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Abstract 

As the reverse logistics and the closed loop supply chain networks 
have been adopted by enterprises, the delivery and pickup problems 
with time windows have much attention and have been studied 
extensively. After investigating their uncertainty properties and 
complexities in finding solutions, this study, based on the Fuzzy 
Credibility Theory, proposes a Chance Constrained Programming 
(CCP) model to describe a Fuzzy Flexible Delivery and Pickup 
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Problem with Time Windows (FFDPPTW). In the meantime, a 
Coevolutionary Algorithm is implemented to obtain near optimal 
solutions in an acceptable computational time. Some test problems are 
generated by revising the well-known Solomon’s benchmarks which 
are originally used for the vehicle routing problem with time windows. 
The results show the coevolutionary algorithm is not only accurate but 
more efficient. Further comparison between different confidence 
levels shows that the higher the confidence level is required, the larger 
the cost is paid; this facilitates the decision support based on the 
decision maker’s preference. 

1. Introduction 

Due to the awareness of the environmental protection, how to reduce the 
utilization of the materials by reusing and remanufacturing the used products 
has been a critical issue for an enterprise. This induces the concept of the 
green supply chain management and has led to a problem of the closed loop 
supply chain management (Wang and Hsu [30]). A state of the art survey of 
reverse and closed supply chains can be found in Ilgin and Gupta [12]. 
Within a closed loop supply chain, the logistics between the 
distribution/collection center and the customers is the most complicated part 
because it is related to a bi-directional logistics regarding delivery and pickup 
activities. It has been shown that incorporating reverse logistics with 
conventional forward-only logistics to form bi-directional logistics can 
significantly reduce the cost of returned merchandise, improve customer 
satisfaction, and increase the profit of enterprises. The bi-directional logistics 
problem has been referred to as delivery and pickup problem (DPP) in 
literature. 

The DPP has been widely applied. For example, it is frequently 
encountered in the distribution system of grocery store chains. Each grocery 
store may have a demand for both delivery (cf. fresh food or soft drinks) and 
pickup (cf. outdated items or empty bottles). The foundry industry is another 
example studied by Dethloff [8]. Collection of used sand and delivery of 
purified reusable sand at the same customer location are carried out. For 
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more realistic applications, this paper further investigates a more general 
situation, called the Fuzzy Flexible Delivery and Pickup Problem with Time 
Windows (FFDPPTW). 

This paper is organized as follows: Section 2 reviews the literature 
related to the issues in interest. Section 3 briefly introduces some basic 
concepts in Fuzzy Measure Theory. Section 4 first defines the FFDPPTW 
and then develops a Chance Constrained Programming model for it.         
Section 5 provides the computational results of an effective and efficient 
coevolutionary algorithm with the evaluation on the accuracy and the 
efficiency. Finally, the conclusions are drawn in Section 6. 

2. Literature Review 

The delivery and pickup problem (DPP) was developed from the vehicle 
routing problem (VRP). The VRP originally focused on how to dispatch a 
group of vehicles to serve a group of customers with a given demand when 
the minimum operational cost is desired. In the delivery and pickup problems 
(DPP), vehicles are required not only to deliver goods to customers but also 
to pick some goods up at customer locations. It can be regarded as that two 
types of customers are served from a single depot by a fleet of vehicles. The 
first type of customers is known as “linehaul” customers, who require 
deliveries of their goods to the specific locations. The second type is known 
as “backhaul” customers, who require pickups from their specific locations. 
A survey of the DPP can be referred to Parragh et al. [22]. 

There are three main strategies for the DPP: (1) delivery-first, pickup-
second; (2) mixed deliveries and pickups; and (3) simultaneous deliveries 
and pickups. 

Delivery-first, pickup-second strategy: vehicles can only pickup goods 
after they have finished delivering their entire load (e.g., Ropke and Pisinger 
[24]). One reason for this is that it may be difficult to rearrange delivery and 
pickup goods on the vehicles. Such an assumption makes the implementation 
issue easier because accepting pickups before finishing all deliveries results 
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in a fluctuating load. This may cause the vehicle to be overloaded during its 
trip (even if the total delivery and the total pickup loads are not above the 
vehicle capacity), resulting in an infeasible vehicle tour. 

Mixed deliveries and pickups strategy: linehauls and backhauls can occur 
in any sequence on a vehicle route (Wade and Salhi [27], Nagy and Salhi 
[19], Crispim and Brandao [7] and Tütüncüa et al. [26]). This strategy 
releases the constraints that pickups are only accepted after finishing all 
deliveries. When there are no difficulties in rearranging the load on the 
vehicle, this strategy is more attractive to backhaul customers and 
enterprises. The satisfaction of backhaul customers can be higher since they 
can be served earlier. Moreover, the enterprises can save the transportation 
cost since the sequence of deliveries and pickups can be arranged in a more 
economical way. 

Simultaneous pickups and deliveries: simultaneously performing 
delivery and pickup services with a single stop for each customer. In some 
applications, customers can have both a delivery and a pickup demand. They 
may not accept to be serviced separately for the delivery and pickup they 
require because handling effort is caused by both activities. In this situation, 
simultaneous pickups and deliveries is the only choice, see Min [17] and 
Dethloff [8]. 

Referring to these service strategies, the DPP is divided into three 
categories: the vehicle routing problem with backhauls (VRPB), the mixed 
vehicle routing problem with backhaul (MVRPB), and the simultaneous 
delivery and pickup problem (SDPP). In some literature, the SDPP was 
called the vehicle routing problem with simultaneous delivery and pickup 
(VRPSDP), see Min [17] and Dethloff [8]. 

In order to provide more satisfactory services, nowadays, enterprises 
have allowed customers to request their goods being delivered or picked                                     
up within specific time windows. Such consideration extends the 
aforementioned problems into VRPB and Time Windows (VRPBTW), 
MVRPB and Time Windows (MVRPBTW), and SDPP with Time Windows 
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(SDPPTW), respectively. Since such extension increases the complexity of 
the problems, therefore researchers have devoted to developing efficient 
algorithms for finding good feasible solutions. For instance, Kontoravdis and 
Bard [13] developed a greedy randomized adaptive search procedure to solve 
the MVRPBTW. Zhong and Cole [33] developed a guided local search 
heuristic to solve both the VRPBTW and the MVRPBTW. Angelelli and 
Mansini [1] developed a branch and price algorithm for the small-scale 
SDPPTW. Wang and Chen [28] developed a coevolutionary algorithm for 
the SDPPTW. 

Based on the advantage of flexible delivery and pickup with 
MVRPBTW, further improvement on reducing the operation cost has been 
carried out. One issue is how to reduce the accessing time when a 
simultaneous delivery and pickup at the same customer location occurs. 
Dethloff [8], Chen and Wu [6], and Montané and Galvao [18] have suggested 
that the accessing time can be reduced by performing a simultaneous delivery 
and pickup. This possibility was adopted and evaluated by Wang and Chen 
[29], of which a new model was developed to realize time saving from 
simultaneously performing delivery and pickup while the flexibility of 
mixing pickup and delivery operations is remained. This kind of problems 
was called the flexible delivery and pickup problem with time windows 
(FDPPTW). A detailed review of these delivery and pickup problems with 
time windows can be found in Chen and Wang [5]. 

The models used in aforementioned problems were all deterministic 
models; all the factors involved in the models must be known exactly. 
Unfortunately, real world is often uncertain. There are cases that the 
imprecision/uncertainty concerning demand, service time, and traveling time 
must be taken into account. Fuzzy set theory has provided efficient and 
meaningful concepts and methodologies to formulate and solve mathematical 
programming and decision making problems of real world (Dong and 
Kitaoka [9]). Fuzzy approaches have been applied to solve some fuzzy 
vehicle routing problems. 
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Xu et al. [31] considered a VRP with soft time windows and fuzzy 
demand. The problem was formulated as a two stages resource model. The 
theory of possibility and necessity is applied in the capacity constraint and a 
genetic algorithm was proposed to solve the problem. Maekly et al. [16] 
proposed a fuzzy random vehicle routing problem whose demands were 
assumed to be fuzzy random variables. They used the concept of the chance 
constrained programming (CCP) model to formulate the problem and 
proposed a tabu search method to solve it. Brito et al. [2] considered the 
vehicle routing problem with time windows where traveling times were fuzzy 
numbers. The weighted possibility and necessity measure of fuzzy relations 
was used to specify a confidence level at which it was desired that the arrival 
time to reach each customer fell into their time windows. They proposed        
and analyzed a solution procedure consisting in hybridizing a variable 
neighborhood search and a greedy randomized adaptive search procedure for 
the corresponding optimization problem. Cao and Lai [3] considered the 
vehicle routing problem with fuzzy demands. They proposed a chance 
constrained programming (CCP) model based on credibility theory for                     
the problem. Then, a hybrid intelligent algorithm integrating stochastic 
simulation and differential evolution algorithms was developed to solve the 
problem. Peng and Qian [23] coped with the vehicle routing problem with 
fuzzy demands. To formulate the problem, they used a chance constrained 
programming (CCP) model, of which the credibility was used to evaluate the 
chance. Then, a particle swarm optimization algorithm was developed for 
finding the solution. Cao and Lai [4] addressed the open vehicle routing 
problem with fuzzy demands. In this problem, a vehicle was not required to 
return to the distribution depot after serving the last customer on its route. 
Again, a fuzzy chance constrained programming (CCP) model was designed 
based on the fuzzy credibility theory to formulate the problem; for solving 
the problem, stochastic simulation and an improved differential evolution 
algorithm were integrated into a hybrid intelligent algorithm. 

One can see that chance constrained programming (CCP) model was 
frequently used to formulate a variety of fuzzy vehicle routing problems. 
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Through this model, a decision maker can choose a confidence level to plan 
or determine the best alternative after comparing different planning results 
under different confidence levels. Therefore, the decision maker not only can 
take part in the decision process; but also can evaluate the results with 
confidence. 

In this paper, we propose a fuzzy flexible delivery and pickup problem 
with time windows (FFDPPTW). The deterministic case of the FFDPPTW, 
the FDPPTW, is NP-hard (Wang and Chen [29]). The FDPPTW is 
polynomial time reducible to the FFDPPTW by setting all lower bounds and 
upper bounds of fuzzy numbers equal to their medians; therefore the 
FFDPPTW is also NP-hard. To facilitate the development of solution 
procedure, the FFDPPTW is formulated into a chance constrained 
programming (CCP) model based on the fuzzy credibility theory. A 
coevolutionary algorithm is then implemented for solving it. 

3. Fuzzy Credibility Measure Theory 

In this section, some basic concepts in fuzzy measure theory are 
introduced briefly. First, the axioms of possibility measure theory proposed 
by Liu [14] are introduced. These axioms form the basis of Credibility 
Measure Theory. In order to deal with fuzziness, Zadeh [32] suggested a 
possibility measure and Nahmias [20] proposed the related axioms to 
characterize the concept. They are briefly introduced below: 

Let Θ  be a nonempty set, and let ( )ΘP  be the power set of .Θ  Each 

element in ( )ΘP  is called an event, and ∅  is an empty set. In order to 

present an axiomatic definition of possibility, it is necessary to assign a 
number { }APos  to each event A, which indicates the possibility that A will 

occur (Nahmias [20]). 

Axiom 1 (Normality Axiom). { } .1=ΘPos  

Axiom 2 (Nonnegativity Axiom). { } .0=∅Pos  
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Axiom 3 (Maximality Axiom). For every sequence of events { },iA  we 

have 

{ }.
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∞
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⎬
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Unfortunately, possibility measure does not obey the law of truth 
conservation and is inconsistent with the law of excluded middle and the law 
of contradiction. In order to overcome the shortage of possibility measure, 
Liu and Liu [15] presented a credibility measure which is a combination of 

possibility measure and necessity measure. Let cA  be the complementary of 
event A. 

Definition 4 (Dubois [10]). For every event A, the necessity of event A is 
defined as 

{ } { }.1 cAPosANec −=  (2) 

Definition 5 (Liu and Liu [15]). For every event A, the credibility of 
event A is defined as 

{ } { } { }( ) ( { } { }).12
1

2
1 cAPosAPosANecAPosACr −+=+=  (3) 

Credibility measure obeys the law of truth conservation and is consistent 
with the law of excluded middle and the law of contradiction. Obviously, a 
fuzzy event may not hold even though its possibility approaches 1 and such 
an event may hold even though its necessity is 0. However, a fuzzy event 
must hold if its credibility is 1, and it must fail if its credibility is 0. The 
credibility measure is self-dual, and in the theory of fuzzy subsets, the law of 
credibility plays a role similar to that played by the law of probability in 
measurement theory for ordinary sets. 

Now let us consider a triangular fuzzy variable ( )321 ,,~ pppp =  as the 

pickup demand of a given customer such that p~  is described by its left 

boundary 1p  and its right boundary .3p  Thus, a dispatcher or analyst 

studying such a problem can subjectively estimate that a customer’s pickup 
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demand will not be less than 1p  or greater than ,3p  based on his/her 

experience, intuition and/or available data. The value of 2p  corresponds to a 

grade of membership of 1, which can also be determined by a subjective 
estimate. Assume the capacity of the vehicle is q. Based on above definitions 
of possibility, necessity, and credibility, we can derive: 
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If the decision maker would like to have a vehicle routing plan with 

confidence level, ,∗Cr  that the vehicle can pickup the demand, then we can 
model this situation as the following constraint: 

{ } .~ ∗≥< CrqpCr  (7) 

Constraint (7) is a simple example illustrating how the chance of 
accomplishing a pickup job can be expressed in a Chance Constrained 
Programming model where the chances are evaluated by the credibility 
measure. 

4. Problem Formulation 

The fuzzy flexible delivery and pickup problem with time windows 
(FFDPPTW) can be stated as below: 
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A set of customers, each requires a delivery and/or a pickup of certain 
quantities within specific time window(s), must be served by a fleet of 
capacitated vehicles stationed at a distribution center (DC). The pickup 
demands, the service times, and the traveling times are uncertain. The 
FFDPPTW is thus to search for the most economic route for each vehicle 
with the minimum operational cost under a specific confidence level. 

For each service (either delivery or pickup) required by any customer, 
one vehicle will be assigned exactly once. If both services are required by 
one customer, then he/she can request different or the same time windows for 
delivery and pickup. 

 

Figure 1. The infrastructure of the delivery and pickup network. 

In a common application of the FFDPPTW to a network with recycling 
task, for illustration, all vehicles may return to a collection center (CC) to 
unload the recycled stuff. The infrastructure of the system can be seen in 
Figure 1. The black and the white squares indicate the distribution center 
(DC) and the collection center (CC), respectively. The white circles and 
black triangles indicate linehaul and backhaul customers correspondingly. 
The solid arrows indicate the movements. A driver will not need to re-access 
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to a customer if he/she picks up stuff right after delivers goods. Therefore, 
we use a dot arrow to describe that the pickup service for a customer is 
performed right after the delivery service. Figure 1 shows that there are five 
customers (2, 3, 6, 7, and 8) who are served delivery and pickup 
simultaneously; and the other four customers are served delivery earlier than 
the pickups. 

The FFDPPTW has two objectives involved in the aggregated cost: 
minimizing the number of vehicles and minimizing the total traveling 
distance. Trade-off between these two kinds of costs is needed to be 
considered. Refer to the mathematical models used in Wang and Chen [28] 
and Wang and Chen [29], the model formulation of the FFDPPTW is 
developed as follow. 

Based on the principle of a VRP problem, one customer is visited exactly 
once by one vehicle for one service. A pseudo customer should be introduced 
for separating two services required by one customer. Assume there are n 
customers, each is indicated by customer ....,,1, nii =  When modeling, 2n 

customers are generated with n new customer ,...,,1, nii =  each demanding 

only a delivery service, and n new customer ,in +  ,...,,1 ni =  each 

demanding only a pickup service. Assume there are m vehicles. The flexible 
delivery and pickup problem with time windows is then formulated into a 
fuzzy chance constrained programming model denoted by Model FFDPPTW 
as below where 12 += nk  denote the collection center (CC). 

Notations 

Sets 

DJ  Set of all delivery customers, { }njjJ D ...,,1=|=  

PJ  Set of all pickup customers, { }nnjjJ P 2...,,1+=|=  

J Set of all customers, { }njjJJJ PD 2...,,1=|== ∪  

0J  Set of all customers plus DC, { } JJ ∪00 =  
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kJ  Set of all customers plus CC, { }kJJk ∪=  

V Set of all vehicles, { }mvvvvV ...,,1=|=  

Coefficients 

vq  Capacity of vehicle v, +∈ Rvq  

vg  Dispatching cost of vehicle v, +∈ Rvg  

ijc  Distance between nodes +∈≠∈∈ Rijk cjiJjJi ,;,0  

ijt~  Traveling time between nodes ( ) ijk tjiJjJi ~,,0 ≠∈∈  is a 

fuzzy number 

jd  Delivery demand of customer +∈∈ RjdJj ,  

jp~  Pickup demand of customer jpJj ~,∈  is a fuzzy number 

js~  Service time of customer jsJj ~,∈  is a fuzzy number 

jr  Accessing time reduction if the delivery and pickup services 

of customer j are performed simultaneously, ,DJj ∈  

+∈ Rjr  

ja  Earliest service starting time of customer +∈∈ RjaJj ,  

jb  Latest service starting time of the time window of customer 

+∈∈ RjbJj ,  

0a  Earliest departure time of any vehicle from DC, +∈ R0a  

kb  Latest arrival time that a vehicle must return to CC, 

+∈ Rkb  
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∗Cr  Credibility confidence level that constraints would not be 
violated 

M An arbitrary large constant 

α  A parameter indicating the trade-off between dispatching 
cost and traveling cost, [ ]1,0∈α  

Decision Variables 

ijvx  Traveling variable of a vehicle ,Vv ∈  { };1,0∈ijvx  if 

vehicle v travels directly from node 0Ji ∈  to node ,kJj ∈  

;1=ijvx  otherwise 0=ijvx  

Auxiliary Variables 

vL0  Load of vehicle Vv ∈  when leaving DC, +∈ RvL0  

jL~  Remaining load of a vehicle after having served customer 

jLJj ~,∈  is a fuzzy variable 

jT~  Time to begin service at customer ,Jj ∈  jT~  is a fuzzy 

variable 

vT0  Departure time of vehicle Vv ∈  from DC, +∈ RvT0  

kvT~  Arrival time of vehicle Vv ∈  to CC, kvT~  is a fuzzy variable 

Model FFDPPTW 

Minimize ( )∑∑ ∑ ∑ ∑
∈ ∈ ∈ ∈ ∈

α−+α=
Vv Jj Ji Jj Vv

ijvijojvv
k

xcxgz
0

,1  (8) 

subject to 

∑∑
∈ ∈

∈∀=
0

,,1
Ji Vv

ijv Jjx  (9) 
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∑ ∑
∈ ∈
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Ji Ji
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k
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Jj
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0

,,0
Ji Jj

ijvjv VvxdL  (13) 

( ) ,,,1~~
00 VvJjxMpdLL jvjjvj ∈∀∈∀−−+−≥  (14) 

,,,1~~~ JjJixMpdLL
Vv

ijvjjij ∈∀∈∀
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
−−+−≥ ∑

∈

 (15) 

,,0 VvqL vv ∈∀≤  (16) 

,,,1~

0

VvJjCrxMqLCr
Ji

ijvvj ∈∀∈∀≥
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎟

⎠

⎞
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⎝

⎛
−+≤ ∗

∈
∑  (17) 

( ) ,,,1~~
000 VvJjxMtTT jvjvj ∈∀∈∀−−+≥  (18) 

{ },,,1~~~~ inJjJixMtsTT
Vv

ijvijiij +−∈∀∈∀
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−++≥ ∑

∈

 (19) 

( ) ( ) ,,1~~~~
D

Vv
viniiniiiiin JixMtrsTT ∈∀
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+−+≥ ∑

∈
+++  (20) 

( ) ,,,1~~~~ VvJixMtsTT ikvikiikv ∈∀∈∀−−++≥  (21) 

,,00 VvTa v ∈∀≤  (22) 

,,~ JjTa jj ∈∀≤  (23) 
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{ } ,,~ JjCrbTCr jj ∈∀≥≤ ∗  (24) 

{ } ,,~ VvCrbTCr kkv ∈∀≥≤ ∗  (25) 

{ } .,,,1,0 0 VvJjJix kijv ∈∀∈∀∈∀∈  (26) 

Objective function (8) is to minimize the total cost, which includes the 
total dispatching cost and the total traveling cost. Since these costs are 
compensated to each other, the trade-off parameter, [ ],1,0∈α  is employed 

to adjust for different decision criteria. This trade-off parameter α  is 
determined by the decision maker. The most commonly considered objective 
functions are to minimize the number of vehicles and to minimize the total 
distance. In general, minimizing the number of vehicles is the primary 
objective, whereas minimizing the total distance is the secondary. This can 
be achieved by setting α  close to 1, i.e., .1→α  Constraint (9) ensures that 
each customer will be visited exactly once by a vehicle. Constraints (10) and 
(11) ensure the flow conservation ‘for each customer h’ and ‘between the 
distribution center and the collection center,’ respectively. Constraint (12) 
ensures each vehicle is at most assigned to a route. 

Constraints (13)-(17) describe the vehicle loading along a route. While 
equation (13) shows the initial load of each vehicle, constraint (14) calculates 
the vehicle load of each vehicle after finishing the service to its first 
customer. If the first customer of vehicle v is customer j, which denotes by 

,10 =jvx  then 

.~~
0 jjvj pdLL +−=  (27) 

This implication can be stated as below: 

.~~1 00 jjvjjv pdLLx +−=⇒=  (28) 

Implication (27) can be remodeled as the following constraint: 

( ),1~~
000 jvjvjjvj xypdLL −++−=  (29) 
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where jvy0  is an auxiliary variable, .0 R∈jvy  When ,00 =jvx  jL~  is not 

necessarily equal to jjv pdL ~
0 +−  since jvy0  could be any real number; 

when ,10 =jvx  jL~  must be equal to .~
0 jjv pdL +−  However, this constraint 

is not linear. In order to get a linear constraint, implication (27) is revised as 
below: 

.~~1 00 jjvjjv pdLLx +−≥⇒=  (30) 

Although the consequence in implication (30) is an inequality not equation 
(27), it still preserves the meaning of capacity constraint. Thus, implication 
(30) can be remodeled into constraint (14) which is linear. This modeling 
technique also applies to the formation of constraints (15) and (17)-(21). 

Constraint (15) calculates the ‘en route’ vehicle loads. If any vehicle 
delivers the commodity from customer i to customer j, which denotes by 

∑ ∈ =Vv ijvx ,1  then 

.~~~
jjij pdLL +−=  (31) 

By the technique mentioned above, the implication with equation (31) can be 
rewritten as constraint (15). Constraint (16) ensures that the initial load of 
each vehicle is below the vehicle capacity. Constraint (17) ensures the ‘en 
route’ vehicle loads are below the vehicle capacity with a confidence level. 
The constraint to describe that the ‘en route’ vehicle loads are below the 
vehicle capacity should be like constraint (32): 

.,,1~

0

VvJjxMqL
Ji

ijvvj ∈∀∈∀
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+≤ ∑

∈

 (32) 

Assume that the decision maker specifies that he/she would like to have a 

credibility confidence level, ,∗Cr  that the vehicle can pickup the demand 
without exceeding the capacity of the vehicle. We then can adopt the concept 
of the chance programming model mentioned in Section 3 to remodel 
constraint (32) as constraint (17) based on the structure of constrain (7). 
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Hence, according to the credibility confidence level which the decision 
maker specifies and the credibility that the next customer’s demand does not 
exceed the vehicle capacity, a decision is made regarding whether to send the 
vehicle to the next customer or to return it to the depot. In this study, this 

decision is made as follows: if ∗≥ CrCr  holds, then the vehicle is sent to the 
next customer; otherwise, the vehicle is returned to the depot. 

The traveling and service time along a route is described in constraints 
(18)-(21). Constraints (18)-(21) establish the relationship between the vehicle 
arrival time to a customer and its immediate predecessor; they are remodeled 
from the following implications: 

,~~1 000 jvjjv tTTx +≥⇒=  (33) 

∑
∈

++≥⇒+≠=
Vv

ijiijijv tsTTinjx ,~~~~,1  (34) 

( ) ( )∑
∈

+++ +−+≥⇒=
Vv

iniiiiinvini trsTTx ,~~~~1  (35) 

.~~~1 ikiikvikv tsTTx ++≥⇒=  (36) 

Constraint (22) ensures that each vehicle never departs from the 
distribution center before it opens. Constraint (23) ensures that customers are 
only served after the earliest service time points they specify. Constraints 
(24) and (25) are remodeled from the following constraints: 

( ) ( )∑
∈

+++ +−+≥⇒=
Vv

iniiiiinvini trsTTx ,~~~~1  (37) 

.~~~1 ikiikvikv tsTTx ++≥⇒=  (38) 

Constraint (37) aims to emphasize that drivers should serve customers no 
later than the latest service time points. Constraint (38) aims to emphasize 
that each vehicle should enter the collection center no later than the 
scheduled closed time. By the similar technique of constrain (7) mentioned in 
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Section 3, constraints (37) and (38) are remodeled into constraints (24) and 
(25). Finally, constraint (26) is the binary constraint. 

This model contains mn +4  fuzzy variables, mnmmn ++ 44 2  binary 

variables, and 2m real number variables. This model contains nmn 88 2 +  
mn ++ 4  fuzzy constraints and mnnm 52 ++  crisp constraints. 

5. Computational Experiments 

Since there have not been any studies with testing problems which were 
dedicated to the FFDPPTW, for evaluation, this study generates some 
FFDPPTW test problems which are revised from Wang and Chen’s 
FDPPTW test problems (Wang and Chen [29]). Wang and Chen’s FDPPTW 
test problems were revised from Solomon’s VRPTW benchmarks (Solomon 
(1987)). The set of Solomon’s test problems is composed of six different 
problem types (C1, C2, R1, R2, RC1 and RC2). Each data set contains 
between eight to twelve 100-customer problems. The categories of the six 
problem types refer to: 

C: with clustered customers whose time windows were generated based 
on a known solution; 

R: with customer locations generated uniformly randomly over a square; 

RC: with a combination of randomly placed and clustered customers, 

where 

Type 1 has narrow time windows and small vehicle capacity, and 

Type 2 has large time windows and large vehicle capacity. 

By revising from Wang and Chen’s [29] FDPPTW test problems, this 
study generates some FFDPPTW test problems. In each problem, the pickup 
demands, the service times, the traveling times are revised into triangular 
fuzzy numbers. Similar to Solomon’s VRPTW benchmark problems, the 
distances are Euclidean distances. Traveling times are fuzzy numbers. Their 
medians equal to the corresponding distances. Their left spreads and right 
spreads equal to 0.25 × ‘the corresponding distances.’ 
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The primary objective is to minimize the number of vehicles (NV) and 
the secondary objective is to minimize the total distance (TD). Due to 
different objective functions used in the literatures, this analysis employs the 
trade-off parameter α  to adjust for different decision criteria, in particular, 
by setting ,1→α  to reveal the primary concern of minimizing the number 
of vehicles (NV), than the minimization of the total distance (TD). In our 
implementation, we set .4140=α  All experiments were executed on an 

Intel Core2 Quad 2.4G computer with 1G memory. 

5.1. Coevolutionary algorithm 

The genetic algorithm (GA) was first proposed by Holland [11]. Due to 
its global search mechanism, GA has shown its capability to find good 
solutions for complex mathematical problems, like the VRP and other NP-
hard problems, in a reasonable amount of time. The traditional design of a 
GA faced the dilemma of ‘converging too quickly to non-acceptable local 
optima’ or ‘converging too slowly and resulting in exhaustive time 
consumption for deriving an acceptable solution.’ 

In order to avoid any of the above situations, we use a coevolutionary 
algorithm (CEA) to solve the problem. The CEA carries out two separate 
evolutions simultaneously: Population I was employed for the diversification 
purpose while Population II was employed for the evolutionary 
intensification. The framework of this algorithm is shown in Figure 2. Once 

the confidence level ∗Cr  is chosen, a FFDPPTW can be defuzzified to a 
FDPPTW by inequalities (6) and (7). Therefore, the coevolutionary 
algorithm (CEA) is implemented to solve the FFDPPTW in this study due to 
its capability on solving complex problems. 

The heuristic method which generates the initial population is a cheapest 
insertion method. The cheapest insertion method is developed from the cost 
saving criterion of Osman [21]. Population I aims to retain the wide 
searching ability through three operators: Reproduction, Recombination and 
Selection. Population II aims to reach high quality solutions rapidly and 
improve them constantly through four operators: Reproduction, Local 
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Improvement, Crossover, and Selection. For the details of the heuristic 
method generating the initial population and the genetic operators of the 
algorithm, please refer to Wang and Chen [29]. By the result of the test runs 
in Wang and Chen [29], the population sizes of population I and population 
II are suggested to be 50 and 50. The termination condition is 500 
generations without improvement or half an hour. 

 

Figure 2. The framework of the coevolutionary algorithm. 
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5.2. Computational results for the small-scale FFDPPTW 

In order to evaluate the accuracy of the CEA, a package of commercial 
linear programming software, ILOG Cplex, is adopted for comparison. ILOG 
Cplex can find the optimal solution for the small-scale FFDPPTW. Wang 
and Chen [29] generated some small-scale problems for the FDPPTW, the 
deterministic case of the FFDPPTW. There were three 5-customer problems, 
three 10-customer problems, and three 25-customer problems. In this study, 
these nine small-scale FDPPTWs are further revised to form nine small-scale 
FFDPPTWs. They are named as RCff05101, RCff05104, RCff05107, 
RCff10101, RCff10104, RCff10107, RCff25101, RCff25104, and 
RCff25107. Three credibility confidence levels (0.5, 0.8 and 1.0) are 
implemented to get different results for different types of decision makers. 

The results of Cplex and the CEA for the small-scale FFDPPTW are 
listed in Tables 1 and 2. One can see that Cplex is only able to find the 
optimal solutions of 5-node problems (RCff05101, RCff05104, RCff05107), 
and 10-node problem (RCff10101) within 1~630 seconds. However, the 
CEA can get their optimal solutions by only 1~2 second. For the rest of the 
test problems, Cplex gives the “out of memory” best values for the other two 
10-node problems, but it cannot find feasible solutions for all of three 25-
node problems. When the number of customer nodes is up to 25, Cplex 
solver incorrectly shows an error message “presolve determines problem is 
infeasible or unbounded” due to the truncation errors. 

In order to easily compare the results between Cplex and the CEA, the 

aggregated costs defined as ( )TDNV +×2000  are depicted in Figure 3. For 

those problems which Cplex cannot solve, the aggregated costs are set as 
20,000 like a penalty. One can see that the larger the confidence level is, the 
larger the aggregated cost is. Furthermore, the CEA is superior to Cplex 
when the number of customer is larger than 5. 
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Table 1. The Cplex results for the small-scale FFDPPTW with respect to 
different credibility levels 

 5.0=∗Cr  8.0=∗Cr  0.1=∗Cr  

Problem NV TD 
Com. 
Time 

NV TD 
Com. 
Time 

NV TD 
Com. 
Time 

RCff05101 3 220.15 2 3 220.15 1 3 220.15 1 

RCff05104 2 214.57 630 2 219.88 420 2 223.44 262 

RCff05107 2 211.83 96 2 241.92 58 3 242.19 156 

RCff10101 3 347.38 2 3 358.19 1 4 371.90 8 

RCff10104 *2 *270.32 31072 *3 *363.21 38700 *5 *583.07 38050 

RCff10107 *3 *315.50 29812 *4 *386.04 64145 *5 *480.23 58720 

RCff25101 # # # # # # # # # 

RCff25104 # # # # # # # # # 

RCff25107 # # # # # # # # # 

*: the “out of memory” values. 

#: Cplex cannot solve problems due to truncation errors. 

Table 2. The results of the CEA for the small-scale FFDPPTW 

 5.0=∗Cr  8.0=∗Cr  0.1=∗Cr  

Problem NV TD 
Com. 
Time

NV TD 
Com. 
Time 

NV TD 
Com. 
Time 

RCff05101 3 220.15 1 3 220.15 1 3 220.15 1 

RCff05104 2 214.57 1 2 219.88 1 2 223.44 1 

RCff05107 2 211.83 1 2 241.92 1 3 242.19 1 

RCff10101 3 347.38 1 3 358.19 1 4 371.90 2 

RCff10104 2 216.69 1 2 259.44 1 3 281.16 2 

RCff10107 3 247.82 1 3 306.40 2 3 306.40 1 

RCff25101 5 529.13 6 6 546.77 15 6 551.70 15 

RCff25104 4 473.46 9 5 528.74 13 5 532.78 16 

RCff25107 5 540.87 7 5 561.81 15 6 568.41 16 
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Figure 3. Aggregated cost vs. number of customers. 

5.3. Computational results of the large-scale FFDPPTW 

Wang and Chen [29] generated fifty-six 100-customer FDPPTW test 
problems by revising Solomon benchmarks. For evaluating the performance 
of the CEA for the FFDPPTW, fifty-six 100-customer FFDPPTW test 
problems are generated by revising those FDPPTWs in this study. In each 
problem, the pickup demands, the service times, the traveling times are 
similarly revised into triangular fuzzy numbers. Three credibility confidence 
levels (0.5, 0.8 and 1.0) are implemented to get different results for different 
types of decision makers. The CEA results for these 100-node FFDPPTWs 
are listed in Table 3. 

The average computational time is 28.1 minutes. A condensed 
comparison among different credibility confidence levels is listed in Table 4. 
The aforementioned observation still holds: the larger is the confidence level, 
the larger the aggregated cost is. All the generated test problems can be 
found in the following website. (http://oz.nthu.edu.tw/~d933810/ test.htm). 
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Table 3. The CEA results for the 100-node FFDPPTW 

 5.0=∗Cr  8.0=∗Cr  0.1=∗Cr   5.0=∗Cr 8.0=∗Cr 0.1=∗Cr  

Problem NV TD NV TD NV TD Problem NV TD NV TD NV TD 

R*101 18 1625.57 20 1697.06 20 1744.04 R*201 4 1322.65 4 1371.17 5 1269.46 

R*102 15 1452.12 16 1518.2 18 1613.5 R*202 4 1115.85 4 1129.29 4 1200.78 

R*103 14 1254 14 1305.81 16 1383.84 R*203 3 1044.86 4 958.41 4 970.02 

R*104 10 1083.32 12 1089.64 13 1167.94 R*204 3 763.65 3 778.33 3 857.25 

R*105 15 1400.75 16 1458.17 17 1476.54 R*205 3 1138.97 4 1053.13 4 1063.6 

R*106 13 1283.74 14 1327.81 15 1358.45 R*206 3 896.66 3 1016.33 4 960.89 

R*107 11 1138.15 12 1216.57 13 1261.66 R*207 3 894.82 3 915.88 3 908.09 

R*108 10 1021.67 11 1068.67 12 1127.17 R*208 3 738.61 3 734.28 3 758.74 

R*109 13 1211.69 13 1288.98 15 1306.59 R*209 3 989.22 4 984.96 4 937.42 

R*110 12 1116.11 13 1156.31 14 1238.02 R*210 3 1014.93 4 966.47 4 989.49 

R*111 11 1215.21 13 1147.79 13 1221.31 R*211 3 896.66 3 888.56 3 899.99 

R*112 11 1039.56 12 1044.02 12 1088.76        

C*101 10 860.11 11 1019.98 12 1135.78 C*201 3 591.56 4 745.14 4 872.22 

C*102 10 898.66 11 1027.35 12 1135.46 C*202 3 591.56 4 695.57 4 749.89 

C*103 10 850.1 11 1032.1 12 1083 C*203 3 591.17 4 672.64 4 760.9 

C*104 10 900.38 11 940.73 12 1053.18 C*204 3 590.6 4 652.66 4 663.69 

C*105 10 968.43 11 1026.38 12 1100.86 C*205 3 588.88 4 677.02 4 794.08 

C*106 10 862.08 11 1013.6 12 1107.66 C*206 3 588.49 4 680.11 4 768.7 

C*107 10 902.68 11 958.86 12 1056.96 C*207 3 588.29 4 677.16 4 701.33 

C*108 10 882.17 11 1035.76 12 1010.53 C*208 3 588.32 4 668.4 4 663.99 

C*109 10 936.62 11 1001.59 12 1077.9        

RC*101 16 1671.61 18 1768.74 18 1825.74 RC*201 4 1637.64 5 1396.22 5 1547.09 

RC*102 14 1507.6 16 1599.96 17 1713.6 RC*202 4 1260.68 4 1205.25 5 1214.19 

RC*103 13 1382.81 14 1457.71 14 1492.74 RC*203 4 1019.13 4 1034.63 4 1100.14 

RC*104 11 1193.03 13 1332.99 14 1473.83 RC*204 3 862.18 4 808.38 4 833.21 

RC*105 15 1535.42 17 1640.37 18 1755.68 RC*205 5 1307.93 5 1285.81 5 1387.02 

RC*106 13 1459.05 14 1507.23 15 1585.29 RC*206 4 1131.37 4 1134.1 4 1110.3 

RC*107 12 1331.95 14 1390.48 14 1473.55 RC*207 4 1037.31 4 1083.17 4 1085.22 

RC*108 11 1220.4 12 1302.44 14 1383.06 RC*208 3 888.17 3 898.96 4 895.3 
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Table 4. A condensed comparison among different confidence levels for the 
100-node FFDPPTW 

  C1 C2 R1 R2 RC1 RC2 Cumulative 
Comp. 
Time 

NV 90 24 151 35 101 30 431 
5.0=∗Cr  

TD 7911.41 4718.87 14495.74 10764.92 11247.80 9264.73 58403.47 
99966 

NV 99 32 166 39 118 33 487 
8.0=∗Cr  

TD 9056.35 5468.70 15319.03 10796.81 11999.92 8846.52 61487.33 
89362 

NV 108 32 178 41 124 35 518 
0.1=∗Cr  

TD 9761.33 5974.80 15987.82 10815.73 12703.49 9172.47 64416 
93834 

5.4. Validity and managerial insight of FFDPPTW with credibility 
approach 

The proposed model is successfully validated by Cplex. The 
coevolutionary algorithm (CEA) and Cplex both find the optimal solutions 
for all the 5-node problems and one of the 10-node problems. When the 
number of nodes is larger than or equals to 10, Cplex no longer guarantees to 
find the optimal solution. While Cplex is only able to give the ‘out-of-
memory’ solutions, the CEA finds better solutions in a very short time. 
While Cplex does not work, the CEA still works well. 

In this study, different credibility confidence levels (0.5, 0.8, and 1.0) are 
implemented to get different results for different types of decision makers. 
All the results reveal a phenomenon: the larger the confidence level is, the 
larger the cost is. This phenomenon facilitates the decision support based on 
the decision maker’s preference. If the decision maker is an absolute risk 

averter, then he/she can set 0.1=∗Cr  to get full confidence but also get a 
plan with the highest cost; on the contrary, if the decision maker is a risk 

lover, he/she can set 8.0=∗Cr  or lower to get a plan with a lower cost but 
accompanied with a lower confidence. 

6. Conclusions 

As the reverse logistics and the closed loop supply chain networks have 
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been adopted by enterprises, the delivery and pickup problems with time 
windows have been drawn much attention and studied extensively recently. 
Since there are cases that the imprecision/uncertainty concerning pickup 
demand, traveling time, and service time must be taken into account, a fuzzy 
flexible delivery and pickup problem with time windows (FFDPPTW) is 
proposed in this paper. The problem is then formulated into a chance 
constrained programming (CCP) model based on the fuzzy credibility theory. 
Different credibility confidence levels can be implemented to get different 
results for different types of decision makers. One can implement this model 
by Cplex to get the optimal solution if the scale of the problem is small. 

Some test problems are generated by revising the well-known Solomon’s 
benchmarks which are originally used for the vehicle routing problem with 
time windows. This study then uses a coevolutionary algorithm to get near 
optimal solutions in an acceptable computational time. The termination 
conditions are able to prevent exhaustive computations. The comparison 
between the results of Cplex software and the coevolutionary algorithm 
shows the coevolutionary algorithm is not only accurate but more efficient. 
Further comparison between different confidence levels shows that the 
higher the confidence level is required, the larger the cost is paid. Decision 
makers can pick out a best suitable plan by their preferences. 

In some real-life problems, some customers’ time windows can be 
violated with appropriate penalties. The penalty is usually proportional to the 
degree of lateness at the customer, as the duration of time in excess of the 
latest service time prescribed by the customer. How to extend hard time 
windows to soft ones is a direction of the further study. In some practical 
applications, the vehicle capacity is small or the planning period is large, 
performing more than one route per vehicle may be more appropriate for 
practical implementation. Hence, how to extend one trip to multiple trips is 
also a direction of the further study. 

Acknowledgements 

The authors acknowledge the financial support from the National 



Fuzzy Credibility Approach to the Fuzzy Flexible Delivery … 69 

Science Council, Taiwan, ROC under project no. NSC 100-2221-E-007-062-
MY3 and NSC 101-2218-E-464-002-. 

References 

 [1] E. Angelelli and R. Mansini, The vehicle routing problem with time windows and 
simultaneous pickup and delivery, A. Klose, M. G. Speranza and L. N. Van 
Wassenhove, eds., Quantitative Approaches to Distribution Logistics and Supply 
Chain Management, Lecture Notes in Economics and Mathematical Systems, pp. 
249-267, Springer Press, New York, 2002. 

 [2] J. Brito, F. J. Martínez, J. A. Moreno and J. L. Verdegay, A GRASP–VNS Hybrid 
for the fuzzy vehicle routing problem with time windows, Lecture Notes in 
Computer Science 5717 (2009), 825-832. 

 [3] E. Cao and M. Lai, A hybrid differential evolution algorithm to vehicle routing 
problem with fuzzy demands, J. Comput. Appl. Math. 231 (2009), 302-310. 

 [4] E. Cao and M. Lai, The open vehicle routing problem with fuzzy demands, Expert 
Systems with Applications 37 (2010), 2405-2411. 

 [5] Y.-Y. Chen and H.-F. Wang, Delivery and pickup problems with time windows: 
strategy and modeling, S. M. Gupta, ed., Reverse Supply Chains: Issues and 
Analysis, CRC Press, 2013. 

 [6] J.-F. Chen and T.-H. Wu, Vehicle routing problem with simultaneous deliveries 
and pickups, J. Oper. Res. Soc. 57 (2006), 579-587. 

 [7] J. Crispim and J. Brandao, Metaheuristics applied to mixed and simultaneous 
extensions of vehicle routing problems with backhauls, J. Oper. Res. Soc. 56 
(2005), 1296-1302. 

 [8] J. Dethloff, Vehicle routing and reverse logistics: the vehicle routing Problem with 
simultaneous delivery and pick-up, OR Spectrum 23 (2001), 79-96. 

 [9] Y. Dong and M. Kitaoka, Two-stage model of vehicle routing problem with fuzzy 
demands and its ant colony system algorithm, Proceedings of the ninth 
international symposium on operations research and its applications, Dunhuang, 
China, 2010. 

 [10] D. Dubois, Unfair coins and necessity measures: Towards a possibilistic 
interpretation of histograms, Fuzzy Sets and Systems 10 (1983), 15-20. 

 [11] J. H. Holland, Adaptation in Natural and Artificial Systems, University of 
Michigan Press, Ann Arbor, 1975. 



Ying-Yen Chen and Hsiao-Fan Wang 70 

 [12] M. A. Ilgin and S. M. Gupta, Environmentally conscious manufacturing and 
product recovery (ECMPRO): A review of the state of the art, Journal of 
Environmental Management 91 (2010), 563-591. 

 [13] G. Kontoravdis and J. Bard, A GRASP for the vehicle routing problem with time 
windows, ORSA Journal on Computing 7(1) (1995), 10-23. 

 [14] B. Liu, Uncertainty Theory, 4th ed., Uncertainty Theory Laboratory, 2012. 
http://orsc.edu.cn/liu/ut.pdf 

 [15] Y.-K. Liu and B. Liu, Random fuzzy programming with chance measures defined 
by fuzzy integrals, Math. Comput. Model. 36 (2002), 509-524. 

 [16] H. Maekly, B. Haddadi and R. Tavakkoli-Moghadam, A fuzzy random vehicle 
routing problem: the case of Iran, Proceedings of the 39th International 
Conference on Computers and Industrial Engineering, Troyes, France, 2009. 

 [17] H. Min, The multiple vehicle routing problem with simultaneous delivery and 
pick-up points, Transportation Research A 23(5) (1989), 377-386. 

 [18] F. A. T. Montané and R. D. Galvao, A tabu search algorithm for the vehicle 
routing problem with simultaneous pick-up and delivery service, Comput. Oper. 
Res. 33(3) (2006), 595-619. 

 [19] G. Nagy and S. Salhi, Heuristic algorithms for single and multiple depot vehicle 
routing problems with pickups and deliveries, Eur. J. Oper. Res. 162(1) (2005), 
126-141. 

 [20] S. Nahmias, Fuzzy variables, Fuzzy Sets and Systems 1 (1978), 97-110. 

 [21] I. Osman, Metastrategy simulated annealing and tabu search algorithms for the 
vehicle routing problems, Ann. Oper. Res. 41 (1993), 421-451. 

 [22] S. N. Parragh, K. F. Doerner and R. F. Hartl, A survey on pickup and delivery 
problems: Part II: Transportation between pickup and delivery locations, Journal 
of Betriebswirtschaft 58 (2008), 81-117. 

 [23] Y. Peng and Y. Qian, A particle swarm optimization to vehicle routing problem 
with fuzzy demands, Journal of Convergence Information Technology 5(6) 
(2010), 112-119. 

 [24] S. Ropke and D. Pisinger, A unified heuristic for a large class of vehicle routing 
problems with backhauls, Eur. J. Oper. Res. 171 (2006), 750-775. 

 [25] M. M. Solomon, Algorithms for the vehicle routing and scheduling problems with 
time window constraints, Oper. Res. 35(2) (1987), 254-265. 



Fuzzy Credibility Approach to the Fuzzy Flexible Delivery … 71 

 [26] G. Y. Tütüncüa, C. A. C. Carreto and B. M. Baker, A visual interactive approach 
to classical and mixed vehicle routing problems with backhauls, Omega 37 (2009), 
138-154. 

 [27] A. C. Wade and S. Salhi, An investigation into a new class of vehicle routing 
problem with backhauls, Omega 30 (2002), 479-487. 

 [28] H.-F. Wang and Y.-Y. Chen, A genetic algorithm for the simultaneous delivery 
and pickup problems with time window, Computers and Industrial Engineering 62 
(2012), 84-95. 

 [29] H.-F. Wang and Y.-Y. Chen, A coevolutionary algorithm for the flexible delivery 
and pickup problem with time windows, International Journal of Production 
Economics 141(1) (2013), 4-13. 

 [30] H.-F. Wang and H.-W. Hsu, A closed-loop logistic model with a spanning-tree 
based genetic algorithm, Comput. Oper. Res. 37(2) (2010), 376-389. 

 [31] J. Xu, G. Goncalves and T. Hsu, Genetic algorithm for the vehicle routing problem 
with time windows and fuzzy demand, Proceedings of 2008 IEEE Congress on 
Evolutionary Computation, Hong Kong, China, 2008. 

 [32] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and 
Systems 1 (1978), 3-28. 

 [33] Y. Zhong and M. H. Cole, A vehicle routing problem with backhauls and time 
windows: a guided local search solution, Transportation Research Part E 41 
(2005), 131-144. 


