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a b s t r a c t

This paper addresses a flexible delivery and pickup problem with time windows (FDPPTW) and

formulates the problem into a mixed binary integer programming model in order to minimize the

number of vehicles and to minimize the total traveling distance. This problem is shown to be NP-hard.

In this study, therefore, a coevolutionary algorithm incorporated with a variant of the cheapest

insertion method is developed to speed up the solution procedure. The FDPPTW scheme overcomes the

shortcomings of the existing schemes for the delivery and pickup problems. By testing with some

revised Solomon’s benchmark problems, the computational results have shown the efficiency and the

effectiveness of the developed algorithm.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Due to the awareness of environmental protection, many com-
panies have introduced remanufacturing, recovering, and recycling
operations for transforming trash into money and saving the
environment from damage. Therefore the reverse logistics dealing
with the returned flows have drawn much attention of enterprises
and researchers. Recently, many enterprises have incorporated the
reverse logistics into the regular forward logistics to form a closed-
loop supply chain (Wang and Hsu, 2010). A state of the art survey of
reverse and close-supply chains can be found in Ilgin and Gupta
(2010). Within such a loop, the logistics between the distribution/
collection center and the customers is the most complicated part
because it is related to the bi-directional logistics regarding delivery
and pickup activities.

In the literatures, such problems have been referred to as the
delivery and pickup problems (DPP). DPP applications are fre-
quently encountered, for example, in the distribution system
of grocery store chains. Each grocery store may have a demand
for both delivery (cf. fresh food or soft drinks) and pickup
(cf. outdated items or empty bottles). The foundry industry is
another example in Dethloff (2001). The collection of the used
sand and the delivery of the purified reusable sand at the same
customer location are carried out.

In order to achieve low carbon emission and high resource
productivity, enterprises need to incorporate the reverse logistics
ll rights reserved.

: þ886 3 5722204.
into the regular forward logistics to perform both delivery and
pickup. One way to reduce both the carbon emissions toward the
environment and the operational cost of an enterprise is to lower
the total traveling distance and the number of vehicles. This win–
win situation benefits the enterprises, the governments, and the
human beings; and consequently, more efficient and effective
bi-directional logistics are desired. Based on this requirement,
a flexible delivery and pickup problem with time windows
(FDPPTW) is proposed in this study to facilitate the operations
and management.

This paper is organized as follows. In Section 2, the literatures
related to the issues in interest are reviewed. In Section 3, after
formally defining the FDPPTW, a mathematical model for the
FDPPTW is proposed. To facilitate effective applications, Section 4
gives a detailed description of the developed coevolutionary
genetic algorithm. Section 5 provides the computational results
with the evaluation on the accuracy and efficiency of the devel-
oped algorithm. Finally, the conclusions are drawn in Section 6.
2. Related work

Delivery and pickup problems (DPP) are extensions to the
vehicle routing problem (VRP) where the vehicles are not only
required to deliver goods to customers but also to pick some
goods up at customer locations. In the general DPP, two types of
customers are served from a single depot by a fleet of vehicles.
The first type of customers is known as ‘‘linehaul’’ customers,
who require deliveries of their goods to the specific locations.
The second type is known as ‘‘backhaul’’ customers, who require
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pickups from their specific locations. A survey of the DPP can be
referred to Parragh et al. (2008).

To carry out the jobs of DPP, there are three main strategies
which have been developed into three categories of the problems:
(1) delivery-first, pickup-second for the Vehicle Routing Problem
with Backhauls (VRPB); (2) mixed deliveries and pickups for
the Mixed Vehicle Routing Problem with Backhaul (MVRPB);
and (3) simultaneous deliveries and pickups for the Simultaneous
Delivery and Pickup Problem (SDPP). They are explained briefly
below:
(1)
 Delivery-first, pickup-second strategy: vehicles can only pick
up goods after they have finished delivering their entire loads
(e.g. Ropke and Pisinger, 2006). This strategy facilitates the
implementation because accepting pickups before finishing
all deliveries may cause the vehicle to be overloaded during
its trip (even if the total delivery and the total pickup loads
are not above the vehicle capacity), resulting in an infeasible
vehicle tour. However, visiting a customer twice would
increase the traveling and operation costs.
(2)
 Mixed deliveries and pickups strategy: linehauls and back-
hauls can occur in any sequence on a vehicle route (e.g. Wade
and Salhi (2002), Nagy and Salhi (2005), Crispim and Brandao
(2005) and Tütüncüa et al. (2009)). This strategy releases the
constraints that pickups are only accepted after finishing all
deliveries and makes the operation more efficient. However, if
a customer requires both delivery and pickup services, this
strategy may cause twice accesses and increase the traveling
and operation costs.
(3)
DPP
Simultaneous pickups and deliveries: to facilitate both deliv-
ery and pickup services required by a customer, single access
to the customer is performed. This is a further improvement
from the previous strategies, yet the simultaneous pickups
and deliveries is the only choice. In some literature, the SDPP
was called the Vehicle Routing Problem with Simultaneous
Delivery and Pickup (VRPSDP). Because of its efficiency in
handling both services, many researchers have devoted to this
problems. For instance, Min (1989), Dethloff (2001), Nagy and
Salhi (2005), Crispim and Brandao (2005), Chen and Wu
(2006), Dell’Amico et al. (2006), Montané and Galvao (2006),
Berbeglia et al. (2007), Bianchessi and Righini (2007) and Ai
and Kachitvichyanukul (2009).
SDPP

SDPPTW

VRPB

VRPBTW MVRPBTW

MVRPB

FDPPTW

DPP: Delivery and Pickup Problem
VRPB: Vehicle Routing Problem with Backhauls
MVRPB: Mixed Vehicle Routing Problem with Backhauls
SDPP: Simultaneous Delivery and Pickup Problem
VRPBTW: Vehicle Routing Problem with Backhauls and Time Windows
MVRPBTW: Mixed Vehicle Routing Problem with 
Backhauls and Time Windows
SDPPTW: Simultaneous Delivery and Pickup Problem with Time Windows
FDPPTW: Flexible Delivery and Pickup Problem with Time Windows

(differentiated by
logistic strategies)

(services within
time windows)

(flexible services
and time saving)

Fig. 1. Related delivery and pickup problems.
In order to provide more satisfactory services, nowadays,
enterprises have allowed customers to request their goods being
delivered or picked up within specific time windows. Such
consideration extends the problems above into VRPB and Time
Windows (VRPBTW), MVRPB and Time Windows (MVRPBTW)
and SDPP with Time Windows (SDPPTW), respectively. Since such
extension increases the complexit of the problems, therefore
researchers have devoted to developing efficient algorithms for
finding good feasible solutions. For instance, Kontoravdis and
Bard (1995) developed a greedy randomized adaptive search
procedure to solve the MVRPBTW. Zhong and Cole (2005) devel-
oped a guided local search heuristic to solve both the VRPBTW
and the MVRPBTW. Angelelli and Mansini (2002) developed a
branch and price algorithm for the small-scale SDPPTW. Wang
and Chen (2012) developed a coevolutionary algorithm for the
SDPPTW.

Due to the advantage of flexible delivery and pickup with
MVRPBTW, further improvement on reducing the operation cost
has been carried out. One issue is how to reduce the accessing
time when a simultaneous delivery and pickup at the same
customer location occurs. Dethloff (2001), Chen and Wu (2006),
Montané and Galvao (2006) have suggested that the accessing
time can be reduced by performing a simultaneous delivery and
pickup. This possibility is adopted and evaluated by this study, of
which a new model will be developed to remain the flexibility of
mixing pickup and delivery operations while time saving from
simultaneously performing delivery and pickup is realized. We
call this kind of problems to be the Flexible Delivery and Pickup
Problem with Time Windows (FDPPTW).

FDPPTW will be discussed in Section 3, and the relation of the
reviewed problems above are summarized in Fig. 1.

It is known that the vehicle routing problem with time
windows (VRPTW) is NP-hard (Solomon, 1987). The VRPTW is
polynomial time reducible from the FDPPTW by setting all pickup
demands equal to zero; therefore the FDPPTW is also NP-hard.
As a result, an efficient and effective solution procedure is needed
for the FDPPTW. The methods dedicated to the VRPBTW, the
MVRPBTW, and the SDPPTW are the most relevant. However,
most of these methods were only useful to find practicable
solutions in a short time. When the computational time lasts
longer, they did not show themselves to have significant improve-
ment for better solutions. Furthmore, it is noticed that various
VRPs reviewed in this section were solved by heuristics or
evolutionary algorithms since large-scale VRPs cannot be solved
by exact algorithms. Evolutionary algorithms were showed to
perform well in VRPs and the coevolutionary algorithm per-
formed even better, see Wang and Chen (2012). Therefore, the
coevolutionary algorithm used in Wang and Chen (2012) is
revised to solve the FDPPTW in this study. It will be explained
in Section 4 in details.
3. Problem formulation

The flexible delivery and pickup problem with time windows
(FDPPTW) can be stated as below:

A set of customers who each require a delivery and/or a pickup
of certain quantities within specific time windows, must be
served by a fleet of capacitated vehicles which are stationed at a
distribution center (DC) and ready to serve within a certain time
horizon. The FDPPTW is thus to search for the most economic
route for each vehicle with the minimum operational cost.
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For each service (either delivery or pickup) required by any
customer, one vehicle will be assigned exactly once and certain
service time will be consumed. If both services are required by
one customer, he/she can request a delivery time window and a
pickup time window.

In a common application of the FDPPTW to a recycling net-
work, for illustration, all vehicles may return to a collection center
(CC) to unload the recycled stuff. The infrastructure of the system
can be seen in Fig. 2. The black and the white squares indicate the
distribution center and the collection center, respectively. The
white circles and black triangles indicate linehaul and backhaul
customers correspondingly. The solid arrows indicate the move-
ments. A driver would not need to re-access to a customer if he/
she picks up stuff right after delivers goods. Therefore, we use a
dot arrow to describe that the pickup service for a customer is
performed right after the delivery service. Fig. 2 shows that there
are five customers (2, 3, 6, 7, and 8) who are served delivery and
pickup simultaneously; and the other four customers are served
delivery earlier but pickup later.

The FDPPTW has two objectives: minimizing the number of
vehicles and minimizing the total traveling distance. Trade-offs
between these two kinds of costs are needed to be considered.

Based on the principle of a VRP problem, one customer is
visited exactly once by one vehicle for one service. A pseudo
customer should be introduced for separating two services
required by one customer. Assume there are n customers, each
is indicated by customer i, i¼1,y, n. When modeling, 2n

customers are generated with n new customer i, i¼1,y, n, each
demanding only a delivery service, and n new customer nþ i,
i¼1,y, n, each demanding only a pickup service. Assume there
are m vehicles. The flexible delivery and pickup problem with
time windows is then formulated into a mixed binary integer
programming model denoted by Model FDPPTW as below.
3.1. Notations

Sets

J Set of all customers, J¼ j9j¼ 1,::: , 2n

JD Set of all delivery customers, JD ¼ j9j¼ 1,::: , n

JF Set of all customers plus D.C., JF ¼ 0 [ J

JR Set of all customers plus C.C., JR ¼ J [ 2nþ1
JC Set of all nodes, JC ¼ 0 [ J [ 2nþ1
V Set of all vehicles, V ¼ v9v¼ v1,:::, vm
DC

CC

1

2

3

4 5

6

7

8

9

Fig. 2. Infrastructure of the delivery and pickup network.
Coefficients

qv Capacity of vehicle v, qvARþ

gv Dispatching cost of vehicle v, gvARþ

cij Distance between nodes iA JF ,jA JR; ia j,cijARþ

tij Traveling time between nodes iA JF ,jA JR; ia j,tijARþ

dj Delivery demand of customer jA J,djAZþ

pj Pickup demand of customer jA J,pjAZþ

sj Service time of customer jA J,sjARþ

rj Reduced accessing time if the delivery and pickup
services of customer j are performed simultaneously,
jA JD

aj Earliest service time of customer jA J,ajARþ

bj Latest service time of customer jA J,bjARþ

a0 Earliest departure time of any vehicle from D.C., a0ARþ

b2nþ1 Latest arrival time that a vehicle must return C.C.,
b2nþ1ARþ

M An arbitrary large constant
a A parameter indicating the trade-off between dispatch-

ing cost and traveling cost, aA ½0,1�

Decision variables

L0v Load of vehicle vAV when leaving D.C., L0vAZþ

Lj Remaining load of a vehicle after having served custo-
mer jA J,LjAZþ

xijv Traveling variable of a vehicle vAV ,xijvA0,1; if it travels
directly from node iA JF to node jA JR,xijv ¼ 1; otherwise
xijv ¼ 0

Tj Time to begin service at customer jA J,TjARþ

T0v Departure time of vehicle vAV at D.C., T0vARþ

Tð2nþ1Þv Arrival time of vehicle vAV at C.C., T ð2nþ1ÞvARþ
3.2. Model FDPPTW

Minimize z¼ a
X
vAV

X
jA J

gvxojvþð1�aÞ
X
iA JF

X
jA JR

X
vAV

cijxijv ð1Þ

subject toX
iA JF

X
vAV

xijv ¼ 1 8jA J ð2Þ

X
iA JF

xihv ¼
X
iA JR

xhjv 8hA J, 8vAV ð3Þ

X
jA J

x0jv ¼
X
iA J

xið2nþ1Þv 8hA J, 8vAV ð4Þ

L0v ¼
X
iA JF

X
jA J

djxijv 8vAV ð5Þ

LjZL0v�djþpj�Mð1�x0jvÞ 8jA J, 8vAV ð6Þ

LjZLi�djþpj�M 1�
X
vAV

xijv

 !
8iA J, 8jA J ð7Þ

L0vrqv 8vAV ð8Þ

LjrqvþM 1�
X
iA JF

xijv

0
@

1
A 8jA J, 8vAV ð9Þ

TjZT0vþt0j�Mð1�x0jvÞ 8jA J, 8vAV ð10Þ
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TjZTiþsiþtij�M 1�
X
vAV

xijv

 !
8iA J, 8jA J�nþ i ð11Þ

Tnþ iZTiþsi�riþtiðnþ iÞ�M 1�
X
vAV

xiðnþ iÞv

 !
8iA JD ð12Þ

T ð2nþ1ÞvZTiþsiþtið2nþ1Þ�Mð1�xið2nþ1ÞvÞ 8iA J, 8vAV ð13Þ

a0rT0v 8vAV ð14Þ

ajrTjrbj 8jA J ð15Þ

T ð2nþ1Þvrb2nþ1 8vAV ð16Þ

(Ensure feasibility of the time schedule)

xijvA0,1 8iA JF ,8jA JR,8vAV : ð17Þ

Objective function (1) is to minimize the total cost, which
includes the total dispatching cost and the total traveling cost.
Since these costs are compensated to each other, the trade-off
parameter, aA ½0,1�, is employed to adjust for different decision
criteria. This trade-off parameter a is determined by the
decision maker. The most commonly considered objective
functions are to minimize the number of vehicles, and to
minimize the total distance. In general, minimizing the number
of vehicles is the primary objective, whereas minimizing the
total distance is the secondary. This can be achieved by setting
a close to 1, i.e. a-1. Constraint (2) ensures that each customer
will be visited exactly once by a vehicle. Constraints (3) and (4)
ensure the flow conservation ‘for each customer h’ and
‘between the distribution center and the collection center,’
respectively.

Constraints (5)–(9) describe the vehicle loading along a route.
While Eq. (5) shows the initial load of each vehicle, constraint (6)
calculates the vehicle load of each vehicle after finishing the
service to its first customer. If the first customer of vehicle v is
customer j, which denotes by x0jv ¼ 1, then

Lj ¼ L0v�djþpj: ð18Þ

This implication can be stated as below:

x0jv ¼ 1) Lj ¼ L0v�djþpj ð19Þ

Implication (19) can be remodeled as the following constraint:

Lj ¼ L0v�djþpjþy0jvð1�x0jvÞ ð20Þ

where y0jv is a auxiliary variable, y0jvAR. However, this constraint
is not linear. In order to get a linear constraint, implication (19) is
revised as below:

x0jv ¼ 1) LjZL0v�djþpj ð21Þ

Although the consequence in implication (21) is an inequality
not Eq. (18), it still preserves the meaning of capacity constraint.
Thus, implication (21) can be remodeled into constraint (6) which
is linear. This modeling technique also applies to the formation of
constraints (7) and (9)–(13).

Constraint (7) calculates the ‘en route’ vehicle loads. If any
vehicle delivers the commodity from customer i to customer j,
which denotes by

P
vAV xijv ¼ 1, then

Lj ¼ Li�djþpj ð22Þ

By the technique mentioned above, the implication with
Eq. (21) can be rewritten as constraint (7). Constraint (8) ensures
that the initial load of each vehicle is below the vehicle capacity,
so does the constraint (9) for the ‘en route’ vehicle loads.

The travel and service time along a route is described in
constraints (10)–(16). Constraints (10)–(13) establishes the rela-
tionship between the vehicle arrival time to a customer and
its immediate predecessor. Constraints (10)–(13) are remodeled
from the following implications:

x0jv ¼ 1) TjZT0vþt0j ð23Þ

X
vAV

xijv ¼ 1, janþ i) TjZTiþsiþtij ð24Þ

X
vAV

xiðnþ iÞv ¼ 1) Tnþ iZTiþsi�riþtiðnþ iÞ ð25Þ

xið2nþ1Þv ¼ 1) T ð2nþ1ÞvZTiþsiþtið2nþ1Þ ð26Þ

Constraint (14) ensures that each vehicle never departs from
the distribution center before it opens. Constraint (15) is the time
window constraint. Constraint (16) ensures that each vehicle
never enters the collection center after it closes. Constraint (17)
is the binary constraint.

This model contains 4n2mþ4nþ3m variables (4n2m are bin-
ary) and 8n2þ8nmþ4nþ5m constraints. If the problem scale is
not very large, one can solve the problem by implementing this
model with Cplex or other software package to get the optimal
solution. If n¼100 and m¼20, it will have 800,000 binary
variables and about 100,000 constraints. When the scale of the
problem is up to such large, Cplex is difficult to reach an optimal
solution. Sometimes it even could not get a feasible solution in a
reasonable time. Consequently, a efficent algorithm is needed to
produce qualified solutions.
4. Coevolutionary algorithm (CEA)

The genetic algorithm (GA) was first proposed by Holland (1975).
Due to its global search mechanism, GA has shown its capability to
find good solutions for complex mathematical problems, like the
VRP and other NP-hard problems, in a reasonable amount of time.
The traditional design of a GA faced the dilemma of ‘converging too
quickly to non-acceptable local optima’ or ‘converging too slowly
and resulting in exhaustive time consumption for deriving an
acceptable solution.’ The coevolutionary algorithm (CEA) developed
in this study could avoid any one of the above situations. It is done by
carrying out two separate evolutions simultaneously: Population I is
employed for the diversification purpose while Population II is
employed for the evolutionary intensification. The framework of this
algorithm is shown in Fig. 3.

4.1. Initial population

The first step of a GA is the generation of the initial population.
If a fast and simple heuristic procedure can be found to
distribute all customers to the vehicles as the first generation
of the GA, it can significantly reduce the GA’s computational
time required to reach the reasonable local minima. In other
words, the method used to create initial solutions for a GA
should compute as quickly as possible and reveal as many good
properties as possible. With this purpose, the cheapest insertion
heuristic was frequently used by many researchers. The cheapest
insertion heuristic is developed from the savings procedure of
Clarke and Wright (1964). For the descriptions of some variants
of the cheapest insertion method (CIM), one can refer to Mester
et al. (2007) and Osman (1993). In this study, a revised CIM is
used to generate the initial population and is named the random
seeds cheapest insertion method (RSCIM). The CIM and the
RSCIM are introduced in the following subsections.

4.1.1. CIM

The CIM begins with an initial solution in which each customer is
served individually by a vehicle, i.e. the number of vehicles¼the
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Fig. 3. Framework of the coevolutionary genetic algorithm.
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number of routes¼the number of customers. Insertions of single
route customers to alternative positions in the solution vector are
then attempted in a loop. For a single route customer k, the method
considers alternative positions between adjacent customers l and m

in other routes. The insertions are evaluated using the cost saving
criterion of Osman (1993), (c0kþckðnþ1Þ þclm)�(clkþckm) where cij

refers to the cost of the associated arc (i, j). Each insertion
examines all single route customers; the insertion trial with the
maximum cost savings is executed. The insertion procedure is
stopped if the algorithm cannot reduce the number of single
customer routes.
4.1.2. RSCIM

The initial population of GA needs to spread widely to avoid
falling into local optimum in the later evolution. For this reason,
the RSCIM was developed with the concept of the random seed
customers for route initialization. Instead of beginning with an
initial solution in which each customer is supplied individually by
a separate route, the RSCIM generates a random order of custo-
mers for route growing. Top k customers of the order are the
seeds for route growing where k¼(Total Demand/Average Vehicle
Capacity). By this random order, iteratively, one of the remainder
customers will be added to the partial solution vector to form
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another single customer route, and then the insertion trail with
the maximum cost savings is executed. The addition and insertion
procedure is stopped if the algorithm cannot reduce the number
of single customer routes. This method can search a wider space
for the initial population.

4.2. Co-evolution

The developed CEA has two populations. Population I is
employed for diversification purposes, while Population II is
employed for evolutionary intensification. The coevolutionary
structure of these two populations is illustrated in Fig. 4. Popula-
tion I aims to retain the wide searching ability through three
operators: Reproduction, Recombination and Selection. Population
II aims to reach high quality solutions rapidly and improve them
constantly through four operators: Reproduction, Local Improve-
ment, Crossover, and Selection. Besides, the best chromosome of
Population I is added into Population II at each generation. This
provides endless possibilities that Population II can get rid of local
optimal solutions. The ‘‘simultaneous evolution of diversification
and intensification’’ and the ‘‘continuous forwarding of innovative-
ness’’ are the key factors to avoid converging to non-acceptable
local optima or resulting in exhaustive time consumption.

If the population size N is used, the N initial solutions that RSCIM
generates are copied directly into Population I and Population II.
Evolution of each population is described in the following sections.
In both populations, N parents generate 2N offspring and then these
2N offspring compete with each other for only N to survive as the
parents of the next generation. In Population I, the Reproduction and
Recombination operators are used to generate 2N offspring from N

parents. In Population II, the Reproduction, Local Improvement and
Crossover operators are used to generate 2N offspring from N

parents. In both populations, the Selection operator is used to select
N parents of the next generation from 2N offspring.

4.2.1. Reproduction

In both populations, the reproduction operator copies the best
parents to form the first offspring. The best individual is the
one with minimal objective value. Reproducing to keep the best
individual is also known as the Elitism strategy, which guarantees
that CEA never retreats from a high quality solution.
Recombination

(PopulationI)

Parents

Offspring

best

best

Selection

Fig. 4. Coevolution
4.2.2. Recombination

The recombination operator is a remove–insert mechanism

which preserves the wide searching ability of the developed
CEA. In the first step, it randomly removes 1/2�1/10 of customers
from their routes. Then, the reinsertion of isolated customers is
done by RSCIM. The existing routes are regarded as seed routes.

4.2.3. Local Improvement

Two types of Local Improvement are used in this work:
Reinsertion Improvement and Swap Improvement. Either one of
these two kinds of improvements can be used to improve the
offspring prototypes which the Reproduction operator generates.

Reinsertion Improvement: This operator reinserts one customer
into an alternative position in the solution vector by Osman’s
(1993) cost savings criterion. For a customer k currently serviced
between customers i and j, the operator considers all alternative
positions in the solution vector. Consider the position between
the adjacent customers l and m, the cost savings is evaluated as:
ðcikþckjþclmÞ�ðclkþckmþcijÞ: The improvement operator applied
here uses the best-move strategy, i.e. all possible moves in the
current neighborhood are evaluated and the best improvement
move is selected.

Swap Improvement: This operator swaps the position of two
customers simultaneously in the solution vector by Osman’s (1993)
cost savings criterion. For customers k and h currently serviced
between customers i and j, and l and m, respectively, the swap
possibility is evaluated on cost savings as: ðcikþckjþclhþchmÞ�

ðclkþckmþcihþchjÞ:

4.2.4. Crossover

In the developed CEA, the search space is confined to the
feasible region; therefore, every individual is feasible. Conse-
quently, caution should be also taken on the crossover operator
because a simple exchange between two customers can violate
time or capacity constraints. This study employs a revised cross-
over algorithm which does not entail bias in any particular
direction but makes offspring inherit good properties from parents.
This crossover operator has the offspring inherit as many routs as
possible from parents. Once inherited routes are chosen, they can
be regarded as seed routes and all other un-routed customers
can be inserted into seed routes or other single customer routes.
Crossover

Local
Improvement

Selection

(PopulationII)

best

best

ary structure.
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The criterion of the insertion is the same as the one used in RSCIM.
The procedure to construct a solution after inherited routes are
chosen is called Fixed Seeds Cheapest Insertion Method (FSCIM).
The crossover operator generates one offspring each time. The
crossover algorithm is shown in Algorithm 1:

Algorithm 1. Crossover algorithm

function Crossover;
begin

repeat

Copy Random Route from Parent 1 to the offspring;
Copy Random Route from Parent 2 to the offspring;

until (no more inherited routes are feasible)
All un-routed customers form single customer routes;
Reduce all single customer routes by FSCIM;
end;

4.2.5. Selection

Instead of using the objective function as a fitness function, the
fitness is related to the total travel distance (TD). This is
motivated by the fact that better individuals more likely evolve
from the ones with the lower TD than the ones with the lower
number of vehicles (NV). Recall that the population size is N and
the number of offspring is 2N. The fitness values of the individuals
with the minimal TD and the maximal TD are set to be 4N and
2Nþ1, respectively. This implies that the individual with the
minimal TD has about double the probability to be reproduced
compared to the one with the maximal TD. The fitness is defined
as below:

f itness¼ 4Nþ1�ðranking of TDÞ: ð27Þ

All offspring are evaluated twice by the fitness function and
objective function. In both populations, the individual with the
best objective function is kept directly by the Elitism strategy. The
remaining parents of the next generation are reproduced by the
Roulette wheel selection rule, related to the fitness values. In
other words, these individuals are reproduced from all offspring
where the individual k has the probability of reproduction as:

Prðindividual k to be reproducedÞ ¼
f itness ðkÞ

total f itness
: ð28Þ

4.3. Termination condition

There are two termination conditions in the developed CEA:
convergence and time limit. At the beginning of each generation,
updating the best individual of these two populations is based on
the comparison between the best individuals of two consecutive
generations. If the improvement between two consecutive gen-
erations is zero, the evolution is under a ‘stagnancy’ state. The
developed CEA converges when the evolution has been under
‘stagnancy’ for consecutive 500 generations. Another termination
condition is when the computational time reaches half an hour.
Once one of the termination conditions is satisfied, the evolution
Table 1
Parameters used in the CEA.

CEA parameter (description)

SIZE_POP1 (population size of population 1)

SIZE_POP2 (population size of population 2)

CONV_COUNT (definition for convergence in terms of numbe
process will be terminated and the best individual will be
reported as the best solution.
5. Computational experiments

Since there have not been any studies with testing problems
which were dedicated to the FDPPTW, for evaluation, this study
generates some FDPPTW test problems which are revised from
Wang and Chen’s SDPPTW test problems (refer to Wang and Chen
(2012)). Wang and Chen’s SDPPTW test problems were revised
from Solomon’s VRPTW benchmarks (refer to Solomon (1987)).
The set of Solomon’s test problems is composed of six different
problem types (C1, C2, R1, R2, RC1, and RC2). Each data set
contains between eight to twelve 100-customer problems. The
categories of the six problem types refer to:

C: with clustered customers whose time windows were
generated based on a known solution;
R: with customer locations generated uniformly randomly
over a square;
RC: with a combination of randomly placed and clustered
customers.
where
Type 1 has narrow time windows and small vehicle
capacity, and
Type 2 has large time windows and large vehicle capacity.

By revising from Wang and Chen’s test problems, this study
generates fifty-six 100-customer problems. For the small-scale
test problems, this study also generates three 5-customer pro-
blems, three 10-customer problems, three 25-customer problems,
and three 50-customer problems. Due to different objective
functions used in the literatures, this analysis employs the
trade-off parameter a to adjust for different decision criteria, in
particular, by setting a-1, to reveal the primary concern of
minimizing the number of vehicles, than the minimization of
the total distance. All experiments were executed on an Intel
Core2 Quad 2.4 G computer with 1 G memory.

5.1. Definition of the parameters

The developed CEA does not employ mutation operators for
the reason that there is no significant improvement. Those
additional tests with mutation operators and other adjustments
will be described in the latter subsections. Therefore, there are a
few parameters to be determined. The parameters used in the
developed CEA are listed in Table 1 and explained below.

SIZE_POP1 and SIZE_POP2 represent the population sizes of
Population I and Population II, respectively, in which values
of (50, 50) are empirically chosen. Since larger population size
increases the computational time and smaller population size
decreases the quality of solutions, 50 is an appropriate population
size for the FDPPTW. Convergence is defined as the evolution
appearing in a given amount of (CONV_COUNT¼500) consecutive
stagnancy generations and is used as a stopping condition.
Value

50

50

r of consecutive stagnancy generations) 500



Table 2
Factorial experiments.

Factors NV TD Comp. time

Population Class LI Mutation (s)

One One None None 105 11555.06 8910

One One None 0.5 108 12267.47 13749

One One With None 107 11825.56 11349

One One With 0.5 103 11414.11 10691

One Two None None 107 11952.98 14286

One two None 0.5 105 12250.97 14412

One Two With None 104 11437.36 4548

One Two With 0.5 102 11367.85 7701

Two One None None 103 11238.03 3198

Two One None 0.5 104 11279.52 4206

Two One With None 101 11247.80 4424
Two One With 0.5 103 11319.24 5710

Two Two None None 102 11153.05 3171

Two Two None 0.5 104 11200.60 2711

Two Two With None 105 11325.45 9485

Two Two With 0.5 104 11290.88 11067

LI: local improvement operator; NV: number of vehicles; Comp. time: computa-

tional time.

Table 3
Experiments of the mutation rates.

Mutation NV TD Comp. time
rate (s)

0 101 11247.80 4424
0.05 103 11175.57 5268

0.1 101 11363.30 4436

0.5 103 11319.24 5710
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5.2. Factorial experiments

In order to increase the quality of solutions and the speed of
convergence, some experiments are conducted: with or without
local improvement operators, with or without mutation opera-
tors, one or two classes, and one or two populations.

Eleven mutation operators used in Wang and Chen (2012)
with the concept of customer reinsertion, customer migration,
customer exchange, route partitioning, and route reduction are
employed to half these experiments. The other half are not
employed any mutation operator. The mutation rate is tempora-
rily set to 0.5. The mechanism of two-class is design to increase
the speed of convergence. The chromosomes are separated into
two classes: high class and massive class. High-class chromo-
somes are guaranteed to have their offspring while massive-class
chromosomes are not. The mutation operators and the mechan-
ism of two-class is employed in Population II and depicted
in Fig. 5. Furthermore, for those experiments that only single
population is employed, Population II is kept as that single
population but Population I is removed.

The results of these experiments are illustrated in Table 2.
The best setting of the developed CEA is two-population, one-
class, with-local-improvement, and no-mutation. The reason
that the employment of mutation does not contribute significant
improvements may be that small changes of chromosomes
cannot stop chromosomes from falling into local optimums.
About the other factors, the employment of the local-improve-
ment operators successfully guides chromosomes to reach better
solutions. However, the mechanism of two-class neither
increased the speed of convergences as expected nor increased
the quality of solutions. On the contrary, the mechanism of two-
population significantly increases both the speed of conver-
gences and the quality of solutions. It successfully broadens
the searching space and helps chromosomes jump out from local
optimums as expected.

The above experiments show that there is no significant
improvement when the mutation rate is set to be 0.5. For
examining more mutation rates, two set of experiments with
mutation rates 0.1 and 0.05 are further conducted. The results
in Table 3 have confirmed the non-necessity of the mutation
operators.
Recombination

(PopulationI)

Parents

Offspring

best

best

Selection

Fig. 5. Employment of mu
5.3. Accuracy of the developed CEA

The commercial linear programming software, like ILOG Cplex,
could find the optimal solution for the small-scale FDPPTW.
Hence it is adopted to evaluate the accuracy of the developed
algorithm. For the none-flexible case of the FDPPTW, the SDPPTW,
Wang and Chen (2012) generated some small-scale problems:
three 10-customer problems, three 25-customer problems, and
Crossover Crossover

MutationLocal
Improvement

Selection

(PopulationII)

best

best

highclass

highclass

tation and two-class.
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three 50-customer problems. In this study, these nine small-scale
SDPPTWs are further revised to form nine small-scale FDPPTWs.
They are named as RCf10101, RCf10104, RCf10107, RCf25101,
RCf25104, RCf25107, RCf50101, RCf50104, and RCf50107. How-
ever, Cplex cannott solve the 50-customer problems while the
developed CEA easily finds solutions for them. When the number
of customer nodes is up to 50, Cplex solver incorrectly shows
an error message ‘‘presolve determines problem is infeasible or
unbounded’’ due to the truncation errors. In order to provide more
evidences about the accuracy of the developed CEA, three 5-custo-
mer problems, named RCf05101, RCf05104, and RCF05107, are
generated in this study. The comparison between solutions of Cplex
Table 4
Comparison between the solutions of Cplex and the developed CEA to the small-

scale SDPPTW.

Problem Cplex CEA

NV TD Com. time NV TD Com. time

RCf05101 3 220.15 5 3 220.15 1

RCf05104 2 214.57 1169 2 214.57 1

RCf05107 2 211.83 473 2 211.83 1

RCf10101 3 347.38 897 3 347.38 1

RCf10104 2a 316.99a 9893 2 216.69 1

RCf10107 3a 264.96a 18266 2 310.81 4

RCf25101 10a 1137.98a 66123 5 529.13 6

RCf25104 12a 1777.95a 87606 4 473.46 5

RCf25107 11a 1526.01a 117612 4 567.15 10

RCf50101 b b b 9 928.50 60

RCf50104 b b b 6 738.30 69

RCf50107 b b b 7 807.86 57

a The ‘‘out of memory’’ values.
b Cplex cannot solve problems due to truncation errors.

Table 5
Comparison between the SDPPTW and the FDPPTW.

Problem SDPPTW FDPPTW Gap

NV TD NV TD NV TD (%)

C*101 11 1001.97 10 858.24 �1 �14.34
C*102 10 961.38 10 897.23 0 �6.67
C*103 10 897.65 10 850.10 0 �5.30
C*104 10 878.93 10 898.04 0 2.17

C*105 11 983.10 10 922.05 �1 �6.21
C*106 11 878.29 10 862.08 �1 �1.85
C*107 11 913.81 10 854.69 �1 �6.47
C*108 10 951.24 10 840.51 0 �11.64
C*109 10 940.49 10 928.47 0 �1.28
R*101 19 1653.53 18 1606.16 �1 �2.86
R*102 17 1488.04 16 1443.61 �1 �2.99
R*103 14 1216.16 14 1227.14 0 0.90

R*104 10 1015.41 10 1022.58 0 0.71

R*105 15 1375.31 14 1391.09 �1 1.15

R*106 13 1255.48 13 1291.21 0 2.85

R*107 11 1087.95 11 1104.33 0 1.51

R*108 10 967.49 10 974.99 0 0.78

R*109 12 1160.00 12 1201.52 0 3.58

R*110 12 1116.99 12 1136.52 0 1.75

R*111 11 1065.27 11 1119.90 0 5.13

R*112 10 974.03 10 976.69 0 0.27

RC*101 15 1652.9 14 1728.07 �1 4.55

RC*102 14 1497.05 13 1493.89 �1 �0.21
RC*103 12 1338.76 12 1334.29 0 �0.33
RC*104 11 1188.49 12 1254.67 1 5.57

RC*105 14 1581.26 14 1538.77 0 �2.69
RC*106 13 1422.87 13 1444.44 0 1.52

RC*107 12 1282.10 12 1292.51 0 0.81

RC*108 11 1175.04 11 1161.16 0 �1.18

NV—Number of vehicles; TD—Total distance.

Boldface indicates that the solution of the FDPPTW has fewer vehicle or lower total di
and the developed CEA to the small-scale FDPPTW is listed in
Table 4. One can see that Cplex is only able to find the optimal
solutions of RCf05101, RCf05104, RCf05107, and RCf10101 by
5�1169 s. However, the developed CEA can get their optimal
solution by only 1 s. For the rest of the test problems, Cplex gives
the ‘‘out of memory’’ best values for five problems, but cannot find
feasible solutions for all of three 50-customer problems due to the
truncation errors.

5.4. Computational results for the FDPPTW

Wang and Chen (2012) generated fifty-six 100-customer
SDPPTW test problems by revising Solomon benchmarks. For
evaluating the performance of the developed CEA to the FDPPTW,
fifty-six 100-customer FDPPTW test problems are generated by
revising those SDPPTWs in this study. In each problem, a longer
pickup time window is created by extending the original time
window. The CEA results for the FDPPTWs and Wang and Chen’s
results for the SDPPTWs are compared in Table 5. The average
computational times of the SDPPTW and the FDPPTW are 10.7
and 8.7 min. A concise comparison is listed in Table 6. The
FDPPTW scheme uses total 7 fewer vehicles than the SDPPTW
scheme dose. This also matches the declaration that the FDPPTW
scheme is more flexible and more economical than the SDPPTW
scheme.
6. Conclusions

Based on green issues, the closed-loop logistics have become
more and more important in recent years. Since the bi-directional
logistics is the most complicated part in a closed-loop supply
chain, the delivery and pickup problems have also drawn much
Problem SDPPTW FDPPTW Gap

NV TD NV TD NV TD (%)

C*201 3 591.56 3 591.56 0 0.00

C*202 3 591.56 3 591.56 0 0.00

C*203 3 591.17 3 591.17 0 0.00

C*204 3 590.6 3 590.6 0 0.00

C*205 3 588.88 3 588.88 0 0.00

C*206 3 588.49 3 588.49 0 0.00

C*207 3 588.29 3 588.29 0 0.00

C*208 3 588.32 3 588.32 0 0.00

R*201 4 1280.44 4 1289.15 0 0.68

R*202 4 1100.92 4 1133.73 0 2.98

R*203 3 950.79 3 974.37 0 2.48

R*204 3 775.23 3 775.67 0 0.06

R*205 3 1064.43 3 1101.47 0 3.48

R*206 3 961.32 3 1011.14 0 5.18

R*207 3 835.01 3 839.75 0 0.57

R*208 3 718.51 3 728.18 0 1.35

R*209 3 930.26 3 1008.49 0 8.41

R*210 3 983.75 3 1076.93 0 9.47

R*211 3 839.61 3 826.04 0 �1.62

RC*201 4 1587.92 4 1504.38 0 �5.26
RC*202 4 1211.12 4 1269.46 0 4.82

RC*203 4 964.65 4 1054.28 0 9.29

RC*204 3 822.02 3 817.01 0 �0.61
RC*205 4 1410.18 4 1417.18 0 0.50

RC*206 3 1176.85 4 1128.03 1 �4.15
RC*207 4 1036.59 4 1053.44 0 1.63

RC*208 3 878.57 3 1020.95 0 16.21

stance.



Table 6
Concise comparison between the SDPPTW and the FDPPTW.

C1 C2 R1 R2 RC1 RC2 Cumulative Comp. time

Non-flexible

NV 94 24 154 35 102 29 438 35981

TD 8406.86 4718.87 14375.66 10440.27 11138.47 9087.90 58168.03

Flexible

NV 90 24 151 35 101 30 431 29359

TD 7911.41 4718.87 14495.74 10764.92 11247.80 9264.73 58403.47
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attention in the literatures in the past two decades. The existing
operations for three categories of the delivery and pickup pro-
blems have some shortages and shortcomings. For the vehicle
routing problem with backhaul and time windows and the
simultaneous delivery and pickup problem with time windows,
they didn’t allow the flexible mix of pickup services and delivery
services. On the other hand, in the mixed vehicle routing problem
with backhauls and time windows, if the delivery and pickup
service of a customer was performed simultaneously, the acces-
sing time was not reduced. In this study, the flexible delivery and
pickup problem with time windows is considered to overcome
the above shortcomings.

The problem is formulated into a mixed binary integer program-
ming model and one can implement this model by Cplex to get
the optimal solution if the scale of the problem is small. Since the
problem is NP-hard, this study develops a coevolutionary algorithm
to get near optimal solutions in an acceptable computational
time. The termination conditions are able to prevent exhaustive
computations.

This study generates some test problems by revising the well-
known Solomon’s benchmarks which are oringally used for the
vehicle routing problem with time windows. The comparison
between the results of Cplex software and the developed algo-
rithm shows the efficiency, but in particular, the accuracy of the
developed algorithm. Further comparison with the non-flexible
case provides the time-saving evidence of the developed algo-
rithm, and thus the flexible scheme is ont only more flexible but
also more economical.

Nowadays, pickup demand in the reverse networks often
accompanies uncertainty. The fuzzy mathematics can be a possi-
ble tool to enhance the applicability of the model. Hence, how to
extend the model to cope with uncertainty is a direction of the
further study.
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