GT200 has only 32-bit registers, CUDA uses two consecutive 32-bit registers as one 64-bit 

register, however, one must be careful since ID of first 32-bit register must be odd or kernel launch failure occurs. 

Second we load sub-matrix of B from shared memory into registers by ( ) ( )3 4$ ,$ . , .r r b x b y←  which corresponds to 

C code " float b_reg_x = b1_ptr[j] ; float b_reg_y = b2_ptr[j] ; ". Then we can use four "MAD dest, src1, src2, src3" 

and two "MOV reg, [smem]" to implement one "complex c = a*b +c" which corresponds to C code  

c[2*j  ] += (A_reg.x * b_reg_x - A_reg.y * b_reg_y) ;      

c[2*j+1] += (A_reg.y * b_reg_x + A_reg.x * b_reg_y) ; 

 

Note that method 1 does not use any MUL operation, so theoretical peak performance of method 1 is 

 
Figure 14: amazing pattern in method 1 
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, ,

4 4 4
624 / 416 /

2 4 6 6ADD reg MAD reg

MAD MAD
Gflop s Gflop s

load T T
= = × =

+
. 

 

4.1 performance of method 1 

Performance of method 1 compared to Volkov's code is shown in Table 6 and Figure 15. Method 1 is very good, 20% 

faster than Volkov's code and moreover outperform against theoretical peak performance, 416 Gflop/s. Method 1 

reaches 445 Gflop/s, this number cannot be interpreted except dual issue. So now we have a strong evidence to say 

amazing pattern, "MOV reg, [smem]" and followed by two "MAD dest, src1, src2, src3", would activate dual issue. 

 

N Volkov (Gflop/s) Method 1 (Gflop/s) R 

256 195.053 193.956 0.9687 

512 275.532 364.928 0.7278 

1024 332.228 414.244 0.7956 

2048 345.122 436.673 0.7852 

4096 349.832 445.724 0.7818 

Table 6: Comparison between Volkov's code and method 1 on CGEMM, C = A*B for square matrices. Platform is 

TeslaC1060. Method 1 outperforms Volkov's code, even breaks the limit of peak performance without considering 

dual issue. 

 

4.2 method1_variant 

In order to check dual issue of amazing pattern, we set up a reference experiment, called method1_varinat, which is 

the same as method 1 except using "MAD dest, [smem], src2, src3", 

 mad.rn.f32 c[2*j], s[$ofs2+b2_res], $r1, -c[2*j] 
 mad.rn.f32 c[2*j+1], s[$ofs1+b1_res], $r1, c[2*j+1] 
 mad.rn.f32 c[2*j], s[$ofs1+b1_res], $r0, -c[2*j] 
 mad.rn.f32 c[2*j+1], s[$ofs2+b2_res], $r0, c[2*j+1] 

 

Figure 15: performance of method 1. it is 20% faster than Volkov's code on TeslaC1060.  
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Theoretical peak performance of Method1_variant is 

, ,

4 4
416 /

4 6ADD smem MAD reg

MAD MAD
Gflop s

T T
= = , the same as that of 

method 1. However Figure 16 shows bad performance of method1_variant, only 5% faster than Volkov's code. 

 

 

4.3 implementation of method 1 

To design pattern of rank-1 update , we need to modify assembly code ourselves and use decuda/cudasm to complete 

the work. However the package decuda/cudasm is kept going and does not guarantee correctness for any combination 

of instructions, so we use the trick "b_reg = b_ptr[j] * 4.0f " in SGEMM [3] and then modify "MUL reg, [smem], 4.0f 

" to "MOV reg, [smem]", which is supported by cudasm. In this work we do more aggressively, follow the same 

procedure is depicted in Figure 17, and replace whole code segment X  by W . W

 

is designed ourselves and 

contains the pattern of rank-1 update. Of course, it is necessary to check validity of cudasm on W . 

 

First we check what kind of codes cudasm cannot translate well. More precisely if ψ  is (a segment of) binary code, 

 

Figure 17: generic procedure of the workaround in method 1. 

 

Figure 16: performance of method1_variant. it is almost the same speed as Volkov's code on TeslaC1060.  
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then we want to check if ( )( )   cudasm decuda ψ ψ≠  or not. One thing must be mentioned: even 

( )( )   cudasm decuda ψ ψ≠ , the code ( )( )cudasm decuda ψ  may work well (We have shown this in [3]). Our 

purpose is to find minimum set that ( )( )   cudasm decuda ψ ψ≠  and ( )( )cudasm decuda ψ does wrong job. 

 

Step 1: We use cudasm to assemble volkov.asm file (method 1 is the same as Volkov's code except pattern of rank-1 

update) generated by decuda, then four errors occur, see Figure 18, 

(1) Error on line 1750: Invalid argument types 

(2) Error on line 1751: Invalid argument types 

(3) Error on line 1872: Type conflict -- expected half register 

(4) Error on line 1876: Type conflict -- expected half register 

Fortunately line 1750, 1751, 1872, 1876 are in code segment Z ,not in code segment X , we can change these four 

instructions to any valid instructions (for example, line 937 "mov.u16 $r1.hi, $p0" is substituted by " mov.b32 $r3, 

$r124") such that cudasm can translate. We save these changes into new assembly file, called volkov_correct.asm. 

Finally we would correct these changes in machine code level. 

Remark 6: line 1872 and line 1876 relate to instruction "if (beta == 0)" in method1_variant.cu because shared 

memory s[0x0050] is input parameter beta.  

 

 

Figure 18: cudasm does not work at four assembly instructions 
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Step 2: Suppose binary code from_nvcc.cubin (Figure 19) is ( ).nvcc volkovcu  without header and from_cudasm.cubin 

is ( )_ .cudasm volkov correct asm  without header, then we compare these two binary codes by "diff" command. We  

test each different binary code segments and find corresponding assembly code in from_decuda.asm (Figure 20), then 

minimum set of error code ψ  can be located. The difference has two parts. 

 

Error 1: when load B into shared memory  

The cudasm could not work for "MOV [smem], reg" which accounts for loading B into shared memory. It seems that 

 

Figure 20: green box is header of .asm file, remove it and store remaining part into from_decuda.asm 

 

Figure 19: green box is header of .cubin file, remove it and store remaining part into from_nvcc.cubin 
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only one/two bits error. For example, "mov.b32 s[$ofs1+0x0000], $r4" corresponds to "0x04000001 0xe4210780" in 

from_nvcc.cbin but cudasm translates it to "0x00000001 0xe4210780".  

Fortunately such error codes locate in segment Y , they don't affect our pattern of rank-1update. 

 

Error 2: correct " mov.b32 $r3, $r124" in step 1 

 

Figure 22: errors due to "mov.b32 $r3, $r124".  

 

Figure 21: translation error of cudasm on "MOV [smem], reg". from_decuda.asm is volkov_correct.asm 

without header. 
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Step 3: In order to decompose from_nvcc.cubin and from_decuda.asm into three parts , ,Y X Z , we use 

synchronization command as a landmark. In Figure 23 two synchronization commands, __synchthreads(), correspond 

to assembly code "bar.synch.u32 0x00000000" in line 146 and line 1735 in file from_decuda.asm respectively (binary 

code of __syncthread() is "0x861ffe03 0x00000000"). Clearly rank-1 update lies between two __synchthreads(), so 

code segment X  
must be line 147 ~ line 1736 in .asm file. To sum up, the result of decomposition of code segments 

, ,Y X Z  is listed in Table 7. 

 Besides we want to keep register count less than 48 such that number of active threads per SM is 320. This is 

subtle because nvcc uses 56 registers in code segment X  but only uses 48 registers in code segments ,Y Z . Hence 

we have no choice but traverse source code to find relationship between register ID and automatic variable in 

volkov.cu file. 

 

Code segment  from_nvcc.cubin  from_decuda.asm 

Y  from_nvcc_1_73.cubin: line 1 ~ 73  from_decuda_1_146.asm: line 1 ~ 146 

 register count is up to 48 

X  from_nvcc_74_776.cubin: line 74 ~ 776  from_decuda_147_1736.asm: line 147 ~ 1736 

 register count is up to 55 

Z  from_nvcc_777_1000.cubin: line 777~1000  from_decuda_1737_2232.asm: line 1737~2232 

 register count is up to 48 

Table 7: decompose binary file from_nvcc.cubin and assembly file from_decuda.asm into three parts, , ,Y X Z  

according to landmarks in Figure 23 . 

 

Step 4: relationship between register ID and automatic variable in file volkov.cu 

 

Figure 23: decompose from_nvcc.cubin and from_decuda.asm into three parts, X, Y, Z. 
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Table 8 shows relationship between register ID and necessary automatic variables in code segment X . Necessary 

automatic variables of thread ( ) ( )( )threadIdx.x, threadIdx.y , blockIdx.x,blockIdx.y  are 

(1) A: pointer pointing to some element of matrix A,  

(2) B: pointer pointing to some element of matrix B, 

(3) iby = blockIdx.y * 16, 

(4) row = ibx + inx + iny*16 is row index, 

(5) k sweeps all column indices of matrix A when do 
ij ik kj

k

C A B=∑ ,  

(6) b1_base = &b1[inx][iny], 

(7) b2_base = &b2[inx][iny], and 

(8) float c[32] represents sub-matrix of C, 
,bm bnC   

All other registers are temporary, nvcc uses them in loop-unrolling. Before discussing the pattern of rank-1 update, we 

need to re-bind register r48 (pointer A) to register r45 because threshold of 320 active threads per SM is 48 registers. 

Such re-binding must be consistent in code segments Y and Z. Fortunately, register r45 is not used in code segments Y 

and Z, we can do such re-binding, see Figure 24. Besides we need three registers to do  

 Complex A_reg = A[0] ;  

 A += lda ;   

"complex" is 64-bit, two consecutive 32-bit registers represents A_reg, say ( )0 1, _r r A reg= . In order to save 

computation of "lda*sizeof(complex)", we store the value to register r2. Finally relationship between register ID and 

automatic variables is shown in Table 9. 

 

regID map regID map regID Map regID map regID map 

0  10 C[20] 20 C[30] 30 C[12] 40 b2_base 

1  11 C[21] 21 C[31] 31 C[11] 41 C[5] 

2  12 C[22] 22 C[19] 32 C[10] 42 C[4] 

3  13 C[23] 23 C[18] 33 C[9] 43 C[3] 

4  14 C[24] 24 C[17] 34 C[8] 44 C[2] 

5  15 C[25] 25 C[16] 35 C[7] 45  

6  16 C[26] 26 C[15] 36 C[6] 46 C[1] 

7  17 C[27] 27 C[14] 37  row 47 C[0] 

8 B 18 C[28] 28 Iby 38  k 48 A 

9 ? 19 C[29] 29 C[13] 39 b1_base   

Table 8: relationship between register ID and necessary automatic variables in code segment X . Although nvcc uses 

56 registers in code segment X , but only necessary variables are up to r48.  

Remark 7: register r9 is an exception, we don't know its functionality but it appears in code segment Y and Z .  
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regID map regID map regID Map regID map regID map 

0 A_reg.x 10 C[20] 20 C[30] 30 C[12] 40 b2_base 

1 A_reg.y 11 C[21] 21 C[31] 31 C[11] 41 C[5] 

2 lda*8 12 C[22] 22 C[19] 32 C[10] 42 C[4] 

3  13 C[23] 23 C[18] 33 C[9] 43 C[3] 

4  14 C[24] 24 C[17] 34 C[8] 44 C[2] 

5  15 C[25] 25 C[16] 35 C[7] 45 A 

6  16 C[26] 26 C[15] 36 C[6] 46 C[1] 

7  17 C[27] 27 C[14] 37  row 47 C[0] 

8 B 18 C[28] 28 iby 38  k   

9 ? 19 C[29] 29 C[13] 39 b1_base   

Table 9: re-bind pointer A from r48 to r45 and use three registers r0, r1, r2 to represent A_reg and lda*sizeof(complex). 

Now there are only 48 registers per thread, so number of active threads per SM is 320. 

 

Step 5: design pattern of rank-1 update 

Code segment X (from_decuda_147_1736.asm) contains rank-1 update and four assembly codes, two before rank-1 

update and two after rank-1 update, shown in Figure 25. The pattern of rank-1 update is described in Figure 14, here 

we need to explain two "MOV reg, [smem]",  

 lds.b32 $r4, s[$ofs2+b2_res] 

 lds.b32 $r3, s[$ofs1+b1_res] 

These two instructions come from C code  

 

Figure 24: re-bind pointer A from register r48 to register r45 in code segments Y and Z. 
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 float *b1_ptr = (float*)b1 ; 

 float *b2_ptr = (float*)b2 ; 

 .... .... 

 float b_reg_x = b1_ptr[j] ;  //  b1_ptr = &b1[i][0]   

 float b_reg_y = b2_ptr[j] ;  //  b2_ptr = &b2[i][0]   

, i.e. 
3 _ _r b reg x≡  and 

4 _ _r b reg y≡ . First one must know that __shared__ float b1[16][17] starts at 0x60 and 

__shared__ float b2[16][17] starts at 0x4a0, then  

[ ][ ] ( ) ( )& 1 0 60 17b i j x i j sizeof float= + + ×  

[ ][ ] ( ) ( )& 2 0 4 0 17b i j x a i j sizeof float= + + ×  

We use two special registers, $ 1ofs and $ 2ofs 3, to encode LOAD instruction, "MOV reg, [smem]". Decompose 

address [ ][ ]& 1b i j and [ ][ ]& 2b i j  by [ ][ ]& 1 $ 1 1_b i j ofs b res= +  and [ ][ ]& 2 $ 2 2 _b i j ofs b res= + respectively 

by [ ][ ]1_ & 1   mod  0 80b res b i j x≡  and [ ][ ]2 _ & 2   mod  0 80b res b i j x≡ . Then " float b_reg_x = b1_ptr[j] ;" is 

translated into " lds.b32 $r3, s[$ofs1+b1_res]" and " float b_reg_y = b2_ptr[j] ;" is translated into " lds.b32 $r4, 

s[$ofs2+b2_res]". 

 

Remark 8: Such pattern can be generated by function rank1_update_method1() in  

/method1/rank1_update_method1.cpp 

 

Step 6: merge code segment X containing assembly code of desired pattern with code segments Y and Z to a file, 

                                                 3 Addressing memory is quite interesting. It appears that there are four offset registers (on current hardware) $ofs1, 

$ofs2, $ofs3 and $ofs4. These are used to add an offset to the immediate offsets encoded in the instructions. 

http://github.com/laanwj/decuda/raw/master/README 

 

 

Figure 25: design pattern of rank-1 update, which is enclosed by 4 assembly codes. 
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from_decuda_ldsb32.asm, see Figure 26. Also translate from_decuda_ldsb32.asm into machine code, 

from_decuda_ldsb32_cudasm.cubin, via 

 cudasm -o  from_decuda_ldsb32_cudasm.cubin  from_decuda_ldsb32.asm 

and remove header of " from_decuda_ldsb32_cudasm.cubin " to be "from_decuda_ldsb32_cudasm_noHeader.cubin". 

 

Step 7: correct error codes in step 2 (see Figure 21 and Figure 22) 

 

Step 8: merge header of "volkov.cubin" and "from_decuda_ldsb32_cudasm_noHeader.cubin" to final executable 

binary file "method1.cubin" (Figure 27). "method1.cubin" can be loaded into application via driver API. 

 

 

Figure 27: combine header of "volkov.cubin" and final executable binary code 

"from_decuda_ldsb32_cudasm_noHeader.cubin" into method1.cubin 

 

Figure 26: combine header and code segments Y, X, Z into a new assembly file, which translate rank-1 

update as desired pattern. 
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5  Idea 2: remove RAW hazard to increase possibility of dual issue (method 2 variant) 

We only use one MUL per "c = a*b +c" (original Volkov's code use 2 MUL per "c = a*b +c") in method 2 and its 

variant, see Figure 28. The main difference between method 2 and method2_variant is RAW (Read-After-Write) 

hazard, proper rearrangement of instructions in method2_varinat removes RAW hazard but theoretical peak 

performance of method2_variant is smaller than that of method 2. 

Theoretical peak performance of method 2 with dual issue is 

, , ,

4 4
453.82 /

2 5.5MAD reg MAD smem MAD reg

MAD MAD
Gflop s

load ADD T T T
= =

+ + +
 

Theoretical peak performance of method 2 without dual issue is 

, , ,,

4 4
356.57 /

2 7MUMAD reg MAD smem MAD reL smem g

MAD MAD
Gflop s

load AD T TD T T
= =

+ + + +
 

Theoretical peak performance of method 2 variant with dual issue is 

, ,

4 4
416 /

3 6MAD reg MAD reg

MAD MAD
Gflop s

load ADD T T
= =

+ +
  

Theoretical peak performance of method 2 variant without dual issue is 

,,,

4 4
356.57 /

3 7MUL reMAD reg MAD regg

MAD MAD
Gflop s

load ADD T TT
= =

+ + +
 

 

Performance of method 2 and its variant are shown in Table 10 and Figure 29. Clearly, performance of method 2 is 

near peak performance without dual issue. That means that RAW hazard of method 2 stops dual issue. However 

performance of method 2 variant is near peak performance with dual issue.  

 

N Volkov (Gflop/s) method 2  

(Gflop/s) 

R (method2/volkov) nethod2 variant 

(Gflop/s) 

R (method2 

variant/volkov) 

256 187.892 169.412 1.1091 179.885 1.0445 

512 265.591 310.015 0.8567 326.418 0.8137 

1024 329.555 349.521 0.9429 369.045 0.8930 

 

Figure 28: pattern of method 2 and its variant. The difference is RAW (Read-After-Write) hazard. 
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2048 342.854 362.175 0.9467 384.923 0.8907 

4096 348.489 369.914 0.9421 394.145 0.8842 

Table 10: performance of method 2 and its variant on TeslaC1060.  

 

 

 

6  Idea 3: mix idea 1 and idea 2 to increase possibility of dual issue without RAW hazard 

6.1 method 3: mix "volkov + unroll 1" and "method 1"  

We have shown bad performance (348Gflop/s) of "volkov + unroll 1" in section 2.4 and conjecture that RAW hazard 

destroys dual issue. On the other hand, method 1 outperforms (445.7Gflop/s) due to amazing pattern. We may ask one 

question, could we combine "volkov + unroll 1" and "method 1" to remove RAW hazard and keep advantage of 

amazing pattern? The answer is method 3 in Figure 30. 

 

In order to interleave "volkov + unroll 1" and "method 1", we need more registers, including 

( ) [ ]0 1, 0r r A≡

 

is used in "volkov + unroll 1",  

( ) [ ]2 3,r r A lda≡

 

is used in "method 1", and 

 
Figure 30: method 3 = "volkov + unroll 1" + "method 1" 

 

Figure 29: left panel: performance of method 2on TeslaC1060.  

Right panel: performance of method2_variant. 
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( )4r lda sizeof complex≡ × . 

Obviously, peak performance of method 3 is between "volkov + unroll 1" and "method 1". 

peak performance of "volkov + unroll 1" with dual issue is 

,

4
499.2 /

5 MAD reg

MAD
Gflop s

T
=  and 

peak performance of "method 1" is 

,

4
416 /

6 MAD reg

MAD
Gflop s

T
= , then  

peak performance of "method 3" with dual issue is 

,

4 4
453.82 /

5 6 MAD reg

MAD
Gflop s

T

+
=

+
 

However method 3 only reaches 382 Gflop/s from Figure 31, and 382 Gflop/s is smaller than 396.85 Gflop/s which is 

average of "volkov + unroll 1" and "method 1" ( 348 445.7
396.85 /

2
Gflop s

+
= ). This is unreasonable because RAW 

hazard is removed.  

 

6.2 method 4: mix "method 2" and "method 1"  

Similarly "method 2" has bad performance 369.9 Gflop/s due to RAW hazard. We interleave "method 2" and "method 

1" in Figure 32. Also peak performance of method 4 is average of "method 2" and "method 1". 

peak performance of "method 2" with dual issue is 

,

4
453.82 /

5.5 MAD reg

MAD
Gflop s

T
=  and 

peak performance of "method 1" is 

,

4
416 /

6 MAD reg

MAD
Gflop s

T
= , then  

peak performance of "method 4" with dual issue is 

,

4 4
443.08 /

5.5 6 MAD reg

MAD
Gflop s

T

+
=

+
 

In Figure 33, method 4 only reaches 407 Gflop/s, which is exact average of "method 2" and "method 1".  

 

T sum up, method 3 and method 4 do not achieve our goal, we have no idea about this phenomenon.  

 

 

Figure 31: performance of method 3 on TeslaC1060. 
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7 conclusions 

In this work, we use package decuda/cudasm to design pattern of rank-1 update in CGEMM under Volkov's work. 

Experimental result, method 1, supports dual issue of amazing pattern found in [3]. However we still cannot explain 

why method 3 and method 4 does not achieve expected performance.  

 Resource usage and computational cost of these five methods are listed in Table 11. Method 1 reaches 445.724 

Gflop/s, slightly better than method 1 in [3], which attains 439467 Gflop/s. However we believe that CGEMM should 

have potential to reach 499 Gflop/s if we can solve RAW hazard.  

 

algorithm volkov method 1 method 2 

(variant) 

method 3 method 4 

Active threads per SM 256 320 320 320 320 

Peak performance (Gflop/s) on 

TeslaC1060 

499.2 416 416 453.82 434.08 

 

Figure 33: performance of method 4 on TeslaC1060. 

 
Figure 32: method 4 = "method 2" + "method 1" 
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Experimental Gflop/s on 

TeslaC1060 

348.489 445.724 394.145 381.920 407 

ranking 4 1 2 3 2 

Table 11: resource usage and computational cost among five algorithms, volkov, method 1, method2_variant, method 

3 and method 4.  

 

Figure 34 shows performance (Gflop/s) of method1on TeslaC1060, GTX285 and GTX295. The baseline is Volkov's 

code on TeslaC1060 (black dash line). Core frequency of GTX285 is 1.135x than that of TeslaC1060, and it is 

reasonable that performance of GTX285 is 1.155x than that of TeslaC1060. Figure 34 is almost the same as Figure 34 

in [3]. Of course if we compare method 1 with CUBALS, then we have 37.69% improvement because CUBALS only 

reaches 277.7Gflop/s. 

 

 In this work, we rely on effectiveness of package decuda/cudasm as we explain in section 4. Although we do 

many manual modification s in this work, it is more easy than what we do in SGEMM [3]. To sum up, I think there is 

a lot of degree of freedom on optimization if we take code pattern into account, including RAW elimination, 

combination of MUL and MAD, amazing pattern, ... etc.  
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