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This paper concerns a Simultaneous Delivery and Pickup Problem with Time Windows (SDPPTW). A
mixed binary integer programming model was developed for the problem and was validated. Due to
its NP nature, a co-evolution genetic algorithm with variants of the cheapest insertion method was
proposed to speed up the solution procedure. Since there were no existing benchmarks, this study gen-
erated some test problems which revised from the well-known Solomon’s benchmark for Vehicle Routing
Problem with Time Windows (VRPTW). From the comparison with the results of Cplex software and the
basic genetic algorithm, the proposed algorithm showed that it can provide better solutions within a
comparatively shorter period of time.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction Such an application is frequently encountered, for example, in
With global resources rapidly decreasing, introduction of re-
verse logistics may make use of returned merchandise, and thereby
increase enterprise profits. Recently, many enterprises have incor-
porated reverse logistics into the conventional forward supply
chain to form a closed-loop supply chain. Within such a loop, the
logistics between the distribution/collection center and the cus-
tomers is the most complicated part because it is related to the
bi-directional logistics regarding delivery and pickup activities. In
the literature, such problems have been referred to as Delivery
and Pickup Problems (DPP).

Berbeglia, Cordeau, Gribkovskaia, and Laporte (2007) provided a
survey on DPP. Referring to two different service strategies, DPP is
divided into two categories: Vehicle Routing Problem with Back-
hauls (VRPB) and Simultaneous Delivery and Pickup Problem
(SDPP). VRPB was first addressed by Deif and Bodin (1984). This
problem considers that each driver picks up goods only after the
last delivery of the vehicle is made. Due to the additional cost
placed on separate trips for delivery and pick-up, efforts were fur-
ther made on performing simultaneous delivery and pickup. Con-
sequently, the customers were served once only. This latter
planning situation can be called a Vehicle Routing Problem with
Simultaneous Delivery and Pickup (VRPSDP) or a Simultaneous
Pickup and Delivery Problem (SDPP). This paper refers it to a SDPP.
ll rights reserved.
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the distribution system of grocery store chains. Each grocery store
may have a demand for both delivery (cf. fresh food or soft drinks)
and pickup (cf. outdated items or empty bottles) and is serviced
with a single stop by the supplier. The foundry industry is another
example (Dethloff, 2001). Collection of the used sand and delivery
of the purified reusable sand at the same customer location are
carried out with only a single stop.

For more realistic applications, this paper further investigates a
more general situation, called the Simultaneous Delivery and Pickup
Problem with Time Windows (SDPPTW). A co-evolution genetic
algorithm is proposed to resolve the SDPPTW. In order to evaluate
the performance of the proposed method, some test problems are
generated by revising the benchmark problems of the Vehicle Rout-
ing Problem with Time Windows (VRPTW) from Solomon (1987).

This paper is organized as follows. Section 2 discusses related
work. Section 3 first formally defines the SDPPTW, and develops
a mathematical model. Then, a Co-evolution Genetic Algorithm is
developed based on the idea of the cheapest insertion method. Sec-
tion 4 gives a detailed description of how the proposed co-evolu-
tion genetic algorithm is implemented on the SDPPTW. Section 5
provides comparisons among the Cplex software, the proposed
algorithm, and the basic genetic algorithm; it then demonstrates
the superiority of the proposed algorithm. Finally, conclusions
are drawn in Section 6.
2. Literature review

Vehicle Routing Problems (VRP) originally focused on how to
dispatch a group of vehicles to serve a group of customers with a
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given demand regarding minimum operation cost. Although de-
mand could be uncertain, and there are articles addressing such
a problem in the literature, this study focused on deterministic sit-
uations. This section will first review a variety of deterministic
VRPs by their classes of problems, as shown in Fig. 1. In the Capac-
itated Vehicle Routing Problem (CVRP), one has to deliver goods to
a set of customers with known demands, on minimum-cost vehicle
routes originating and terminating at a depot. The vehicles are con-
strained by limited capacities (e.g. Prins (2004)). Theoretically
speaking, if vehicles have unlimited capacity, the CVRP is relaxed
into the VRP. Within the framework of the CVRP, two major cate-
gories regarding routing activities are extended: single activity
CVRP which considers only pickup or delivery, and multiple activ-
ities which consider both pickup and delivery.

Single activity CVRP can be further extended to two classes of
problems which have been studied extensively. The first is the
Multi-Depot Capacitated Vehicle Routing Problem (MDVRP) which
allows multiple depots (e.g. Cordeau, Gendreau, and Laporte
(1997)). The second is the Vehicle Routing Problem with Time Win-
dows (VRPTW) which correlates time windows with the customers
(e.g. Cordeau, Desaulniers, Desrosiers, Solomon, and Soumis (2001)).
VRPTW has been further extended to the Vehicle Routing Problem
with Multiple Time Windows (VRPMTW), allowing each customer
to have multiple time windows of services (e.g. Wang and Chiu
(2009, chap. XIV)). There are some other variants like split delivery,
soft time windows, uncertain models, etc. Because they are not close
related to our study, we would not list them here.

In regard to Multi-activity CVRP, it also includes two subclasses:
Pickup and Delivery Problems (PDP); and Delivery and Pickup
Problems (DPP). PDP considers several requests from a customer
for a vehicle. Each request consists of picking up an amount of
goods at one location and delivering it to another location (e.g.
Hoff, Gribkovskaia, Laporte, and Løkketangen (2009)), which has
been extended to the Pickup and Delivery Problem with Time Win-
dows (PDPTW) to associate time windows with the customers (e.g.
Ropke and Pisinger (2006a)).

While PDP is often referred to as a mail express system, DPP can
be regarded as a bi-logistic problem. In general DPP, two types of
customers are served from a single depot by a fleet of vehicles.
The first type of customers is known as ‘‘linehaul’’ customers,
who require delivery of goods to their specific location, and the
second type is known as ‘‘backhaul’’ customers, who require pick-
ups from their specific locations. Berbeglia et al. (2007) provided a
survey on both PDP and DPP. Referring to two different service
strategies, DPP is divided into two categories consisting of Vehicle
Routing Problem with Backhauls (VRPB) and Simultaneous Deliv-
ery and Pickup Problem (SDPP). Corresponding to some practical
Fig. 1. Classification of VRPs.
applications, the goods were picked up after the last delivery was
made and thereby pickup customers were all served after delivery
customers on the same route; in this case, the Vehicle Routing
Problems with Backhauls (VRPB) was modeled (e.g. Ropke and
Pisinger (2006b)).

Nowadays, a new distribution/redistribution planning situation
arises in the closed-loop supply chain network. In particular, with
environmentally motivated distribution/redistribution systems,
customers have both a pick-up and a delivery demand. To reduce
the service effort and interference of the customers, performing
simultaneous delivery and pick-up services with a single stop for
each customer is favored from both the service suppliers’ and cus-
tomers’ viewpoints. The problem evolved from this strategy, called
the Simultaneous Delivery and Pickup Problem (SDPP), recently
has been studied extensively (see Ai and Kachitvichyanukul
(2009), Berbeglia et al. (2007), Bianchessi and Righini (2007), Chen
and Wu (2006), Dell’Amico et al. (2006), Dethloff (2001), Min
(1989), Montané and Galvao (2006), and Nagy and Salh (2005)).

The Simultaneous Delivery and Pickup Problem with Time Win-
dows (SDPPTW) extends the SDPP by associating time windows
with the customers. Although Ai and Kachitvichyanukul (2009)
discussed SDPPTW and proposed a model to formulate SDPPTW,
they did not develop a solution procedure for SDPPTW. Also, their
model can be simplified by reducing some redundant variables and
redundant constraints. Therefore, their model should be revised
into a simpler form for SDPPTW so that both the number of vehi-
cles and the traveling cost are minimized. Consequently a solution
procedure should be developed accordingly.

It is known that the VRPTW is NP-hard (Solomon, 1987) and
VRPTW is polynomial time reducible from SDPPTW by setting all
pickup demands equal to zero. Hence the SDPPTW is also NP-hard.
Solving large scale SDPPTW to optimality is impossible within rea-
sonable computational time; therefore, an efficient and effective
solution procedure is needed. Since no algorithms are specified
for solving SDPPTW, this paper refers to those heuristic and
meta-heuristic solution methods designed to produce high quality
solutions for VRPTW in a limited time. Most exact methods and
some meta-heuristics for the VRPTW minimize total travel dis-
tance instead of minimizing the number of vehicles used. But in
some literature, the number of vehicles (NV) was chosen as the
first objective and the total travel distance (TD) only as the second
factor (Alvarenga, Mateusb, and De Tomi (2007), Bräysy, Dullaert,
and Gendreau (2004), Bräysy & Gendreau (2005a, 2005b), Bräysy,
Hasle, and Dullaert (2004), Cordeau, Gendreau, Laporte, Potvin,
and Semet (2002), Cordeau, Gendreau, Hertz, Laporte, and Sormany
(2005), Gendreau, Laporte, and Potvin (2001), Mester, Bräysy, and
Dullaert (2007), and Pisinger and Ropke (2007)).

The cheapest insertion method, used in Mester et al. (2007) and
Osman (1993) will be adopted to develop a co-evolution genetic
algorithm for SDPPTW in the following section due to its concep-
tual simplicity and computational efficiency.
3. Simultaneous delivery and pickup problem with time
window

3.1. Problem description

Given a number of customers who require both forward supply
service and reverse recycling service within a certain time period,
the problem concerned in this paper is how to send out a fleet of
capacitated vehicles, stationed at a distribution center (DC), to
meet the requests with the minimum number of vehicles and trav-
eling cost. Since the greater the number of vehicles, the less the
travel cost, trade-offs between these two kinds of costs needed
to be considered.
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Based on the simultaneous delivery and pick-up activities of a
vehicle, all vehicles should return to the collection center (CC) to
unload the recycled material. If the distribution center is the same
as the collection center, then CC = DC.

3.2. Mathematical formulation

Based on the above problem description, the flow operation is
analyzed in this section. Basic notations are introduced, first with
the number of customers denoted by n, DC by 0, and CC by n + 1.
If DC = CC, then 0 � n + 1.

3.2.1. Notations

Sets

J
 Set of all customers, J = j|j = 1, . . . , n)

JF
 Set of all forward channel nodes, i.e. DC and customer

locations, JF = {0} [ J

JR
 Set of all reverse channel nodes, i.e. customer

locations and CC, JR = J [ {n + 1}

JC
 Set of all nodes, JC = {0} [ J [ {n + 1}

V
 Set of all vehicles, V = {v|v = v1, . . . , v|V|}
Coefficients

qv
 Capacity of vehiclev, qv e R+
gv
 Dispatching cost of vehiclev, gv e R+
cij
 Distance between nodes i e JF, j e JR; i – j, cij e R+
tij
 Travel time between nodes i e JF, j e JR; i– j, tij e R+
dj
 Delivery demand of customer j e J, dj e Z+
pj
 Pickup amount of customer j e J, pj e Z+
sj
 Service time of customer j e J, sj e R+
aj
 Earliest service time of customer j e J, aj e R+
bj
 Latest service time of customer j e J, bj e R+
a0
 Earliest departure time of any vehicle from DC, a0 e R+
bn+1
 Latest arrival time that a vehicle must return CC,
bn+1 e R+
M
 An arbitrary large constant

a
 A parameter indicating the trade-off between

dispatching cost and travel cost, a e [0, 1]
Decision variables

L0v
 Load of vehicle v e V when leaving DC, L0v e Z+
Lj
 Remaining load of a vehicle after having served
customer j e J, Lj e Z+
xijv
 Traveling variable of a vehicle v e V, xijv e {0,1}; if it
travels directly from node i e JF to node j e JR, xijv = 1;
otherwise xijv = 0
Tj
 Time to begin servicing customer j e J, Tj e R+
T0v
 Departure time of vehicle v e V at DC, T0v e R+
T(n+1)v
 Arrival time of vehicle v e V at CC, Tv(n+1) e R+
3.2.2. Model SDPPTW

Minimize z ¼ a
X
v2V

X
j2J

gvx0jv þ ð1� aÞ
X
i2JF

X
j2JR

X
v2V

cijxijv ð1Þ

(Minimize total dispatching cost and total traveling cost)
subject toX
i2JF

X
v2V

xijv ¼ 1 8j 2 J ð2Þ

(Service all customer nodes exactly once)X
i2JF

xihv ¼
X
j2JR

xhjv 8h 2 J; 8v 2 V ð3Þ
(Arrive at and leave each customer with the same vehicle)X
j2J

x0jv ¼
X
i2J

xiðnþ1Þv 8v 2 V ð4Þ

(Vehicles which depart from D.C. should finally return C.C.)

L0v ¼
X
i2JF

X
j2J

djxijv 8v 2 V ð5Þ

(Initial vehicle loads)

Lj P L0v � dj þ pj �Mð1� x0jvÞ 8j 2 J; 8v 2 V ð6Þ

(Vehicle loads after first customer)

Lj P Li � dj þ pj �M 1�
X
v2V

xijv

 !
8i 2 J; 8j 2 J ð7Þ

(Vehicle loads ‘en route’)

L0v 6 qv 8v 2 V ð8Þ

Lj 6 qv þM 1�
X
8i2JF

xijv

 !
8j 2 J; 8v 2 V ð9Þ

(Vehicle capacity constraints)

T0v þ t0j �Mð1� x0jvÞ 6 Tj 8j 2 J; 8v 2 V ð10Þ

Ti þ si þ tij �M 1�
X
v2V

xijv

 !
6 Tj 8i 2 J; 8j 2 J ð11Þ

Ti þ si þ tiðnþ1Þ �Mð1� xiðnþ1ÞvÞ 6 T ðnþ1Þv 8i 2 J; 8v 2 V ð12Þ

a0 6 T0v 8v 2 V ð13Þ

aj 6 Tj 6 bj 8j 2 J ð14Þ

Tðnþ1Þv 6 bnþ1 8v 2 V ð15Þ

(Ensure feasibility of the time schedule)

xijv 2 f0;1g 8i 2 JF ; 8j 2 JR; 8v 2 V ð16Þ

This model contains (n + 1)2|V| + 2n + 3|V| variables and
2n2 + 5n|V| + 2n + 6|V| constraints. Although Ai and Kachitvichyan-
ukul (2009) have proposed a similar model, it contains
2(n + 1)2|V| + (n + 2)|V| variables and 2(n + 1)2|V| + 2n|V| + n + 3|V|
constraints. The additional variables and constraints are due to
the fact that variables Tjv and Ljv in Ai and Kachitvichyanukul’s
(2009) model were used to represent the service time point and
the vehicle load of vehicle v at customer j. However, these variables
can be simplified by Tj and Lj because xijv have been restricted to
exactly one vehicle v to serve customer j.

4. A genetic algorithm for the large-scale SDPPTW

‘‘Time’’ is always a managerial issue for an industry. Determin-
ing how best to support a quick and accurate decision is always de-
sired by a manager. Since exact algorithms are both theoretically
and practically impossible for the large-scaled SDPPTW, it is neces-
sary to introduce heuristic or meta-heuristic solutions. This section
will propose a co-evolution genetic algorithm to show its efficiency
and effectiveness with the continuous improvement mechanism.

4.1. Framework of the proposed co-evolution genetic algorithm

The Genetic Algorithm (GA) was first proposed by Holland
(1975). Due to its global search mechanism, GA has shown its capa-
bility to find good solutions for complex mathematical problems,
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like the VRP and other NP-hard problems, in a reasonable amount
of time. The traditional design of a GA faced the dilemma of con-
verging too quickly with non-acceptable local optima or converg-
ing too slowly and resulting in exhaustive time consumption for
deriving an acceptable solution. This study proposes a co-evolution
genetic algorithm to avoid any one of the above situations. Two
simple heuristics (MPCIM and RSCIM) used for generating initial
population will be introduced later. Based on the framework
shown in Fig. 2, the GA employs two populations for two respective
purposes: diversification and intensification.
Fig. 2. The framework of the propose
4.2. Initial population

If a fast and simple heuristic procedure to distribute all custom-
ers to the vehicles is used to obtain the first generation, it can sig-
nificantly reduce the GA’s computational time required to reach
the reasonable local minima. In other words, the methods to create
initial solutions for a GA should compute quickly as well as raise as
many properties as possible, that the optimal solution possesses.
With this purpose, the concept of cheapest insertion heuristic,
based on the savings procedure of Clarke and Wright (1964), was
d co-evolution genetic algorithm.
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frequently used by many researchers. For the descriptions of some
variants of the cheapest insertion heuristic, one can refer to Mester
et al. (2007) and Osman (1993).

This section will firstly describe the cheapest insertion method
(CIM). Based on the concept of CIM, two revised CIM with a cross-
over mechanism are proposed to generate the required initial solu-
tions. The details of these methods and mechanism are introduced
in the next subsections.

4.2.1. Cheapest insertion method
The cheapest insertion method (CIM) begins with an initial

solution in which each customer is served individually by a vehicle,
i.e. the number of vehicles = the number of routes = the number of
customers. Reinsertions of single customers to alternative posi-
tions in the solution vector are then attempted in a loop as illus-
trated in Fig. 3.

For a single route customer k, the method considers alternative
positions between adjacent customers l and m in other routes. The
reinsertions are evaluated using the cost saving criterion of Osman
(1993), (c0k + ck(n+1) + clm) � (clk + ckm), where cij refers to the costs
of the associated arcs (i, j). Each reinsertion examines all single
route customers; the reinsertion trial with the maximum cost sav-
ings is executed. A simple example for cost saving criterion is illus-
trated in Fig. 4. In this example, node 3 is going to be inserted into
another route and there are three choices. Fig. 4 illustrates that the
cheapest insertion is that node 3 is inserted after node 1. The rein-
sertion is stopped if the algorithm cannot reduce the number of
single customer routes. The solution obtained from this method
contains several minimum cost arcs which the optimal solution
contains.

4.2.2. Multi-parameter cheapest insertion method
Conventional CIM generates one solution only. In order to speed

up the global search process, a multi-parameter cheapest insertion
method (MPCIM) was proposed. MPCIM is the same as CIM except
for the insertion criterion. In MPCIM, the reinsertions are evaluated
using a modified insertion criterion of Mester et al. (2007),

ðc0k þ ckðnþ1Þ þ clmÞ � bðclk þ ckmÞ

where b refers to a parameter as a cost saving threshold. In the case
of 100 customers, Mester et al. (2007) suggested that for b all values
in range 0.2–1.4 are tried in increments of 0.2 units, which are
resultant in seven initial solutions.

4.2.3. Random seeds cheapest insertion method
In addition to finding high quality initial solutions, the initial

population of GA also needs to search widely in order to avoid fall-
ing into local optimum. For this reason, random seeds cheapest
insertion method (RSCIM) was proposed. RSCIM is also based on
the concept of CIM. Instead of beginning with an initial solution
Fig. 3. Illustration for chea
in which each customer is supplied individually by a separate
route, RSCIM generates a random order of customers for route
growing. Top k customers of the order are the seeds for route grow-
ing where k = (Total Demand/Average Vehicle Capacity). Addition
of a single route customer from the order to the partial solution
vector and reinsertions of single route customers to alternative
positions in the partial solution vector are then attempted in a
loop. All customers will be added to the partial solution vector,
one by one, by a random order; and the reinsertion trail with the
maximum cost savings is executed. The reinsertion is stopped if
the algorithm cannot reduce the number of single customer routes.
This method can search a wider space than MPCIM can for the ini-
tial population.

4.2.4. Crossover
In the proposed GA, the search space is limited to the feasible

region; therefore, every individual is feasible. Consequently, cau-
tion should be taken on the crossover and mutation operators, be-
cause a simple exchange between two customers can violate time
and capacity constraints. Referring to Alvarenga et al. (2007), this
study proposed a revised crossover algorithm which does not en-
tail bias in any particular direction and lets offspring inherit good
properties from parents. This crossover operator has the offspring
inherit as many routs as possible from parents. Once inherited
routes are chosen, they can be regarded as seed routes and all other
un-routed customer can be inserted into seed routes or other sin-
gle customer routes. The criterion of the insertion is the same as
the one used in RSCIM. The procedure to construct a solution after
inherited routes are chosen is called Fixed Seeds Cheapest Insertion
Method (FSCIM). This crossover operator generates one offspring
each time.

Algorithm 1. Crossover algorithm

function Crossover;
begin

repeat
Copy Random Route from Parent 1 to the offspring;
Copy Random Route from Parent 2 to the offspring;

until (no more inherited routes are feasible)
All un-routed customers form single customer routes;
Reduce all single customer routes by FSCIM;

end;
4.2.5. Initial population construction
As illustrated in Fig. 2, the initial population is constructed by

MPCIM and RSCIM with the crossover mechanism described above.
Each of MPCIM and RSCIM creates seven initial solutions, respec-
tively. If the population size N is used, the remaining N � 14 initial
pest insertion method.



(a) (b) (c)

Fig. 4. Illustration for cost savings criterion.
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solutions are created by crossover from these two groups of solu-
tions for deep and wide searches. The crossover operation is intro-
duced in the next part. The proposed GA has two populations and
these N initial solutions are copied directly into Population I and
Population II for different purposes of evolution.

Population I is used for diversification purposes, while Popula-
tion II is employed for evolutionary intensification. The co-evolu-
tion structure of these two populations is illustrated in Fig. 5.
Evolution of each population is described in the following section.

4.3. Co-evolution

Population I aims to retain the wide searching ability of the pro-
posed GA through three operators: Reproducing, Recombination
and Selection, while Population II aims to reach high quality solu-
tions quickly and improve them constantly through four operators:
Reproducing, Local Improvement, Crossover, Mutation, and Selec-
tion. In both populations, N parents generate 2N offspring and then
2N offspring compete with each other for only N to survive as the
parents of the next generation.
Fig. 5. Co-evoluti
In Population I, the Reproducing and Recombination operators
are used to generate 2N offspring from N parents. The Selection
operator is used to generate N parents of the next generation from
2N offspring. In Population II, There are 2 types of parents and 2
types of offspring, each denoted by high class and massive class,
respectively. High class offspring are generated from high class
parents only, and massive offspring are generated from all parents.
High class parents include the best individuals of both Population I
and Population II, plus some good individuals of Population II. The
high-class parents and high-class offspring are discussed below.
The definition of good individuals is introduced in the subsection
for the Selection operator.

The proportion of high-class offspring to massive offspring is
suggested to be 3:7 by experimentation taken on different ratios
of: 1:9, 2:8, 3:7, 4:6, and 5:5. In order to generate 2N � 30%
high-class offspring, about 1þ 1þ

ffiffiffiffi
N
p

high-class parents are
needed, in which one is the best individual of Population I; one
is the best individual of Population II and

ffiffiffiffi
N
p

are good individuals
of Population II. In spite of the unbalanced large proportion, high-
class offspring still need to compete with massive offspring. Class
on structure.
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redistribution is done in the 2N offspring by using a selection oper-
ator on Population II to generate N parents of the next generation.

4.3.1. Reproducing
In population I, the reproducing operator copies the best indi-

vidual of each set of parents to the first offspring. The best individ-
ual is the one with minimal objective value. In some literature,
minimizing the number of vehicles (NV) is considered the primary
objective. Then, with the minimal number of vehicles, minimizing
the total travel distance (TD) is used as the secondary objective.
This criterion can be achieved by setting a large value of a with
a ? 1. Reproducing to keep the best individual is also known as
the Elitism strategy, which guarantees that GA never retreats in
the high quality solution.

In Population II, the Reproducing operator copies the best indi-
viduals from both Population I and Population II, and

ffiffiffiffi
N
p

good
individuals from Population II to form 1þ 1þ

ffiffiffiffi
N
p

offspring proto-
types. A Local Improvement operator is used to improve these
1þ 1þ

ffiffiffiffi
N
p

offspring prototypes to form 1þ 1þ
ffiffiffiffi
N
p

offspring and
is introduced in the next part.

ffiffiffiffi
N
p

good parents are those individ-
uals with the top

ffiffiffiffi
N
p

minimal travel distances and are defined in
the subsection for the Selection operator.

4.3.2. Recombination
The recombination operator is a remove-insert mechanism which

preserves the wide searching ability of the proposed GA. In the first
step, the algorithm randomly removes 1/2 � 1/10 of its customers
from their routes. Then, the reinsertion of isolated customers is done
by FSCIM, where the existing routes are regarded as seed routes.

Algorithm 2. Recombination algorithm

function Recombination;
begin

Randomly remove 1/2 � 1/10 of customers from their route;
Reinsert isolated customers by FSCIM;

end;
4.3.3. Local improvement
Two types of Local Improvement are used in this work: Reinser-

tion Improvement and Swap Improvement. Either one of these two
kinds of improvements can be used to improve the offspring proto-
types which the Reproducing operator generates.

Reinsertion Improvement: This operator reinserts one single cus-
tomer into alternative positions in the solution vector by Osman
(1993) cost savings criterion. For a customer k currently serviced
between customers i and j, the operator considers all alternative
positions in the solution vector. Consider the position between
the adjacent customers l and m, the cost savings is evaluated as:

ðcik þ ckj þ clmÞ � ðclk þ ckm þ cijÞ:

The improvement operator is applied here with the best-move
strategy, i.e. all possible moves in the current neighborhood are
evaluated and the best improvement move is selected.

Swap Improvement: This operator swaps the position of two cus-
tomers simultaneously in the solution vector by Osman (1993) cost
savings criterion. For customers k and h currently serviced be-
tween customers i and j, and l and m, respectively, the swap possi-
bility is evaluated on cost savings as:

ðcik þ ckj þ clh þ chmÞ � ðclk þ ckm þ cih þ chjÞ:

Based on the best-move strategy, the local improvement operator is
applied to all of 1þ 1þ

ffiffiffiffi
N
p

reproduced individuals to form
1þ 1þ

ffiffiffiffi
N
p

high-class offspring.
4.3.4. Crossover
In Population II, the crossover algorithm is the same as the one

developed for the initial population in Section 4.2. Part of the high-
class offspring and massive offspring are generated by Crossover
and Mutation operators from good parents and all parents, respec-
tively. Twenty-one high-class offspring are generated by the cross-
over of all combinations of

ffiffiffiffi
N
p

good parents. Seventy massive
offspring are generated by the crossover of two arbitrary individu-
als of all parents. The Mutation operator is used to mutate these
N � 1� 1�

ffiffiffiffi
N
p

offspring to form N � 1� 1�
ffiffiffiffi
N
p

of the next gen-
eration, which is introduced in the next paragraph.

4.3.5. Mutation
A total of eleven different operators are used in the mutation

phase of the proposed GA in order to input new characteristics to
the current population. This in turn will enlarge the feasible search
space. In particular, some specific operators are developed in this
study to speed up the evolution of the individuals, for instance,
mutation 11 for SDPPTW. Fig. 6 is an illustration for mutation 01.
Complete illustrations for all mutation operators can be seen in
Appendix A.

Mutation_01 (Random customer reinsertion): This operator ran-
domly chooses a customer, removes it, and re-inserts it randomly
in a feasible alternative position in the same route if possible
(See Fig. 6).

Mutation_02 (Random customer migration): This operator ran-
domly chooses a customer and tries a feasible migration of this
customer to another non-empty vehicle.

Mutation_03 (Bringing a random customer): This operator ran-
domly chooses a vehicle and tries to bring a random customer from
other vehicles in such a way that it does not violate feasibility.

Mutation_04 (Random customer exchange): This operator ran-
domly chooses two vehicles and tries to exchange a couple of cus-
tomers in these two routes in such a way that it does not violate
feasibility.

Mutation_05 (Route partitioning): This operator randomly
chooses a vehicle, two random customers and divides this route
in two others, using those two customers as reference.

Mutation_06 (Reducing one route): This operator randomly
chooses a vehicle, isolates all customers in the route, and then rein-
serts them into other routes by RSCIM, if possible.

Mutation_07 (Customer reinsertion with best savings): This oper-
ator randomly chooses a customer, removes it, and re-inserts it
into the best position, i.e., the position in the same route with a
minimal travel distance.

Mutation_08 (Customer migration with best savings): This opera-
tor randomly chooses a customer; then tries to find the best migra-
tion for this customer to another non-empty vehicle with maximal
positive cost savings.

Mutation_09 (Bringing the best customer): This operator ran-
domly chooses a vehicle and tries to bring a customer from other
vehicles with maximal positive cost savings).

Mutation_10 (Best customer exchange): This operator randomly
chooses two vehicles, then verifies all possibilities to exchange a
couple of customers in these two routes, until a maximal reduction
in total travel distance is obtained.

Mutation_11 (Early-pickup late-delivery customer exchange): This
operator randomly chooses one early-pickup customer or late-
delivery customer. If the chosen customer is an early-pickup one,
they are randomly swapped with another later customer, if possi-
ble. If the chosen customer is a late-delivery one, they are ran-
domly swapped with another earlier customer, if possible.

4.3.6. Selection
Instead of using the objective function as a fitness function, the

fitness is related to total travel distance (total travel cost). This is



Fig. 6. Mutation_01: Random customer reinsertion.
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motivated by the fact that better individuals are more easily
evolved from the ones with the lower TD than the ones with the
lower NV. Recall that the population size is N and the number of
offspring is 2N. The fitness values of the individuals with the min-
imal TD and the maximal TD are set to be 4N and 2N + 1, respec-
tively. This implies that the individual with the minimal TD has
about double the probability to be reproduced compared to the
one with the maximal TD. The fitness is defined as below:

fitness ¼ 4N þ 1� ðranking of TDÞ:

All offspring are evaluated twice by the fitness function and objec-
tive function. In both populations, the individual with the best
objective function is kept directly by the Elitism strategy. In Popu-
lation II,

ffiffiffiffi
N
p

additional good offspring are kept to be the good par-
ents of the next generation. Good offspring are defined as those

ffiffiffiffi
N
p

individuals with lower TD (higher fitness). The remaining parents of
the next generation are reproduced by the Roulette wheel selection
rule, related to the fitness values. In other words, these individuals
are reproduced from all offspring where the individual k has the
probability of reproduction as:

Prðindividual k to be reproducedÞ ¼ fitness
total fitness
Table 1
Parameters used in the GA.

GA parameter (description) Value

SIZE_POP1 (population size of population 1) 50
4.4. Termination condition

Referring to Algorithm 1, the termination condition of the pro-
posed GA is the convergence of the procedure. At the beginning of
each generation, updating the best individual of these two popula-
tions is based on the comparison between the best individuals of
two consecutive generations. In other words, the evolution is un-
der a ‘stagnancy’ state as the rate of improvement between two
consecutive generations is zero or is relatively small (less than
10�3). The proposed GA converges when the evolution has been
under ‘stagnancy’ for 500 consecutive generations. Once the termi-
nal condition is satisfied (the proposed GA converges), the evolu-
tion process will be terminated and the best individual is
reported as the best solution.
SIZE_POP2 (population size of population 2) 50
NUM_MPCIM (number of MPCIM solutions) 7
NUM_RSCIM (number of RSCIM solutions) 7
NUM_GOOD_TD (number of good TD solutions) 7
MUT_RATE (mutation rate) 0.5
CONV_COUNT (definition for convergence in terms of number of

consecutive stagnancy generations)
500

Table 2
Experiments to SDPPTW RC1-type test problems under different mutation rates.

Mutation rate Cumulative NV Cumulative TD Computational time

0 103 11225.73 4145
0.1 103 11124.04 3863
0.3 102 11200.94 5415
0.5 102 11138.47 4382
0.7 103 11185.82 3454
0.9 103 11133.94 3990
5. Evaluation and discussion

Since there have not been any studies with testing problems
which were dedicated to SDPPTW, for evaluation, this study gener-
ated some SDPPTW test problems which were revised from Solo-
mon’s VRPTW benchmarks (refer to Solomon (1987)). The set of
Solomon’s test problems is composed of six different problem
types (C1, C2, R1, R2, RC1, & RC2). Each data set contains between
eight to twelve 100-customer problems. The categories of the six
problem types refer to:

C: with clustered customers whose time windows were gener-
ated based on a known solution;

R: with customer locations generated uniformly randomly over
a square;

RC: with a combination of randomly placed and clustered
customers.
where
Type 1 has narrow time windows and small vehicle capacity,

and
Type 2 has large time windows and large vehicle capacity.
Revised from Solomon’s test problems, this study generated

three 10-customer problems, three 25-customer problems, three
50-customer problems, and fifty-six 100-customer problems. Due
to different objective functions used in the literature, this analysis
employed the trade-off parameter a to adjust for different decision
criteria and compared the results with a hierarchical objective
function where the primary objective is to minimize the number
of vehicles and the secondary objective is to minimize the total dis-
tance or travel time. All experiments were executed on an Intel
Core2 Quad 2.4G computer with 1G memory.

5.1. Definition of the parameters

Appropriate adjustment of parameters in GAs can make a signif-
icant difference in terms of performance. Some values can provide
very high performance in specific instances while giving premature
convergence in others, even over the same kind of problems. The
parameters used in the proposed GA are listed in Table 1 and ex-
plained below.

SIZE_POP1 and SIZE_POP2 represent the population sizes of
Population 1 and Population 2 respectively in which values of
(50,50) are empirically chosen.

NUM_MPCIM and NUM_RSCIM represent the numbers of
MPCIM and RSCIM solutions respectively which are used to con-
struct the initial population as described in Section 4.

NUM_GOOD_TD represents the number of good TD solutions
kept in Population 2 selection.

MUT_RATE = 0.5 is set for the mutation rate. Once mutation is
executed, all mutation operators have equal probabilities to be



Table 3
Comparison between the solutions of Cplex and the proposed GA to the small-scale SDPPTW.

Problem NV Cplex (Lower bound) GA

TD Com. time NV TD NV TD Com. time

RCdp1001 3 348.98 1 3 348.98 1
RCdp1004 2 216.69 1503 2 216.69 1
RCdp1007 2 310.81 25 2 310.81 1
RCdp2501 5 551.05 16 5 551.05 3
RCdp2504 7* 738.32* 485,660* 0 423.88 4 473.46 2
RCdp2507 7* 634.20* 439,321* 0 1254.62 5 540.87 3
RCdp5001 9 994.18 327,404 9 994.18 18
RCdp5004 *14 1961.53* 839,320* 0 466.83 6 725.59 23
RCdp5007 13* 1814.33* 1,546,429* 0 388.51 7 809.72 22

* The ‘‘out of memory’’ values.

Table 4
Comparison between Cplex solutions and the proposed GA’s solutions to the SDPPTW.

Problem Basic GA Proposed GA Gap Problem Basic GA Proposed GA Gap

NV TD NV TD NV TD (%) NV TD NV TD NV TD (%)

Rdp101 19 1656.68 19 1653.53 0 �0.19 Rdp201 4 1299.17 4 1280.44 0 �1.44
Rdp102 18 1474.93 17 1488.04 �1 0.89 Rdp202 4 1121.88 4 1100.92 0 �1.87
Rdp103 14 1217.6 14 1216.16 0 �0.12 Rdp203 3 1031.02 3 950.79 0 �7.78
Rdp104 10 1029.38 10 1015.41 0 �1.36 Rdp204 3 774.75 3 775.234 0 0.06
Rdp105 15 1391.29 15 1375.31 0 �1.15 Rdp205 4 998.80 3 1064.43 �1 6.57
Rdp106 13 1258.82 13 1255.48 0 �0.27 Rdp206 3 992.14 3 961.32 0 �3.11
Rdp107 11 1091.89 11 1087.95 0 �0.36 Rdp207 3 868.59 3 835.01 0 �3.87
Rdp108 10 988.91 10 967.49 0 �2.17 Rdp208 3 732.00 3 718.51 0 �1.84
Rdp109 12 1248.35 12 1160 0 �7.08 Rdp209 4 894.45 3 930.26 �1 4.00
Rdp110 12 1157.78 12 1116.99 0 �3.52 Rdp210 3 1037.20 3 983.75 0 �5.15
Rdp111 11 1084.27 11 1065.27 0 �1.75 Rdp211 3 827.17 3 839.61 0 1.50
Rdp112 10 998.08 10 974.03 0 �2.41
Cdp101 11 1001.97 11 1001.97 0 0.00 Cdp201 3 591.56 3 591.56 0 0.00
Cdp102 10 1030.68 10 961.38 0 �6.72 Cdp202 3 591.56 3 591.56 0 0.00
Cdp103 10 905.71 10 897.65 0 �0.89 Cdp203 3 591.17 3 591.17 0 0.00
Cdp104 10 889.3 10 878.93 0 �1.17 Cdp204 3 590.6 3 590.6 0 0.00
Cdp105 11 983.1 11 983.1 0 0.00 Cdp205 3 588.88 3 588.88 0 0.00
Cdp106 11 878.29 11 878.29 0 0.00 Cdp206 3 588.49 3 588.49 0 0.00
Cdp107 11 913.81 11 913.81 0 0.00 Cdp207 3 588.29 3 588.29 0 0.00
Cdp108 11 922.59 10 951.24 �1 3.11 Cdp208 3 588.32 3 588.32 0 0.00
Cdp109 10 938.1 10 940.49 0 0.25
RCdp101 15 1665.2 15 1652.9 0 �0.74 RCdp201 5 1376.98 4 1587.92 �1 15.32
RCdp102 14 1516.34 14 1497.05 0 �1.27 RCdp202 4 1210.75 4 1211.12 0 0.03
RCdp103 13 1370.7 12 1338.76 �1 �2.33 RCdp203 4 971.11 4 964.65 0 �0.67
RCdp104 11 1198.99 11 1188.49 0 �0.88 RCdp204 3 857.23 3 822.02 0 �4.11
RCdp105 15 1561.01 14 1581.26 �1 1.30 RCdp205 5 1302.51 4 1410.18 �1 8.27
RCdp106 14 1453.34 13 1422.87 �1 �2.10 RCdp206 4 1167.52 3 1176.85 �1 0.80
RCdp107 12 1301.58 12 1282.1 0 �1.50 RCdp207 4 1058.86 4 1036.59 0 �2.10
RCdp108 11 1195.39 11 1175.04 0 �1.70 RCdp208 3 908.08 3 878.57 0 �3.25

Boldface indicates that those solutions of the proposed GA have less vehicles or lower total distances.
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applied. Since RC1-type problems are the most complicated, partic-
ular tests are carried out by taking the mutation rates of 0.1, 0.3,
05, 0.7, and 0.9 to solve eight RC1-type 100-customer SDPPTW test
problems. Results are listed in Table 2 where the mutation rate 0.5
shows the best performance.

Convergence is defined as the evolution appearing in a given
amount (CONV_COUNT) = 500 of the consecutive stagnancy gener-
ations and is used as a stopping condition.

5.2. Computational results for the small-scale SDPPTW

The commercial linear programming software, like ILOG Cplex,
could find optimal solutions for the small-scale SDPPTW and hence
can be used to evaluate the accuracy of the proposed model. Three
10-customer problems, three 25-customer problems, and three 50-
customer problems were revised from Solomon’s RC101, RC104
and RC107 problems and re-named as RCdp10101, RCdp10104,
RCdp10107, RCdp25101, RCdp25104, RCdp25107, RCdp50101,
RCdp50104, and RCdp50107 respectively. These nine small-scale
problems were solved by Cplex and the proposed GA. The compar-
ison between solutions of Cplex and the proposed GA to these
small-size problems is listed in Table 3. One can see that Cplex is
only able to solve five problems to optimality, but not the rest
due to ‘‘out of memory.’’ For those five problems, the proposed
GA also could get their optimal solutions within much shorter time
(1 � 23 s). For the other four problems, the ‘‘out of memory’’ values
with Cplex are poor and the lower bounds with Cplex are not tight.
GA’s solutions are much better than Cplex’s best solutions.

5.3. Computational results for the SDPPTW

Further evaluation was carried out by testing the performance
of the proposed algorithm with respect to the basic genetic algo-
rithm (GA) which has only one population with crossover, muta-
tion and local-improvement operators. The results were shown in
Table 4. The basic GA tended to fall into local optima, but the
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proposed GA, with two populations, overcome this shortage and
could find solutions with fewer vehicles. In other words, among
fifty-six 100-customer SDPPTW test problems, the proposed GA’s
solutions were better than or as well as the basic GA’s for 52 prob-
lems. The basic GA only performed slightly better than the pro-
posed GA did in the other four problems. Besides, the proposed
GA even found solutions with fewer vehicles for ten problems.
6. Summary and conclusions

Simultaneous delivery and pickup problems have drawn much
attention in the past few years, especially in coping with recycling
issues for environmental protection. Customers, in reality, request
specific service time; in order to increase the service quality, the
logistic companies often provide services to meet such requests.
This study therefore considered a vehicle routing problem with
simultaneous delivery and pickup problems with time windows
and formulated the problem into a mixed binary integer program-
ming model denoted by SDPPTW.

Due to the NP nature of the problem, this study developed a co-
evolution genetic algorithm with the use of some variants of the
cheapest insertion method. Because there were no existing bench-
marks, this study generated some test problems which were re-
Fig. A1. Mutation_02: Rando

Fig. A2. Mutation_03: Brin

Fig. A3. Mutation_04: Rando

Fig. A4. Mutation_05: R
vised from the well-known Solomon’s benchmark for Vehicle
Routing Problem with Time Windows (VRPTW). Comparisons be-
tween the results of Cplex software, the proposed algorithm, and
the basic genetic algorithm showed that the proposed algorithm
could provide better solutions within a comparatively shorter per-
iod of time.

Since uncertainty often accompanies pickup demand, fuzzy
mathematics may be applied to enhance the model and may pro-
vide a broader perspective to the research of the bi-directional
logistics problem. Hence, determining how to extend the model
to cope with uncertainty is a direction of the further study.
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Appendix A

Figs. A1–A10 illustrate all mutation operators.
m customer migration.

g a random customer.

m customer exchange.

oute partitioning.



Fig. A5. Mutation_06: Reducing one route.

Fig. A6. Mutation_07: Customer reinsertion with best savings.

Fig. A7. Mutation_08: Customer migration with best savings.

Fig. A8. Mutation_09: Bringing the best customer.

Fig. A9. Mutation_10: Best customer exchange.

Fig. A10. Mutation_11: Early-pickup late delivery customer exchange.
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