
 1

Hand-Tuned CGEMM on GT200 GPU

Lung-Sheng Chien

Department of Mathematics, Tsing Hua university, R.O.C. (Taiwan)

d947207@oz.nthu.edu.tw

March 2010

Abstract: we extend the idea in SGEMM [1,2] to CGEMM (matrix multiplication on complex type) and reach

445.7Gflop/s whereas CUBALS reaches 277.7Gflop/s, we have 37.69% improvement.

Figure 1 shows performance (Gflop/s) of method1on TeslaC1060, GTX285 and GTX295. The baseline is Volkov's

code on TeslaC1060 (black dash line). Core frequency of GTX285 is 1.135x than that of TeslaC1060, and it is

reasonable that performance of GTX285 is 1.155x than that of TeslaC1060.

If we compare method 1 with CUBALS, then we have 37.69% improvement because CUBALS only reaches

277.7Gflop/s.

1. File hierarchy

We propose four methods and one Volkov's code [1]. Source code can be downloaded from

 http://oz.nthu.edu.tw/~d947207/NVIDIA/CGEMM/lsc_cgemm_v2.zip. File hierarchy is shown in Figure 2. Source

code of method x is put into directory method[x]. The directory "data" contains profiling data of each method on

three GPUs, TeslaC1060, GTX285 and GTX295. The directory "matlab" contains .m file which can plot experimental

result in directory "data".

 Since we only provide binary code, each direction method[x] has a wrapper, which passes parameters of the

kernel into shared memory. For example, directory "method1" has wrapper "method1_DrvWrapper.cpp".

Figure 1: performance of method 1 over N = multiple of 64 on TeslaC1060, GTX285 and GTX295. The

baseline is performance of Volkov's code on TeslaC1060.

 2

 Main source files and their description are listed in Table 1.

File name functionality

matrixMul_cublas.cpp A wrapper of CUBLAS, matrices A, B and C locate in host memory

profile_CUBLAS.cpp Measure Gflop/s of CUBLAS 2.3 for C AB= where A, B and C are square

matrices

profile_general_sgemm_square.cpp Measure Gflop/s for C AB= where A, B and C are square matrices. All

methods consider out-of-array bound.

check_general_sgemm_square.cpp Run :C AB Cα β= + for , 5 : 257m n = and 5:129k = on all method.

/method1/rank1_update_method1.cpp Generate pattern of rank-1 update,

 set.le.s32 $p0|$o127, $r38, c1[0x0008]

 @$p0.ne bra.label label5

 rank-1 update

 bar.sync.u32 0x00000000

 add.b32 $r38, $r38, 0xfffffff0

grep_utility.cpp Remove blanks in .cubin file in order to do comparison of two .cubin files via

UNIX command "diff"

Table 1: main source files and their functionality.

Figure 2: file hierarchy of source code

 3

2. grid information of each method

We show grid information of each method in Figure 3, detailed information of each method is described in document

HandTunedCgemm_2010_v1.pdf. All (five) methods work for arbitrary dimension (out-of-array bound is

considered).

3. How to compile source code

We deliver binary codes and use driver API to load .cubin file into application. For example, directory "method1"

contains method1.cubin. We don't need to use nvcc to compile .cu file, all that you should do is to compile C++ source

files by g++ , Intel C++ compiler, ... etc. Here we provide a project file "lsc_cgemm_v2.pro" which can be read by

qmake (make file generator of QT). You can use qmake to generate Makefile in unix system or VC2005 project file

(remember to correct PATH of library in project file "lsc_cgemm_v2.pro" before using qmake). If you want to write

Makefile directly, then please include all source files listed in Figure 4.

Figure 3: parameters of grid and block of Volkov's code.

 4

4. How to profile all methods on specific GPU

Figure 5 shows driver in main.cpp. Only two parameters need modifying

(1) choose your target platform

 Suppose you have GTX275 on device 0, (you can use function "show_device_info" to obtain this information or

/SDK/deviceQuery), then set "device_num = 0"

(2) create directory /data/GTX275 to hold experimental data, and configure

 #define OUTPUT_DIR "../data/GTX275/"

Before executing driver, please put executable file in directory "release" or you need to modify path of all methods in

function "auto_profile".

Figure 5: driver in main.cpp. Choose target platform via "device_num" and output directory via

macro "OUTPUT_DIR"

Figure 4: source files and include files

 5

5. How to plot experimental result as we see in technical report

We provide MATLAB solution here. You only need M-file /matlab/profile_cgemm.m and modify parameters passing

into function "profile_cgemm_pair". "profile_cgemm_pair" compares reference model and experimental model given

by caller and plot four figures

(1) Gflop/s of both models

(2) performance improvement
time of experimental model Gflop/s of reference model

time of reference model Gflop/s of experimental model
R = =

(3) () multiple of 8R N =

(4) () multiple of 64R N =

"profile_cgemm_pair" has four input parameters

(1) data file of reference model

(2) model name of reference model, this name would be displayed in figure

(3) data file of experimental model

(4) model name of experimental model

Example: reference model is Volkov's code and experimental model is method1_variant, platform is GTX285, then

 profile_cgemm_pair('../data/GTX285/volkov/threads256.txt', 'volkov',

 '../data/GTX285/method1/threads320.txt' , 'method 1') ;

Moreover one can use M-file, compare_GT200.m to plot last figure in document.

References

[1] Vasily Volkov, James W. Demmel, Benchmarking GPUs to Tune Dense Linear Algebra. In SC ’08: Preceedings of

the 2008 ACM/IEEE conference on Supercomputing. Piscataway, NJ, USA, 2008, IEEE Press. source code can be

downloaded from NVIDIA forum, http://forums.nvidia.com/index.php?showtopic=89084

[2]Lung-Sheng Chien, Hand-Tuned SGEMM on GT200 GPU,

http://forums.nvidia.com/index.php?showtopic=159033

