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Abstract

As the reverse logistics and the closed loop supply chain networks
have been adopted by enterprises, the delivery and pickup problems
with time windows have much attention and have been studied
extensively. After investigating their uncertainty properties and
complexities in finding solutions, this study, based on the Fuzzy
Credibility Theory, proposes a Chance Constrained Programming
(CCP) model to describe a Fuzzy Flexible Delivery and Pickup
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Problem with Time Windows (FFDPPTW). In the meantime, a
Coevolutionary Algorithm is implemented to obtain near optimal
solutions in an acceptable computational time. Some test problems are
generated by revising the well-known Solomon’s benchmarks which
are originally used for the vehicle routing problem with time windows.
The results show the coevolutionary algorithm is not only accurate but
more efficient. Further comparison between different confidence
levels shows that the higher the confidence level is required, the larger
the cost is paid; this facilitates the decision support based on the
decision maker’s preference.

1. Introduction

Due to the awareness of the environmental protection, how to reduce the
utilization of the materials by reusing and remanufacturing the used products
has been a critical issue for an enterprise. This induces the concept of the
green supply chain management and has led to a problem of the closed loop
supply chain management (Wang and Hsu [30]). A state of the art survey of
reverse and closed supply chains can be found in llgin and Gupta [12].
Within a closed loop supply chain, the logistics between the
distribution/collection center and the customers is the most complicated part
because it is related to a bi-directional logistics regarding delivery and pickup
activities. It has been shown that incorporating reverse logistics with
conventional forward-only logistics to form bi-directional logistics can
significantly reduce the cost of returned merchandise, improve customer
satisfaction, and increase the profit of enterprises. The bi-directional logistics
problem has been referred to as delivery and pickup problem (DPP) in
literature.

The DPP has been widely applied. For example, it is frequently
encountered in the distribution system of grocery store chains. Each grocery
store may have a demand for both delivery (cf. fresh food or soft drinks) and
pickup (cf. outdated items or empty bottles). The foundry industry is another
example studied by Dethloff [8]. Collection of used sand and delivery of
purified reusable sand at the same customer location are carried out. For
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more realistic applications, this paper further investigates a more general
situation, called the Fuzzy Flexible Delivery and Pickup Problem with Time
Windows (FFDPPTW).

This paper is organized as follows: Section 2 reviews the literature
related to the issues in interest. Section 3 briefly introduces some basic
concepts in Fuzzy Measure Theory. Section 4 first defines the FFDPPTW
and then develops a Chance Constrained Programming model for it.
Section 5 provides the computational results of an effective and efficient
coevolutionary algorithm with the evaluation on the accuracy and the
efficiency. Finally, the conclusions are drawn in Section 6.

2. Literature Review

The delivery and pickup problem (DPP) was developed from the vehicle
routing problem (VRP). The VRP originally focused on how to dispatch a
group of vehicles to serve a group of customers with a given demand when
the minimum operational cost is desired. In the delivery and pickup problems
(DPP), vehicles are required not only to deliver goods to customers but also
to pick some goods up at customer locations. It can be regarded as that two
types of customers are served from a single depot by a fleet of vehicles. The
first type of customers is known as “linehaul” customers, who require
deliveries of their goods to the specific locations. The second type is known
as “backhaul” customers, who require pickups from their specific locations.
A survey of the DPP can be referred to Parragh et al. [22].

There are three main strategies for the DPP: (1) delivery-first, pickup-
second; (2) mixed deliveries and pickups; and (3) simultaneous deliveries
and pickups.

Delivery-first, pickup-second strategy: vehicles can only pickup goods
after they have finished delivering their entire load (e.g., Ropke and Pisinger
[24]). One reason for this is that it may be difficult to rearrange delivery and
pickup goods on the vehicles. Such an assumption makes the implementation
issue easier because accepting pickups before finishing all deliveries results
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in a fluctuating load. This may cause the vehicle to be overloaded during its
trip (even if the total delivery and the total pickup loads are not above the
vehicle capacity), resulting in an infeasible vehicle tour.

Mixed deliveries and pickups strategy: linehauls and backhauls can occur
in any sequence on a vehicle route (Wade and Salhi [27], Nagy and Salhi
[19], Crispim and Brandao [7] and Tutlincla et al. [26]). This strategy
releases the constraints that pickups are only accepted after finishing all
deliveries. When there are no difficulties in rearranging the load on the
vehicle, this strategy is more attractive to backhaul customers and
enterprises. The satisfaction of backhaul customers can be higher since they
can be served earlier. Moreover, the enterprises can save the transportation
cost since the sequence of deliveries and pickups can be arranged in a more
economical way.

Simultaneous pickups and deliveries: simultaneously performing
delivery and pickup services with a single stop for each customer. In some
applications, customers can have both a delivery and a pickup demand. They
may not accept to be serviced separately for the delivery and pickup they
require because handling effort is caused by both activities. In this situation,
simultaneous pickups and deliveries is the only choice, see Min [17] and
Dethloff [8].

Referring to these service strategies, the DPP is divided into three
categories: the vehicle routing problem with backhauls (VRPB), the mixed
vehicle routing problem with backhaul (MVRPB), and the simultaneous
delivery and pickup problem (SDPP). In some literature, the SDPP was
called the vehicle routing problem with simultaneous delivery and pickup
(VRPSDP), see Min [17] and Dethloff [8].

In order to provide more satisfactory services, nowadays, enterprises
have allowed customers to request their goods being delivered or picked
up within specific time windows. Such consideration extends the
aforementioned problems into VRPB and Time Windows (VRPBTW),
MVRPB and Time Windows (MVRPBTW), and SDPP with Time Windows
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(SDPPTW), respectively. Since such extension increases the complexity of
the problems, therefore researchers have devoted to developing efficient
algorithms for finding good feasible solutions. For instance, Kontoravdis and
Bard [13] developed a greedy randomized adaptive search procedure to solve
the MVRPBTW. Zhong and Cole [33] developed a guided local search
heuristic to solve both the VRPBTW and the MVRPBTW. Angelelli and
Mansini [1] developed a branch and price algorithm for the small-scale
SDPPTW. Wang and Chen [28] developed a coevolutionary algorithm for
the SDPPTW.

Based on the advantage of flexible delivery and pickup with
MVRPBTW, further improvement on reducing the operation cost has been
carried out. One issue is how to reduce the accessing time when a
simultaneous delivery and pickup at the same customer location occurs.
Dethloff [8], Chen and Wu [6], and Montané and Galvao [18] have suggested
that the accessing time can be reduced by performing a simultaneous delivery
and pickup. This possibility was adopted and evaluated by Wang and Chen
[29], of which a new model was developed to realize time saving from
simultaneously performing delivery and pickup while the flexibility of
mixing pickup and delivery operations is remained. This kind of problems
was called the flexible delivery and pickup problem with time windows
(FDPPTW). A detailed review of these delivery and pickup problems with
time windows can be found in Chen and Wang [5].

The models used in aforementioned problems were all deterministic
models; all the factors involved in the models must be known exactly.
Unfortunately, real world is often uncertain. There are cases that the
imprecision/uncertainty concerning demand, service time, and traveling time
must be taken into account. Fuzzy set theory has provided efficient and
meaningful concepts and methodologies to formulate and solve mathematical
programming and decision making problems of real world (Dong and
Kitaoka [9]). Fuzzy approaches have been applied to solve some fuzzy
vehicle routing problems.
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Xu et al. [31] considered a VRP with soft time windows and fuzzy
demand. The problem was formulated as a two stages resource model. The
theory of possibility and necessity is applied in the capacity constraint and a
genetic algorithm was proposed to solve the problem. Maekly et al. [16]
proposed a fuzzy random vehicle routing problem whose demands were
assumed to be fuzzy random variables. They used the concept of the chance
constrained programming (CCP) model to formulate the problem and
proposed a tabu search method to solve it. Brito et al. [2] considered the
vehicle routing problem with time windows where traveling times were fuzzy
numbers. The weighted possibility and necessity measure of fuzzy relations
was used to specify a confidence level at which it was desired that the arrival
time to reach each customer fell into their time windows. They proposed
and analyzed a solution procedure consisting in hybridizing a variable
neighborhood search and a greedy randomized adaptive search procedure for
the corresponding optimization problem. Cao and Lai [3] considered the
vehicle routing problem with fuzzy demands. They proposed a chance
constrained programming (CCP) model based on credibility theory for
the problem. Then, a hybrid intelligent algorithm integrating stochastic
simulation and differential evolution algorithms was developed to solve the
problem. Peng and Qian [23] coped with the vehicle routing problem with
fuzzy demands. To formulate the problem, they used a chance constrained
programming (CCP) model, of which the credibility was used to evaluate the
chance. Then, a particle swarm optimization algorithm was developed for
finding the solution. Cao and Lai [4] addressed the open vehicle routing
problem with fuzzy demands. In this problem, a vehicle was not required to
return to the distribution depot after serving the last customer on its route.
Again, a fuzzy chance constrained programming (CCP) model was designed
based on the fuzzy credibility theory to formulate the problem; for solving
the problem, stochastic simulation and an improved differential evolution
algorithm were integrated into a hybrid intelligent algorithm.

One can see that chance constrained programming (CCP) model was
frequently used to formulate a variety of fuzzy vehicle routing problems.
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Through this model, a decision maker can choose a confidence level to plan
or determine the best alternative after comparing different planning results
under different confidence levels. Therefore, the decision maker not only can
take part in the decision process; but also can evaluate the results with
confidence.

In this paper, we propose a fuzzy flexible delivery and pickup problem
with time windows (FFDPPTW). The deterministic case of the FFDPPTW,
the FDPPTW, is NP-hard (Wang and Chen [29]). The FDPPTW is
polynomial time reducible to the FFDPPTW by setting all lower bounds and
upper bounds of fuzzy numbers equal to their medians; therefore the
FFDPPTW is also NP-hard. To facilitate the development of solution
procedure, the FFDPPTW is formulated into a chance constrained
programming (CCP) model based on the fuzzy credibility theory. A
coevolutionary algorithm is then implemented for solving it.

3. Fuzzy Credibility Measure Theory

In this section, some basic concepts in fuzzy measure theory are
introduced briefly. First, the axioms of possibility measure theory proposed
by Liu [14] are introduced. These axioms form the basis of Credibility
Measure Theory. In order to deal with fuzziness, Zadeh [32] suggested a
possibility measure and Nahmias [20] proposed the related axioms to
characterize the concept. They are briefly introduced below:

Let ® be a nonempty set, and let P(®) be the power set of ®. Each
element in P(®) is called an event, and & is an empty set. In order to

present an axiomatic definition of possibility, it is necessary to assign a
number Pos{A} to each event A, which indicates the possibility that A will

occur (Nahmias [20]).
Axiom 1 (Normality Axiom). Pos{®} = 1.

Axiom 2 (Nonnegativity Axiom). Pos{&} = 0.
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Axiom 3 (Maximality Axiom). For every sequence of events {Aj}, we
have

POS{O A,} = {0/1 Pos{A}. Q)
i=1 =

Unfortunately, possibility measure does not obey the law of truth
conservation and is inconsistent with the law of excluded middle and the law
of contradiction. In order to overcome the shortage of possibility measure,
Liu and Liu [15] presented a credibility measure which is a combination of

possibility measure and necessity measure. Let A® be the complementary of
event A.

Definition 4 (Dubois [10]). For every event A, the necessity of event A is
defined as

Nec{A} = 1 — Pos{A°"}. 2

Definition 5 (Liu and Liu [15]). For every event A, the credibility of
event A is defined as

Cr{A} = %(POS{A} + Nec{A}) = %(POS{A} +1- Pos{A%)). @3)

Credibility measure obeys the law of truth conservation and is consistent
with the law of excluded middle and the law of contradiction. Obviously, a
fuzzy event may not hold even though its possibility approaches 1 and such
an event may hold even though its necessity is 0. However, a fuzzy event
must hold if its credibility is 1, and it must fail if its credibility is 0. The
credibility measure is self-dual, and in the theory of fuzzy subsets, the law of
credibility plays a role similar to that played by the law of probability in
measurement theory for ordinary sets.

Now let us consider a triangular fuzzy variable p = (p;, p2, p3) as the
pickup demand of a given customer such that p is described by its left
boundary p; and its right boundary p3. Thus, a dispatcher or analyst

studying such a problem can subjectively estimate that a customer’s pickup
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demand will not be less than p; or greater than p3, based on his/her
experience, intuition and/or available data. The value of p, corresponds to a

grade of membership of 1, which can also be determined by a subjective
estimate. Assume the capacity of the vehicle is g. Based on above definitions
of possibility, necessity, and credibility, we can derive:

1, if g=> py,
Pos{p < = a-m if <qa< 4
os{p < q} o, —p T PLSA= P2 (4)
0, if qs pll
1, if > ps,
Nec{p < q} = ﬁ if p, <q< ps, (5)
0, if < py,
1, if > ps,
+ -2 )
_ qZ(ng— ngz P p<asps
Crip<q}= a- py (6)
_HATP if p o <q< o,
2(p2 - P PL=4= P2
0, if g< p,.

If the decision maker would like to have a vehicle routing plan with

confidence level, Cr*, that the vehicle can pickup the demand, then we can
model this situation as the following constraint:

Ccr{p <q}=cCr. (7

Constraint (7) is a simple example illustrating how the chance of
accomplishing a pickup job can be expressed in a Chance Constrained
Programming model where the chances are evaluated by the credibility
measure.

4, Problem Formulation

The fuzzy flexible delivery and pickup problem with time windows
(FFDPPTW) can be stated as below:
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A set of customers, each requires a delivery and/or a pickup of certain
guantities within specific time window(s), must be served by a fleet of
capacitated vehicles stationed at a distribution center (DC). The pickup
demands, the service times, and the traveling times are uncertain. The
FFDPPTW is thus to search for the most economic route for each vehicle
with the minimum operational cost under a specific confidence level.

For each service (either delivery or pickup) required by any customer,
one vehicle will be assigned exactly once. If both services are required by
one customer, then he/she can request different or the same time windows for
delivery and pickup.

Figure 1. The infrastructure of the delivery and pickup network.

In a common application of the FFDPPTW to a network with recycling
task, for illustration, all vehicles may return to a collection center (CC) to
unload the recycled stuff. The infrastructure of the system can be seen in
Figure 1. The black and the white squares indicate the distribution center
(DC) and the collection center (CC), respectively. The white circles and
black triangles indicate linehaul and backhaul customers correspondingly.
The solid arrows indicate the movements. A driver will not need to re-access
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to a customer if he/she picks up stuff right after delivers goods. Therefore,
we use a dot arrow to describe that the pickup service for a customer is
performed right after the delivery service. Figure 1 shows that there are five
customers (2, 3, 6, 7, and 8) who are served delivery and pickup
simultaneously; and the other four customers are served delivery earlier than
the pickups.

The FFDPPTW has two objectives involved in the aggregated cost:
minimizing the number of vehicles and minimizing the total traveling
distance. Trade-off between these two kinds of costs is needed to be
considered. Refer to the mathematical models used in Wang and Chen [28]
and Wang and Chen [29], the model formulation of the FFDPPTW is
developed as follow.

Based on the principle of a VRP problem, one customer is visited exactly
once by one vehicle for one service. A pseudo customer should be introduced
for separating two services required by one customer. Assume there are n

customers, each is indicated by customer i, i =1, ..., n. When modeling, 2n
customers are generated with n new customer i, i =1, ..., n, each demanding
only a delivery service, and n new customer n+i, i=1 .. n, each

demanding only a pickup service. Assume there are m vehicles. The flexible
delivery and pickup problem with time windows is then formulated into a
fuzzy chance constrained programming model denoted by Model FFDPPTW
as below where k = 2n + 1 denote the collection center (CC).

Notations
Sets
Jp Set of all delivery customers, Jp = {j|j =1, ..., n}
Jp Set of all pickup customers, Jp = {j|j=n+1, .., 2n}
J Set of all customers, J =Jp UJp ={jlj=1 .., 2n}

Jo Set of all customers plus DC, Jo = {0} U J
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Ji Set of all customers plus CC, J, = J U {k}

V Set of all vehicles, V = {v|v = vy, ..., vy}

Coefficients

dy Capacity of vehicle v, q, € R*

gy Dispatching cost of vehicle v, g, € R*

Cij Distance between nodes i € Jg, J € Ji; i # |, Cjj € R*

fij Traveling time between nodes i € Jg, j € Ji (i = j), fij is a
fuzzy number

dj Delivery demand of customer je J,d; e R*

P Pickup demand of customer j € J, pj is a fuzzy number

§j Service time of customer j € J, §j is a fuzzy number

rj Accessing time reduction if the delivery and pickup services
of customer j are performed simultaneously, j € Jp,
r € R*

aj Earliest service starting time of customer j e J, aj € R*

bj Latest service starting time of the time window of customer
jeld, bje R*

ag Earliest departure time of any vehicle from DC, ag € R*

by Latest arrival time that a vehicle must return to CC,

by € RT
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cr’ Credibility confidence level that constraints would not be
violated

M An arbitrary large constant

o A parameter indicating the trade-off between dispatching

cost and traveling cost, o € [0, 1]

Decision Variables

Xijy Traveling variable of a vehicle veV, xj, {0 1}; if
vehicle v travels directly from node i € Jy to node j € Jy,

Xijjy = 1; otherwise Xjj, =0
Auxiliary Variables

Lov Load of vehicle v eV when leaving DC, Ly, € R*

L:

i Remaining load of a vehicle after having served customer

jed, Lj isafuzzy variable

T; Time to begin service at customer j e J, T~j is a fuzzy
variable

Tov Departure time of vehicle v eV from DC, Ty, € R*

fkv Arrival time of vehicle v eV to CC, fkv is a fuzzy variable

Model FFDPPTW

Minimize z = OLZ Z gVXOjV + (1— OL)Z Z ZCinijv, (8)

veV jeld ieJg jeJk veV

subject to

D > %=1 vjed, )

ieJgveV
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inhvz Zthv, VheJ,VVeV,
ielg ieJg

ZXOjV:ZXikV’ VVEV,

jed ied

Zxojv <1l VveV,

jed

LOV: ZZdeijv, Vv eV,

ieJojEJ

Lj 2 Loy -dj+P;-MA-xj), Vied VeV,

_dj+5j_M[l_ZXijvj’ Vield, Vjel,

veV

Loy £y, YVeV,

Cr{l:j <q + M{l injv}>0r*, Viel weV,

iedg

Tj2Toy +loj ~M@L-xp), Vield WeV,

(=

Tj2Ti+§+ --—M[l—injV], Viel, Vjied—{n+i},

veV

T~n+i Zﬁ +§ =N+ E(n-ri) - M(l_ in(n+i)v}’ Vi e Jp,

veV

-FkVZﬁ+§i+Ek—M(l—Xikv), ViEJ,VVEV,

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17

(18)

(19)

(20)

(21)
(22)

(23)
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Cr{T; <bj}>Cr*, vjeJ, (24)
Cr{Ty <b=Cr*, weV, (25)
Xijy € 10,1}, Vie Jg, Vj e Jy, VveV. (26)

Objective function (8) is to minimize the total cost, which includes the
total dispatching cost and the total traveling cost. Since these costs are
compensated to each other, the trade-off parameter, o € [0, 1], is employed

to adjust for different decision criteria. This trade-off parameter o is
determined by the decision maker. The most commonly considered objective
functions are to minimize the number of vehicles and to minimize the total
distance. In general, minimizing the number of vehicles is the primary
objective, whereas minimizing the total distance is the secondary. This can
be achieved by setting o close to 1, i.e., o — 1. Constraint (9) ensures that
each customer will be visited exactly once by a vehicle. Constraints (10) and
(11) ensure the flow conservation ‘for each customer h’ and ‘between the
distribution center and the collection center,” respectively. Constraint (12)
ensures each vehicle is at most assigned to a route.

Constraints (13)-(17) describe the vehicle loading along a route. While
equation (13) shows the initial load of each vehicle, constraint (14) calculates
the vehicle load of each vehicle after finishing the service to its first
customer. If the first customer of vehicle v is customer j, which denotes by
Xojv = 1, then

LjZLOV—dj+ﬁj. (27)
This implication can be stated as below:
XOjV:1:>Ej:L0V_dj+5j' (28)
Implication (27) can be remodeled as the following constraint:

Lj =Lov - dj + ﬁj + ijv(l_ XOjv): (29)
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where ygj, is an auxiliary variable, ypj, € R. When Xgj, =0, L; is not
necessarily equal to Lo, —dj + ’ﬁj since Yoj, could be any real number;

when Xojv = 1, Ej must be equal to Ly, — dj + 5j. However, this constraint

is not linear. In order to get a linear constraint, implication (27) is revised as
below:

Xojv=1:>|:j2|_ov—dj+ﬁj. (30)

Although the consequence in implication (30) is an inequality not equation
(27), it still preserves the meaning of capacity constraint. Thus, implication
(30) can be remodeled into constraint (14) which is linear. This modeling
technique also applies to the formation of constraints (15) and (17)-(21).

Constraint (15) calculates the ‘en route’ vehicle loads. If any vehicle
delivers the commodity from customer i to customer j, which denotes by

Doy Xijv =1 then

By the technique mentioned above, the implication with equation (31) can be
rewritten as constraint (15). Constraint (16) ensures that the initial load of
each vehicle is below the vehicle capacity. Constraint (17) ensures the ‘en
route’ vehicle loads are below the vehicle capacity with a confidence level.
The constraint to describe that the ‘en route’ vehicle loads are below the
vehicle capacity should be like constraint (32):

Lj<agy+M[1- > x| Vield weV. (32)
ieJg

Assume that the decision maker specifies that he/she would like to have a

credibility confidence level, Cr*, that the vehicle can pickup the demand
without exceeding the capacity of the vehicle. We then can adopt the concept
of the chance programming model mentioned in Section 3 to remodel
constraint (32) as constraint (17) based on the structure of constrain (7).
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Hence, according to the credibility confidence level which the decision
maker specifies and the credibility that the next customer’s demand does not
exceed the vehicle capacity, a decision is made regarding whether to send the
vehicle to the next customer or to return it to the depot. In this study, this

decision is made as follows: if Cr > Cr" holds, then the vehicle is sent to the
next customer; otherwise, the vehicle is returned to the depot.

The traveling and service time along a route is described in constraints
(18)-(21). Constraints (18)-(21) establish the relationship between the vehicle
arrival time to a customer and its immediate predecessor; they are remodeled
from the following implications:

X0 jv =1:>-Fj2T0V+F0J’, (33)
injv=1,j¢n+i3fj2ﬁ+§+ﬁj, (34)
veV
in(n+i)v =1=>Th i 2Ti+5 -G+ E-i(n+i)1 (39)
veV
Xikv=1:>:|:kv Zﬁ+$i+t~ik. (36)

Constraint (22) ensures that each vehicle never departs from the
distribution center before it opens. Constraint (23) ensures that customers are
only served after the earliest service time points they specify. Constraints
(24) and (25) are remodeled from the following constraints:

in(n+i)v =1= Toei 2Ti +§ = 5 + Ginai), (37)
veV
Xiky =1:>ka Zﬂ+$i+ﬁk. (38)

Constraint (37) aims to emphasize that drivers should serve customers no
later than the latest service time points. Constraint (38) aims to emphasize
that each vehicle should enter the collection center no later than the
scheduled closed time. By the similar technique of constrain (7) mentioned in
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Section 3, constraints (37) and (38) are remodeled into constraints (24) and
(25). Finally, constraint (26) is the binary constraint.

This model contains 4n + m fuzzy variables, 4n’m + 4nm +m binary

variables, and 2m real number variables. This model contains 8n2 + 8nm
+ 4n + m fuzzy constraints and 2nm + n + 5m crisp constraints.

5. Computational Experiments

Since there have not been any studies with testing problems which were
dedicated to the FFDPPTW, for evaluation, this study generates some
FFDPPTW test problems which are revised from Wang and Chen’s
FDPPTW test problems (Wang and Chen [29]). Wang and Chen’s FDPPTW
test problems were revised from Solomon’s VRPTW benchmarks (Solomon
(1987)). The set of Solomon’s test problems is composed of six different
problem types (C1, C2, R1, R2, RC1 and RC2). Each data set contains
between eight to twelve 100-customer problems. The categories of the six
problem types refer to:

C: with clustered customers whose time windows were generated based
on a known solution;

R: with customer locations generated uniformly randomly over a square;

RC: with a combination of randomly placed and clustered customers,
where

Type 1 has narrow time windows and small vehicle capacity, and

Type 2 has large time windows and large vehicle capacity.

By revising from Wang and Chen’s [29] FDPPTW test problems, this
study generates some FFDPPTW test problems. In each problem, the pickup
demands, the service times, the traveling times are revised into triangular
fuzzy numbers. Similar to Solomon’s VRPTW benchmark problems, the
distances are Euclidean distances. Traveling times are fuzzy numbers. Their
medians equal to the corresponding distances. Their left spreads and right
spreads equal to 0.25 x “the corresponding distances.’
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The primary objective is to minimize the number of vehicles (NV) and
the secondary objective is to minimize the total distance (TD). Due to
different objective functions used in the literatures, this analysis employs the
trade-off parameter o to adjust for different decision criteria, in particular,
by setting a. — 1, to reveal the primary concern of minimizing the number
of vehicles (NV), than the minimization of the total distance (TD). In our
implementation, we set o = 40/41. All experiments were executed on an

Intel Core2 Quad 2.4G computer with 1G memory.
5.1. Coevolutionary algorithm

The genetic algorithm (GA) was first proposed by Holland [11]. Due to
its global search mechanism, GA has shown its capability to find good
solutions for complex mathematical problems, like the VRP and other NP-
hard problems, in a reasonable amount of time. The traditional design of a
GA faced the dilemma of ‘converging too quickly to non-acceptable local
optima’ or ‘converging too slowly and resulting in exhaustive time
consumption for deriving an acceptable solution.’

In order to avoid any of the above situations, we use a coevolutionary
algorithm (CEA) to solve the problem. The CEA carries out two separate
evolutions simultaneously: Population | was employed for the diversification
purpose while Population 11 was employed for the -evolutionary
intensification. The framework of this algorithm is shown in Figure 2. Once

the confidence level Cr* is chosen, a FFDPPTW can be defuzzified to a
FDPPTW by inequalities (6) and (7). Therefore, the coevolutionary
algorithm (CEA) is implemented to solve the FFDPPTW in this study due to
its capability on solving complex problems.

The heuristic method which generates the initial population is a cheapest
insertion method. The cheapest insertion method is developed from the cost
saving criterion of Osman [21]. Population | aims to retain the wide
searching ability through three operators: Reproduction, Recombination and
Selection. Population Il aims to reach high quality solutions rapidly and
improve them constantly through four operators: Reproduction, Local
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Improvement, Crossover, and Selection. For the details of the heuristic
method generating the initial population and the genetic operators of the
algorithm, please refer to Wang and Chen [29]. By the result of the test runs
in Wang and Chen [29], the population sizes of population | and population
Il are suggested to be 50 and 50. The termination condition is 500
generations without improvement or half an hour.
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Figure 2. The framework of the coevolutionary algorithm.
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5.2. Computational results for the small-scale FFDPPTW

In order to evaluate the accuracy of the CEA, a package of commercial
linear programming software, ILOG Cplex, is adopted for comparison. ILOG
Cplex can find the optimal solution for the small-scale FFDPPTW. Wang
and Chen [29] generated some small-scale problems for the FDPPTW, the
deterministic case of the FFDPPTW. There were three 5-customer problems,
three 10-customer problems, and three 25-customer problems. In this study,
these nine small-scale FDPPTWs are further revised to form nine small-scale
FFDPPTWSs. They are named as RCff05101, RCff05104, RCff05107,
RCff10101, RCff10104, RCff10107, RCff25101, RCff25104, and
RCff25107. Three credibility confidence levels (0.5, 0.8 and 1.0) are
implemented to get different results for different types of decision makers.

The results of Cplex and the CEA for the small-scale FFDPPTW are
listed in Tables 1 and 2. One can see that Cplex is only able to find the
optimal solutions of 5-node problems (RCff05101, RCff05104, RCff05107),
and 10-node problem (RCff10101) within 1~630 seconds. However, the
CEA can get their optimal solutions by only 1~2 second. For the rest of the
test problems, Cplex gives the “out of memory” best values for the other two
10-node problems, but it cannot find feasible solutions for all of three 25-
node problems. When the number of customer nodes is up to 25, Cplex
solver incorrectly shows an error message “presolve determines problem is
infeasible or unbounded” due to the truncation errors.

In order to easily compare the results between Cplex and the CEA, the
aggregated costs defined as (2000 x NV + TD) are depicted in Figure 3. For

those problems which Cplex cannot solve, the aggregated costs are set as
20,000 like a penalty. One can see that the larger the confidence level is, the
larger the aggregated cost is. Furthermore, the CEA is superior to Cplex
when the number of customer is larger than 5.
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Table 1. The Cplex results for the small-scale FFDPPTW with respect to
different credibility levels

Cr* =05 Ccr* =08 Ccr=10
Com. Com. Com.
Problem NV TD i NV TD i NV TD .
Time Time Time
RCff05101 3 220.15 2 3 22015 1 3 220.15 1

RCff05104 2 21457 630 2  219.88 420 2 223.44 262
RCff05107 2 211.83 96 2 24192 58 3 242.19 156
RCff10101 3 347.38 2 3 358.19 1 4 371.90 8
RCff10104 *2  *270.32 31072 *3 *363.21 38700 *5  *583.07 38050

RCff10107 *3 *31550 29812 *4 *386.04 64145 *5  *480.23 58720

RCff25101 # # # # # # # # #
RCff25104 # # # # # # # # #
RCff25107 # # # # # # # # #

*: the “out of memory” values.

#: Cplex cannot solve problems due to truncation errors.

Table 2. The results of the CEA for the small-scale FFDPPTW

* * *

Cr* =05 Ccr* =08 Ccr' =10
Problem NV D Cf’m' NV  TD C?m' NV D C?m'

Time Time Time
RCff05101 3 220.15 1 3 22015 1 3 22015 1
RCff05104 2 214,57 1 2 21988 1 2 22344 1
RCff05107 2 211.83 1 2 24192 1 3 24219 1
RCff10101 3 347.38 1 3 35819 1 4 37190 2
RCff10104 2 216.69 1 2 25944 1 3 28116 2
RCff10107 3 247.82 1 3 30640 2 3 306.40 1
RCff25101 5 529.13 6 6 54677 15 6 55170 15
RCff25104 4  473.46 9 5 52874 13 5 53278 16

RCff25107 5 540.87 7 5 56181 15 6 568.41 16
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Figure 3. Aggregated cost vs. number of customers.
5.3. Computational results of the large-scale FFDPPTW

Wang and Chen [29] generated fifty-six 100-customer FDPPTW test
problems by revising Solomon benchmarks. For evaluating the performance
of the CEA for the FFDPPTW, fifty-six 100-customer FFDPPTW test
problems are generated by revising those FDPPTWs in this study. In each
problem, the pickup demands, the service times, the traveling times are
similarly revised into triangular fuzzy numbers. Three credibility confidence
levels (0.5, 0.8 and 1.0) are implemented to get different results for different
types of decision makers. The CEA results for these 100-node FFDPPTWSs
are listed in Table 3.

The average computational time is 28.1 minutes. A condensed
comparison among different credibility confidence levels is listed in Table 4.
The aforementioned observation still holds: the larger is the confidence level,
the larger the aggregated cost is. All the generated test problems can be
found in the following website. (http://0z.nthu.edu.tw/~d933810/ test.htm).
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Table 3. The CEA results for the 100-node FFDPPTW
Cr* =05 Ccr* =08 cr* =10 Cr*=05 Cr*=08 cr* =1.0

Problem NV TD NV TD NV TD Problem NV TD NV TD NV TD
R*101 18 162557 20 1697.06 20 1744.04 R*201 4 1322.65 4 137117 5 1269.46
R*102 15 145212 16 1518.2 18 16135 R*202 4 111585 4 1129.29 4 1200.78
R*103 14 1254 14 1305.81 16 1383.84 R*203 3 104486 4 95841 4 970.02
R*104 10 1083.32 12 1089.64 13 1167.94 R*204 3 76365 3 77833 3 857.25
R*105 15 1400.75 16 1458.17 17 1476.54 R*205 3 1138.97 4 1053.13 4 1063.6
R*106 13 1283.74 14 1327.81 15 1358.45 R*206 3 896.66 3 1016.33 4 960.89
R*107 11 113815 12 1216.57 13 1261.66 R*207 3 89482 3 91588 3 908.09
R*108 10 1021.67 11 1068.67 12 1127.17 R*208 3 73861 3 73428 3 758.74
R*109 13 121169 13 128898 15 1306.59 R*209 3 98922 4 98496 4 937.42
R*110 12 111611 13 1156.31 14 1238.02 R*210 3 101493 4 966.47 4 989.49
R*111 11 121521 13 1147.79 13 122131 R*211 3 896.66 3 88856 3 899.99
R*112 11 103956 12 1044.02 12 1088.76

C*101 10 860.11 11 1019.98 12 113578 C*201 3 59156 4 74514 4 872.22
C*102 10 898.66 11 1027.35 12 113546 C*202 3 59156 4 69557 4 749.89
C*103 10 850.1 11 10321 12 1083 C*203 3 591.17 4 67264 4 760.9
C*104 10 900.38 11 940.73 12 1053.18 C*204 3 5906 4 65266 4 663.69
C*105 10 968.43 11 1026.38 12 1100.86 C*205 3 58888 4 677.02 4 794.08
C*106 10 862.08 11 1013.6 12 1107.66 C*206 3 58849 4 680.11 4 768.7
C*107 10 902.68 11 958.86 12 1056.96 C*207 3 58829 4 67716 4 701.33
C*108 10 882.17 11 1035.76 12 1010.53 C*208 3 58832 4 6684 4 663.99
C*109 10 936.62 11 100159 12 1077.9

RC*101 16 167161 18 1768.74 18 182574 RC*201 4 1637.64 5 1396.22 5 1547.09
RC*102 14 1507.6 16 1599.96 17 1713.6 RC*202 4 1260.68 4 120525 5 1214.19
RC*103 13 1382.81 14 1457.71 14 149274 RC*203 4 1019.13 4 103463 4 1100.14
RC*104 11 1193.03 13 133299 14 1473.83 RC*204 3 862.18 4 808.38 4 833.21
RC*105 15 153542 17 1640.37 18 1755.68 RC*205 5 130793 5 128581 5 1387.02
RC*106 13 1459.05 14 1507.23 15 158529 RC*206 4 113137 4 11341 4 1110.3
RC*107 12 133195 14 139048 14 147355 RC*207 4 1037.31 4 1083.17 4  1085.22
RC*108 11 12204 12 1302.44 14 1383.06 RC*208 3 888.17 3 89896 4 895.3
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Table 4. A condensed comparison among different confidence levels for the
100-node FFDPPTW

. Comp.
c1 c2 R1 R2 RC1 RC2 Cumulative .
Time
NV 90 24 151 35 101 30 431
Cr* =05 99966
TD 7911.41 4718.87 14495.74 10764.92 11247.80 9264.73 58403.47
NV 99 32 166 39 118 33 487
Ccr* =08 89362
TD 9056.35 5468.70 15319.03 10796.81 11999.92 8846.52 61487.33
NV 108 32 178 41 124 35 518
Crf =10 93834

TD 9761.33 5974.80 15987.82 10815.73 12703.49 9172.47 64416

5.4. Validity and managerial insight of FFDPPTW with credibility
approach

The proposed model is successfully validated by Cplex. The
coevolutionary algorithm (CEA) and Cplex both find the optimal solutions
for all the 5-node problems and one of the 10-node problems. When the
number of nodes is larger than or equals to 10, Cplex no longer guarantees to
find the optimal solution. While Cplex is only able to give the ‘out-of-
memory’ solutions, the CEA finds better solutions in a very short time.
While Cplex does not work, the CEA still works well.

In this study, different credibility confidence levels (0.5, 0.8, and 1.0) are
implemented to get different results for different types of decision makers.
All the results reveal a phenomenon: the larger the confidence level is, the
larger the cost is. This phenomenon facilitates the decision support based on
the decision maker’s preference. If the decision maker is an absolute risk

averter, then he/she can set Cr* = 1.0 to get full confidence but also get a
plan with the highest cost; on the contrary, if the decision maker is a risk

lover, he/she can set Cr* = 0.8 or lower to get a plan with a lower cost but
accompanied with a lower confidence.

6. Conclusions

As the reverse logistics and the closed loop supply chain networks have
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been adopted by enterprises, the delivery and pickup problems with time
windows have been drawn much attention and studied extensively recently.
Since there are cases that the imprecision/uncertainty concerning pickup
demand, traveling time, and service time must be taken into account, a fuzzy
flexible delivery and pickup problem with time windows (FFDPPTW) is
proposed in this paper. The problem is then formulated into a chance
constrained programming (CCP) model based on the fuzzy credibility theory.
Different credibility confidence levels can be implemented to get different
results for different types of decision makers. One can implement this model
by Cplex to get the optimal solution if the scale of the problem is small.

Some test problems are generated by revising the well-known Solomon’s
benchmarks which are originally used for the vehicle routing problem with
time windows. This study then uses a coevolutionary algorithm to get near
optimal solutions in an acceptable computational time. The termination
conditions are able to prevent exhaustive computations. The comparison
between the results of Cplex software and the coevolutionary algorithm
shows the coevolutionary algorithm is not only accurate but more efficient.
Further comparison between different confidence levels shows that the
higher the confidence level is required, the larger the cost is paid. Decision
makers can pick out a best suitable plan by their preferences.

In some real-life problems, some customers’ time windows can be
violated with appropriate penalties. The penalty is usually proportional to the
degree of lateness at the customer, as the duration of time in excess of the
latest service time prescribed by the customer. How to extend hard time
windows to soft ones is a direction of the further study. In some practical
applications, the vehicle capacity is small or the planning period is large,
performing more than one route per vehicle may be more appropriate for
practical implementation. Hence, how to extend one trip to multiple trips is
also a direction of the further study.
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