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a b s t r a c t

This paper describes a robust template matching algorithm undergoing rotation–scaling–translation
(RST) variations via our proposed SPiraL Aggregation Map (SPLAM), which is a novel image warping
scheme. It not only provides an efficient method for generating the desired projection profiles for
matching, it also enables us to determine the rotation angle, and is invariant to scale changes. Compared
to other model-based methods, the proposed spiral projection model (SPM) provides the structural and
statistical information about the template in a more general and easier to comprehend format. The SPM
is a model-based texture-description scheme that enables the simultaneous representation for each
value of projection profile. The profile, a set of parametric projection values functions by angular
indexing, is the aggregate from a group of spiral sampling pixels. The experimental evaluation shows
that the properties of the algorithm achieved very attractive results.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Advanced research and development in template matching
has found numerous applications in areas such as image retrieval,
near-duplicate detection, object detection and recognition with
impressive performances. Template matching is a critical techni-
que in many visual-based pattern recognition applications.
Normally, the template matching procedure consists of two
phases. In the first phase, the representative feature vectors of
the template and the given test sub-image positions are extracted.
In the second phase, the matching score is acquired using the
similarity measure such as the sum of the absolute differences, the
n-norm distance, and cross-correlation. However, the first phase
usually dominates the robustness of the system performance. To
cope with the template undergoing unpredictable geometric
transformations, it is not surprising that the use of the invariant
local descriptor is indispensable.

In practice, template matching usually suffers from problems
of rotation, scaling, translation, and brightness/contrast changes.
Conventional approaches are seldom able to handle these pro-
blems simultaneously, depending on the model. One of the most
capable schemes for dealing with both rotation and scale invariant

properties is based on the cascade model. Kim and Araujo [1]
showed a cascade framework in which ring projection method was
used to deal with the rotation variation and the radial projection
method was applied to estimate the local rotation angle.

1.1. Related work

Traditionally, template matching is divided into model-based
and transformation-based methods. The model-based method
focuses on extracting the intrinsic characteristics from a particular
sampling model or projection path. The local structural informa-
tion of the template can be preserved and enhanced using an
appropriate descriptor that is insensitive to geometric transforma-
tions. For instance, the ring projection [2–6] is a simple algorithm
that enables transforming 2-D patterns into 1-D profiles by
circularly aggregating pixels on the same radius from the center
point, in order to achieve rotation invariant features. Radial
projection [7] is a sampling method from 2-D image pixels under
radial lines into a 1-D profile as a function of the radial line angle.
The 1-D profile obtained from the radial projection is normally
invariant to scale changes. The orientation code (OC) [8] can be
obtained by grouping the quantized values of the gradient angle
around each pixel on the image. The OC is a type of rotation-
discriminating feature; however it is not scale invariant for all
situations. The shape context was proposed by Belongie et al. [9].
It encodes the edge points of the template based on a reference
point under the log-polar coordinate. It is intrinsic invariant to
translation and scaling, but is not efficient for rotation invariant
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matching without some ad-hoc treatment of the template. Ojala
et al. [10] used local binary patterns (LBP) in rotation-invariant
texture classification. LBP can be treated as a general approach to
the conventionally divergent structural and statistical models for
texture analysis. Notable illumination-invariant LBP features for
face recognition system were proposed by Li et al. [11].

On the other hand, the transformation-based method transforms
the spatial image plane to the parameter plane using transformation
methods with RST-invariant abilities such as the Fourier transform (FT)
[12–14],Wavelet transform (WT) [15-16], Radon transform (RT) [17–19],
Mellin transform (MT) [20] and others. The FT is one of the most
popular techniques for dealing with the RST-invariance problem
because it efficiently employs a fast algorithm. In Ref. [15], the authors
illustrated an extension of the phase correlation technique in the
Fourier-domain for achieving RST invariance, and applied for image
registration. A frequency domain method to handle scale-invariant
template matching in a single pass can be achieved using the MT [21].
To accommodate the limitations that the MT only provides scale-
invariant matching, the Fourier–Mellin transform [22–24] extends
phase correlation to handle images transformed by both translation
and rotation. As a result, numerous research has combined the
different transformations when handling many of the invariance
situations. For instance, Hoang and Tabbone [25] used the RT, FT,
and MT in pattern recognition. In Ref. [26], the RT and WT methods
are combined to deal with texture analysis. The RT, dual-tree complex
WT and FT are adopted in pattern recognition [27]. However, in the
case of larger scale changes, it induces many noises in the Fourier
coefficients when recovering the rotation, scale, and translation
parameters. In Ref. [28], the authors show that the approach applies
the frequency domain only when used in double-sized scaling.

Recently, combining the model-based and transformation-
based scheme has been considered, such as in Refs. [29–31]. Amiri
and Rabiee [29] extracted a set of coefficients as object features
in the WT-domain, and applied the log-polar mapping model in
the parametric template space to attain rotation/scale invariance.
Apparently, the fusion framework significantly increased the
complexity of the system, but was still unable to deal with the
serious geometric changes. Thus, we focused on modeling the
image directly in the spatial domain and recovered the best RST by
performing a correlation on tiles that were projected into feature
coordination called SPiraL Aggregation Map (SPLAM). We concen-
trated on solving the geometric variability due to the change in
pose and the different angles of the viewpoint by using a single
projective model called spiral projection model (SPM).

1.2. Motivations

This study focused on the model-based gray-scale template
matching in order to understand more structural information from
the template and to remove the computational burden from the
transformation cost. As mentioned earlier, although the model-

based approach such as the ring and radial projection methods
show promising results in experiments, they have some unsolva-
ble drawbacks. Although profiles of the ring projection method for
object search has been used numerously for rotation-invariant
template matching [4,32,33] they are not applicable in some
situations, such as when the template has a circular symmetrical
pattern with a radial appearance in a particular orientation, such
as a clock, compass, color wheel and so on. In addition, each value
of the projection profile is collected from a different number of
sampling pixels which is a function of the radius. In other words,
the spatial resolution sampling from the inner circle must be less
than that of the outer circle. Each value of the projection profile is
acquired from a different number of sampling pixels. However, it is
very difficult to provide an equivalent sampling resolution for each
of the values, making it impossible to accurately handle the overall
error model.

1.2.1. Circular symmetry problem
Fig. 1(a) and (b) shows the original image and rotated 901

counterclockwise, respectively. Another case is where the changes
of the hands are only shown in Fig. 1(c). If the ring projection
applies for describing these three images, they will obtain the
same projection profiles. It is not our intention to deny that the
ring projection scheme is not good at attacking the rotation-
invariance. Nevertheless, according to this example, it is unable
to distinguish the rotation cases between the inside pattern and
the entire image. A radial projection is required to solve this
ambiguous situation.

1.2.2. Texture characteristics
In the scaling problem, the ring projection cannot obtain a

stable result unless the direction-based interpolation or shrinking
methods are adopted. Based on the definition of ring projection,
each value of the profile is an aggregation from a different number
of pixels of the template. If uniform sampling is applied to describe
the image pattern, it will introduce unpredictable noise and will be
unable to make a perfect match. The radial projection is a useful
representation for solving scale variations. In general, a cross-
correlation algorithm is followed by computing the projection
profile to determine the orientation of the template. Compared to
the ring projection, the radial projection has better properties
because each value of the projection profile comes from the same
number of pixels. However, it still has some shortcomings. The
regular sampling in the radial direction results in an intrinsic loss
of texture information, especially in the case of larger image
scaling. The distance between the pixels from two consecutive
sampling lines will obviously be apart when the sampling radius is
closer to the boundary of the test image. Each projection line
represents a feature that follows a single orientation with the
corresponding angle. As a result, only the directional character-
istics of the features can be preserved. For example, if there is a

Fig. 1. An illustration of the circular symmetry problem: (a) original clock; (b) clock rotated; and (c) time changes.
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strong edge perpendicular to the radial direction, it will be missed
completely. If the projection profile is used to represent the actual
texture characteristics of the template when attempting to solve
the matching problem, then unpredictable errors are usually
induced.

1.3. The goal of the paper

In this paper, we proposed a theoretically and computationally
simple approach that is sufficiently robust to undergo RST varia-
tions and can be applied for realistic visual template matching
application. A simple and well-defined feature map, the proposed
SPLAM is illustrated to deal simultaneously with the rotation- and
scaling-invariance transformation. The scale changes do not affect
the appearance of the SPLAM. The rotation performed in the
original image faithfully responds to the SPLAM when scrolled
vertically. More specifically, when the original image suffers from a
counter-clockwise rotation, the SPLAM rotates downwards. Simi-
larly, if a clockwise rotation occurs, the SPLAM rotates upwards.
The proposed SPM which provides structural and statistical
information on the template in a more general and easier to
comprehend format is presented here. Compared to the ring
projection method the spiral-based projection provides a high
level of sensitivity and scanning efficiency. As well, the inherent
spatial information will be better preserved than by using the
radial projection algorithm.

1.4. Contributions and organization

The contributions of our work are four-fold. (1) Based on the
proposed image warping algorithm (i.e., SPLAM), the location
finding and angle determination can be achieved quickly using
the same model. (2) By taking advantage of the ring projection, the
angle of the template rotation can be determined, and it also
negates the possibly ambiguous rotation situation (i.e., circular

symmetry problem). (3) Compared with the radial projection, the
analytic capability of spatial information is equally reported in
each projection value. (4) A fast coarse-to-fine filtering method is
proposed to determine the position and orientation of the refer-
ence template from the test image.

The remainder of this paper is organized as follows. Section 2
presents the proposed new descriptor: spiral projection and the
image pixel aggregation method that is robust to rotation and
scaling invariance. Experimental results are provided in Section 3
and finally we discuss our findings and draw our conclusion in
Section 4.

2. The descriptor

A novel descriptor and fast algorithm for robust template
matching was developed in this study. We proposed an efficient
feature sampling scheme and aggregating model. Because one of
the main characteristics of the spiral model is that it understands
spatial variations, we used it to describe the local features of the
template. The ultimate goal of this study was to develop an
efficient template modeling method to solve/correct the template
after it had undergone rotation, scaling, and translation variations.
In addition, the proposed method has also been confirmed to be
robust to the noise corrupted situations.

2.1. The proposed SPiraL Aggregation Map (SPLAM)

A constant-size feature map is constructed by collecting pixels
from the original image regardless of the size of the image. The so-
called SPiraL Aggregation Map (SPLAM) is created by the set of
pixels on the spiral line with the corresponding angle from image
space (u, v) to projection space (i;φ). Let Splamði;φÞ denote the
feature map sampled from the pixels along the spiral line at a
rotation of φ degrees, and i denotes the index of the pixel sample.

Fig. 2. Graphical illustration of the SPiraL Aggregation Map, K¼0.5. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article.)
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Each group of sample pixels is vertically replaced into Splamði;φÞ
according to their angle φ. As mentioned above, i¼ 1� P, where P
is the number of sample pixels on each spiral line. Assuming that
the spatial resolution of the spiral line is Δφ degrees, we have
2π=Δφ sets of samples on each spiral line, rotating at φ degrees.
Therefore, we can obtain a feature map with a fixed size of 2π=Δφ
by P.

A conceptual illustration of the SPLAM construction is shown in
Fig. 2. We draw two spiral lines in φ¼ 01 and π=2 with blue and
magenta star marks in Fig. 2(a). Each one is then sequentially
arranged to the horizontal slice as shown in Fig. 2(b). To integrate
all samples on each horizontal slice, we construct a spiral projec-
tion profile. The concentric circles with red dash marks denote the
samples with the same serial number i on each rotated spiral line.
In the feature map, this is displayed on the vertical slice with
position i. To integrate all samples on each vertical slice, we
construct a spiral inner-ring projection profile.

Based on the definition of the Archimedean spiral, the appear-
ance of a spiral curve does not change with the size of the image.
The SPLAM is scaling invariant, and we can extract the desired
projection profiles from it. Let PH denote the horizontal projection
of the SPLAM, we have

PH φð Þ ¼ 1
P

� �
∑
P

i ¼ 1
Splam i;φð Þ: ð1Þ

In addition, if PV denotes the vertical projection of the SPLAM,
which is composed by the spiral inner-ring pixels indexed by i,
then we have

PV ið Þ ¼ Δφ
2π

� �
∑
2π

φ ¼ 0
Splam i;φð Þ; ð2Þ

where Δφ denotes the sampling offset in the rotation angle of
spiral. In short, the SPLAM has two important properties: (1) It is
scale-invariant: when the size of the test image changes, the
horizontal and vertical projection profiles of SPLAM remain
globally stationary. (2) It is rotation-distinguishable: if the image
is rotated, it is reflected on the SPLAM by a vertical shift. The
rotation angle can be determined by the vertical displacement of
the feature map, and finding the maximal offset of the cross-
correlation coefficient between the SPLAMs of the reference
template and the test sub-image.

In next section, we consider how to find discrete finite samples
along with the spiral expansion trajectory from the point of origin
to the boundary of the image (or template).

2.2. Spiral projection model (SPM)

The geometric or Archimedean spiral, is named after Archi-
medes who explained that the spiral was the result of a point
moving with uniform angular velocity and receding from the
center (i.e., line velocity) at a constant rate. This paper is a
model-based projection method, sampling pixels by using the
spiral expansion model for both the template and the test sub-
image. Based on the characteristics of spiral expansion, the sample
evolution included both horizontal and vertical displacements
simultaneously. This enabled it to preserve the fundamental
structural information of the template.

According to the definition of Archimedean spirals [34], a
continuous spiral trajectory can be described as

ρ∅ ¼ α∅ 0r∅o1; ð3Þ
where α denotes a constant describing the radial distance in a
polar coordinate system, and ρ∅ is the distance from the point on
the spiral line to the origin with the corresponding angle ∅. The
trajectory can be formed as ∅¼ 2πcþω, where cAZ indicates the
number of laps, and ω is the angle of the x axis in the Cartesian-

plane, which can act as the angular velocity, periodically rotating
with the origin point. To align the origin of the spiral trajectory
with the Cartesian coordinate, we designed ∅¼ 2πk, where k
denotes the number of laps, and kAℝ in order to satisfy the
requirement of the non-integer laps. Thus, the spiral line can be
transformed onto the Cartesian-plane as

u∅ ¼ α∅ cos ∅
v∅ ¼ α∅ sin ∅

(
0r∅o1; ð4Þ

In order to deal with the scaling variation, we attempted to design
a similar spiral line regardless of the size of the test sub-image.
This provided a consistent sampling path from the point of origin
(u0, v0) to the boundary of the image. The intrinsic texture features
were preserved by the stationary sampled points on the reference
template and test sub-image. Consequently it was important that
the number of cycles after a certain evolution time remained
unchanged. Fig. 3 shows a graphical illustration of the spiral
sampling model. Let us consider two points (ρ, ∅) and (ρ0,
∅þ2π) that are located in the same angle. If we apply for Eq. (3)
then we have ρ¼ α∅, ρ0 ¼ αð∅þ2πÞ, and d¼ jρ�ρ0j ¼ 2πα. Let d
denote the smallest radial distance (i.e., radial interval) between
these two points.

Suppose that the size of the image is N�N, and K denotes the
maximum number of laps from the point of origin to the boundary
point, which is used to restrict the evolution of the spiral span. Let
ρmax denote the farthest point from the point of origin on the spiral
line, that equals N=2, so that

ρmax ¼ dK ¼ 2παK ð5Þ
Substituting α¼ ρmax=2πK into Eq. (3) satisfies our requirement

that the finite samples with the bound of expansion ∅max ¼ 2πK .
Thus, we obtain a time-limited spiral line in the polar-plane,

ρ∅ ¼ α∅; 0r∅o2πK ; ð6Þ
Based on the time-limited spiral function, we have a sample

location (ui, vi) in the Cartesian plane,

ui ¼ α∅i cos ∅i

vi ¼ α∅i sin ∅i
0r∅io2πK;

(
ð7Þ

where ∅i denotes the corresponding angle arranged on 0;∅maxÞ½ .
In the digital image, we need to find discrete samples along the

spiral trajectory. A discrete approximation of the sample pixels
along a spiral trajectory is given by the pre-defined K and the size
of the image. Let S denote the collection of the spiral samples
along the spiral trajectory from the reference template T(u, v),

ω

k=1

d=2πα

k=1.5
(ρmax, max)

k=1.375

k=0.375

k=1.25

Fig. 3. Illustration of the spiral sampling algorithm.
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expressed as

S9fsigji ¼ 1 � P ¼ [P
i ¼ 1 Tðui; viÞ ð8Þ

where P denotes the amount of sampling points. The angular
interval ωj of the jth sample can be computed as follows:

ωj ¼
θmax

P

� �
nj; ð9Þ

where j denotes the sample index.
Here, the value of the single spiral projection value on template

T is defined as the mean of the intensities along the spiral
trajectory centered at template T:

Pj ¼
1
P

� �
∑
P

j ¼ 1
T αωj cos ωj; αωj sin ωj
� �

: ð10Þ

Let φ define the angle of the counterclockwise rotation of the
spiral trajectory around the center, and PT ð φÞ denotes the projec-
tion profile of the template, which is constructed by uniform
sampling of the whole template at angle φ,

PT ð φÞ ¼ 1
P

� �
∑
P

j ¼ 1
T ½αωj cos ωjþφ

� �
; αωj sin ωjþφ

� ��: 0rφo2π

ð11Þ
According to the characteristics of SPLAM, we can derive the

projection profile using PT φð Þ ¼PH φð Þ, where 0rφo2π. The
major goal of the algorithm is to model the reference template
and use it to estimate the rotation angle and scaling factor of test
sub-image Is with center location (xs, ys). Similarly, the projection
profile for the test sub-image is formed as follows:

PSðxs ; ysÞðφÞ ¼ 1
P

� �
∑
P

k ¼ 1
Is xsþdkx

� �
; ysþdky
� �h i

; ð12Þ

where (dkx; d
k
y) denotes the offset in the x- and y-directions along

the spiral curve, respectively which is computed by

dkx ¼ αωk cos ωkþφð Þ
dky ¼ αωk sin ωkþφð Þ:

8<
: 0rφo2π ð13Þ

The normalized correlation γðxs; ysÞ is defined in Eq. (14), which is
used in the matching process to determine the similarity between
the reference template and the test sub-image with center
locationðxs; ysÞ.

γ xs; ys
� �¼ ηs

‖PT‖U‖PS‖
; ð14Þ

where ‖:‖ denotes the l-2 norm distance and ηs refers to the
correlation between the reference template and the current test
sub-image, which is defined as follows:

ηs ¼ ∑
2π

φ ¼ 0
PT φð ÞUPSðxs ; ysÞ φð Þ: ð15Þ

The rotation angle can be determined by the offset τ which
produces the maximal normalized cross-correlation value
between the parametric template and test sub-image as follows:

φn ¼ argmaxτ γ xs; ys
� �

; τ
� 	

; 8τAφ: ð16Þ

2.3. Fast algorithm for template matching using SPM

For the sake of computational efficiency, a full search mechan-
ism was not considered in this paper. Instead, we proposed the
coarse-to-fine three-step filtering method to determine the posi-
tion and orientation of the reference template T from the test
image. Each sampling of sampled sub-image Is from the test image
is performed using the filtering algorithm.

2.3.1. Coarse filtering
We take advantage of the texture feature, and compute the

variance of each spiral line with respect to the SPM indexed by
angle φ as

σT φð Þ ¼ 1
P

� �
∑
P

j ¼ 1
T αωj cos ωj ; αωj sin ωj
� ��PT φð Þ
 �2

; 0rφo2π;

ð17Þ
which is formed as a vector with σmin and σmax. Let us consider
that a boundary of reference template T is ðdkx; dkyÞ, and that N
denotes the boundary of test sub-image Is. Thus, the search range
for the candidate center point is bound by (dkx/2, d

k
y/2) and (N�dkx/

2, N�dky/2). If a point located in the test sub-image has a variance
value that is out of the range of [σmin σmax], it will be ignored. The
variance of each spiral line can be calculated by

σS φð Þ ¼ 1
P

� �
∑
P

k ¼ 1
IS xSþdkx

� �
; ySþdky
� �h i

�PS φð Þ
n o2

; 0rφo2π:

ð18Þ
Considering the computational cost, we only applied the spiral line
with angle 01 for test sub-image Is, i.e., σS 0ð Þ. In short, when σS 0ð ÞA
[σmin σmax], the coordination of the corresponding center point is
considered to be the candidate, and is stored in the candidate
matrix L[sn] which represents the nth test point ðxn; ynÞ in Is. Let us
assume that Ncf denotes the number of points after coarse filtering.

2.3.2. Interval filtering
Based on the results of the coarse filtering, interval filtering

utilizes the interval information. Although it more complicated, it
preserves more spatio-temporal information than the coarse filter.
However, it also increases the computational cost. The coarse filter
is only concerned with the projection profile along a single angle,
while the interval filtering uses the interval relationships between
more angles. The filtering procedure is extended to three other
angles, 901, 1801, and 2701 for L[sn], where n¼1�Ncf. The variances
of these three spiral lines from the Is, σS (90), σS (180), and σS (270)
are computed similar to the spiral line in coarse filtering. The
variances are confirmed by interval σT at the same time. The point
in candidate matrix L will be discarded if it does not satisfy the
requirement of the interval filtering.

2.3.3. Spiral inner-ring filtering
The advantage of the SPLAM image is that scale changes do not

affect the appearance of the SPLAM. Histogram equalization (HE)
[16] is used to balance the local contrast variation between the
template and the test sub-image. The rotation performed in the
original image will reliably respond to the SPLAM with vertical
scrolling. Therefore, we attempted to solve the problems of scaling
and rotation simultaneously.

From the vertical aspect, the scaling and rotation variations will
not affect the vertical projection of the SPLAM. For a given test
sub-image, we first obtain PSðxn ; ynÞ

V ðiÞ that forms the vector with
360 values (i.e., φ¼ 0�2π) on each candidate point n and the ith
spiral inner-ring pixel by means of Eq. (2). When compared with
the set of points on the reference template, i.e. PT

V ðiÞ, if the average
error of each point is less than the pre-defined constant β1 , then
the corresponding feature score is added. The β1 reflects the
distinction between the mean of the spiral inner-ring projection
on the test sub-image and the reference template. Let Fv(n) denote
the integral similarity score of the nth test point from L[sn], in
other words:

FV nð Þ ¼ ∑
P

i ¼ 0
u PSðxn ; ynÞ

V ðiÞ�PT
V ðiÞ

��� ���; β1h i
; ð19Þ
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where

u A;B½ � ¼ 1 if AoB

0 if A4B



: ð20Þ

From the horizontal aspect, we can compute the horizontal
projection PSðxn ; ynÞ

H ðφÞ of the test sub-image and PT
HðφÞ from the

reference template using Eq. (1). Substituting PSðxn ; ynÞ
H ðφÞ and PT

HðφÞ
into Eqs. (14)–(16), we find the best matched rotation angle φn.
Based on the SPLAM characteristics these two horizontal projec-
tions satisfy the shift relationship. Hence, we can obtain the
horizontal similarity score:

FH nð Þ ¼ ∑
2π

φ ¼ 0
u PSðxn ; ynÞ

H ðφþφnÞ�PT
HðφÞ

��� ���; β2h i
; ð21Þ

where β2 denotes a pre-defined constant reflecting the distinction
between the mean of the horizontal projection on the test sub-
image and the reference template.

Finally, we sort the similarity score of both the vertical and the
horizontal results. When the similarity scores Fv and FH are both
top-ranked, then the corresponding point will be preserved in L.

3. Experiments

In this section, five experiments were set up to evaluate the
sensitivity and robustness of the proposed algorithm in perform-
ing template matching. First, the number of circles K of the spiral
model was used to evaluate the sensitivity of the algorithm.
In order to randomly rotate the test samples, the distinctive
characteristics of the different SPMs with K must be identified.
We also conducted experiments to test the sensitivity of the
system for noise interference. Second, the robustness of the
system for attacking the RST-variations was demonstrated. With
different noises corrupting the images, the proposed SPM was still
able to locate instances of accurate samples. Third, we compared
the coarse-to-fine fast search method with the full search method
for noise-free and noise corrupted situations. Fourth, the evalua-
tion of the discriminating ability for circular symmetry template
was examined. Finally, we compared our system to other methods.

3.1. Preliminary

For this study we collected the templates from a car logo,
a university badge, and an official badge. There were a total of 20
templates used in the evaluation of the system, 5 from the car
logo, 12 from the university badge and 3 from an official badge as
shown in Fig. 4. The reference template was first selected and its
center position defined. Before the SPM can be utilized, the vertex
samples must be restored from the SPLAM feature space. This
enables the system to generate robust feature descriptions for
searching the sample instance of the test image and attack the RST
deformation. We conducted a comprehensive representation of
the template enabling us to determine the RST-invariant projec-
tion features.

The main purpose of template matching is to determine the
accurate position and orientation of the template of the noise
corrupted image. The center point of the sample instance can be
estimated by the procedure shown in Section 2.3. As shown in
Table 1, the pre-defined illumination change, contrast adjustment,
and noise corruption are employed to support the robustness of
the proposed system. All of the instance samples are set into a
cluttered background image with random orientation and cor-
rupted with different noise variations.

3.2. Sensitivity analysis of the spiral parameters

In the first experiment, we evaluated the sensitivity to distin-
guish the proposed SPM mechanism. In sampling the spiral model,
the number of circles (i.e., K) in the spiral plays an important role
in the degree of accuracy. Therefore, our aim was to test the
sensitivity of the spiral parameter K using the rotation versions of
the sample instances randomly embedded onto a cluttered back-
ground as shown in Fig. 5. From a statistics view point, we first
computed the single spiral line over different K for each sample.
The average value of 20 test images was estimated by means of
entropy, homogeneity, and contrast computations. Fig. 6 shows
the result of sensitivity test for the number of circle K, and ranged
[0.1 5] with an interval of 0.1.

Based on this observation, when the circle of the spiral
increases, the frequency of the entropy changes will decay, and
the difference between the maximum and minimum value is
reduced. This means that the projection profile of every single
spiral line is depressed, inversely proportional to the circles of the
spiral sampling. Apparently, the statistics of the homogeneity
and contrast have the same tendency. Therefore, the smaller the
K assignment, the higher the ability to distinguish. On the other
hand, it is difficult to preserve the characteristics of the texture
information when too large a circle of the spiral sampling
is used.

We tested the template matching performance of the proposed
SPM algorithm. To investigate the sensitivity of the proposed
algorithm to the spiral parameter, the detection was performed
by varying the K parameter to test the image datasets for intensity,
contrast transformation, and a variety of noise, all on a cluttered
background. To quantitatively measure the sensitivity of the
proposed method, the true positive rate and a false alarm rate
against the K values are shown in Figs. 7 and 8.

From Figs. 7 and 8, we can conclude that when the circle of the
spiral increases, the accuracy of the template matching decays.
Moreover, the error rate will increase at the same time. However,
the circle of the spiral model (i.e., K) cannot shrink forever, and
when K is selected to be less than 0.5, the true positive rate and
the false alarm rate will show a similar performance. If the amount
of corrupted noise is substantial, then the accuracy of the system
performance is compromised, especially when K is less than 0.1.
Therefore, the best K will range between 0.2 and 0.5. Based on our
observations, the system performs best for the TPR measurement
when K is 0.2. Nevertheless, the best performance for the FAR
value is K¼0.3. In order to avoid missing the true instances, we
applied K¼0.3 in the following experiments.

Noise corruption often reduces the efficiency of an image in the
matching process. The intrinsic texture property of the image
becomes distorted by the noise. Even when only the illumination
is changed, the accuracy of the template matching is reduced,
regardless of whatever well-defined model is being used. Com-
pared with the full search scenario, and as shown in Figs. 7 and 8,
the template matching performance of the fast coarse-to-fine
filtering mechanism will be reduced by 20% of the TPR and
increased by 25% of the FAR when K is less than 1.5. When K is
greater than 1.5, the full search method will be increased by 30% of
the TPR and reduced by 35% of the FAR. Nevertheless, the full
search outperforms the fast search mechanism. The average
computational cost of the full search is around 2.24 times that of
the proposed coarse-to-fine search.

In addition, we found that the results of PN and GSF are
relatively weak with the fast filtering method, and that they are
not significant in the full search scenario. The major reason for this
is that the true observation point is filtered out in the first-pass of
coarse filtering. This is similar to the doping process, were a large
number of noises are added to the spiral sampling step, resulting
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in the projection being in excess of the pre-defined range. On the
other hand, the performances of the DI and EC produce good
results with the fast filtering method, especially in the case of a
large K. This implies that much of the uncorrelated information
has been sampled in the spiral line. The less distinctive

representations are summarized in the aforementioned entropy
analysis. In addition, the proposed method is robust to the
interference of the truncation error from the JPEG compression.
The results achieved in the full search and the fast coarse-to-fine
filtering mechanisms are similar.

Fig. 4. The template samples applied in the experiments: (a) the logos; (b) the badges; and (c) the official badges.

Table 1
The abbreviations of corrupted noises for the system evaluation.

Distortion type Abbreviation Demonstration

Illumination change DI-10 Darken 10% of the intensity
DI-20 Darken 20% of the intensity
BI-10 Brighten 10% of the intensity

Contrast adjustment DC-10 Depressed 10% of the contrast
DC-15 Depressed 15% of the contrast
EC-10 Enhanced 10% of the contrast

Noise corruption GSF Gaussian smoothing filter with 5�5 mask
JPEG JPEG compressed with 10% compression ratio
SPN Corrupted by salt and pepper noise with p¼0.05
PN Corrupted by Poisson noise with variance¼0.5
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From the viewpoint of the FAR, the GSF produces worse results
when a large K is chosen, because more noise has to be sampled.
It should be noted that the noise corruption by GSF is very close to
the original value. Therefore, many false candidates are detected in
the full search method. Most of the erroneous points surround the
true location, resulting in a significant increase in the false alarm
rate. Although the fast coarse-to-fine filtering method enables the
matching system to eliminate more errors, the number of false
detections is higher than that in the full search. Overall, the higher
the amount of the initial information the more the performance
drops and the computational loading increases.

3.3. Robustness to the RST variations

To evaluate the robustness of the proposed method, a few
vertex templates were created from the given reference template
with different rotation angles and scaling factors with noise
corruptions. In this experiment, two evaluations are demon-
strated. For the first evaluation we set K¼0.3 to test the robustness
of the rotation-invariance. Each test image includes 5 instances
with a fixed size as shown in Fig. 5. Then, we introduced noise into
20 test images to evaluation the system's accuracy of template
matching. Three scaling factors {0.8, 1, 1.5} were used to evaluate
the robustness of scale changes.

3.3.1. Rotation-invariance
In order to test the rotation-invariant property of the proposed

fast search algorithm, we set K¼0.3 for finding the location and
orientation of the instances. Fig. 9 shows the result of each step of
the filtering method. Fig. 9(b) shows the result of coarse filtering,
where the blue pixels denote the valid center pixels of the
candidate instances. The result of the interval filtering is shown
in Fig. 9(c), indicating that a large amount of blue pixels was
filtered out. When the 3rd step filter (i.e., spiral inner-ring filter)
was used, five peaks of matching scores were obtained, as shown
in Fig. 9(f). The corresponding center position and orientation are
shown in Fig. 9(e).

In order to quantitatively measure the effectiveness of our
proposed SPM method for dealing with the rotation, scaling, and
translation transformations, we applied two commonly used
metrics of precision and recall to describe the performance of
the template matching algorithm. They are defined as follows:

Precision¼ TP
TPþFP;

Recall¼ TP
TPþFN;

ð22Þ

where TP, FP, and FN denote true positive, false positive, and false
negative respectively. However, when the recall rate is high, it is
difficult to achieve a high precision rate, and conversely if the

Fig. 5. Test images of the sample instances for sensitivity analysis.
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precision rate is high, it is impossible to have a high recall rate.
Consequently, we used the F-measure to evaluate the overall
performance as follows:

F �measure¼ 2� precision� recall
precisionþrecall

� �
: ð23Þ

Using the F-measure is the only way to obtain a high performance
that simultaneously has a high precision and high recall rates. As
shown in Table 2, the proposed method applied for testing the
image datasets without the addition of noise achieved a perfor-
mance of 91.79% in the F-measure. The overall precision rate is not
very sensitive to illumination and contrast changes, which is less
than 5% of the overall precision rate. It is still robust after the
distortion of the high JPEG compression rate. An F-measure of
approx. 85% can be reached when 90% of the data rate is truncated.
The proposed descriptor and the fast search algorithm remain
valid when corrupted with the salt and pepper noise. The worst
result was obtained when Gaussian smoothing and Poisson
noise were added. Even though, a high level of precision was
maintained. The main problem is the low recall rate due to the
fact that the test images have been depressed by the Gaussian
and Poisson noises. Overall, the proposed matching algorithm
achieved 84.97% precision rate and 78.75% recall rate when
corrupted by the different noises. On an average, it achieved a
performance of 83.45% when the three types of image distor-
tions were applied.

3.3.2. Robust to scale changes
In this experiment, three scaling factors {0.8, 1, 1.5} were

used to evaluate the robustness of scale changes. As shown in
Fig. 10, each of the test images (sets) consisted of 4 logos with

the corresponding SPLAM images. The vertex templates were
generated based on the proposed image warping scheme as
shown in Fig. 2. The same SPLAM images could be obtained for
different scales of vertex templates. The resolution of the test
image was 400�400. In all the different images, each logo was
assigned a sign code. As shown in Fig. 11, the vertex templates
with accurate scale factors, rotation angles, and the positions for
test set 1 (with K¼0.3) were all detected correctly. More results
are shown in Fig. 12.

In addition, we extended our experiment and tested the
robustness for noise interference, such as listed in Table 1 (e.g.
change in intensity, contrast adjustment, lossy JPEG compression,
and some kernel noises). Fig. 12 shows the results of the scale-
invariance experiment for the normal sample and template.
The number and the orientation of the bounding box denote the
sign code and rotation angle of the detected instance. Table 3
shows the performance of template matching with noise corrup-
tions. Strictly speaking, the hit rate is only accumulated when
the detected sample is recognized in the correct position, scale,
and rotation angle simultaneously. A high level of accuracy can be
achieved for a normal image, missing only one instance due to the
corresponding template being undistinguishable. For illumination
changes, an average hit rate of 86.11% is achieved and a hit rate of
88.33% is achieved for contrast changes. When it comes to noise
corruption such as serious Gaussian smoothing and Poisson noise
the performance is relatively weak. However, the template match-
ing ability is relatively high for dealing with the artifacts of JPEG
compression and salt and pepper noise. In short, our proposed
system: (1) achieved a high level of precision for illumination and
contrast changes, (2) was robust for blocking artifacts, which are a
side-effect of JPEG compression, (3) achieved a 80% average hit
rate for critical noise corruption.
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3.4. Comparison with the full search method

In this paper, we proposed the coarse-to-fine three-step filter-
ing method to determine the position and orientation among the
instances in the test image. To test each pixel of the test image, the
distribution of the matching score was obtained by using the pre-
defined template model (i.e., SPLAM). This full search algorithm
takes around 2.24 times more computation time than the fast
search method. Based on our observation, only 12% of the pixels
are left after the first two filtering steps (i.e., coarse and interval
filters). However, the pre-defined range of variance of each spiral
line with respect to the SPM might possibly be missed due to noise
interference. In the coarse filtering step, especially the variance
value is changed due to the uncorrelated pixel intensity being
corrupted. To show the reliability of the proposed descriptor, we
compared the performance of our proposed method with the full
search mechanism for five types of noisy images with a relatively
weak hit rate. Table 4 shows a high hit rate of template matching
in the case of normal images (i.e., with noise corruption). This is
the same weakness as when dealing with GSF distortion, because
the smoothing operator induces many ambiguous pixels, in that it
is unable to recover the accurate center position of the instances.
On average, the fast search method had a hit rate that was approx.
1.6% less than that of the full search mechanism.

Figs. 13 and 14 respectively show the TPR and FAR comparisons
between the fast and the full search mechanism for five types of
noisy images with a relatively weak hit rate. For the number of
circle K less than 1, the fast search method gained 0.1–0.2 in TPR
and lost the same in FAR. However, a large K always performs

worse due to the loss of intrinsic characteristics. In other words,
the ratio of the computational time between a full and a fast
search in EC-10, BI-10, GSF, JPEG, and PN is 4.47, 4.96, 2.16, 1.27,
and 5.01 respectively. In Figs. 15 and 16, we compare the TPR and
the average FAR (AFAR) for noise-free and noisy situations
between the full and the fast search methods. Apparently, for
the noise-free situation, the results of the TPR for both type of
searches are very approximate (o0.1) when Ko2. Also, the
difference of AFAR between both searches is less than 0.1 when
Ko1. When the noise is corrupted, the accuracy reduced by
approx. 0.1 for the TPR measurement and increased 0.1 for the
AFAR measurement for both search mechanisms.

3.5. Evaluation of the discriminating ability for circular symmetry
template

To examine the robustness of the proposed method for circular
symmetry template, we compared the discriminating ability of the
SPM with other template matching methods. Comparing the
rotation-invariance of the SPM with ring projection algorithm,
we built 20 circular symmetry templates as shown in Fig. 17. These
templates are similar to the original templates, but the center
circular regions have been rotated. In Table 5, the results of
comparison between the proposed SPM and ring projection model
are shown. The recall rates were both high, but the precision
of ring projection method was relatively low due to false positive
detection. From the results of F-measure, it showed that our
proposed SPM method is robust to the circular symmetry
situation.
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Fig. 7. TPR of different (a) illumination, (b) contrast, and (c) noise distortions for a varying number K.
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3.6. Comparison with radial projection method

As aforementioned, a radial projection is a kind of extreme case
of spiral projection. However, spiral projection method reserved
more orientation information and texture properties about the
image. In this section, we have conducted an experiment to
demonstrate the accuracy using a particular number of radial
and spiral sampling lines. More specifically, a part of spiral lines
among 3601 would be adopted to represent the template. Fig. 18
shows the comparison between spiral and radial projection
methods using recall, precision, and F-measure indexes. This
demonstrates that the recall rate of radial projection was
significantly lower than that of spiral projection, especially
when a small number of spiral lines was adopted. According
to the result of F-measure evaluation, the spiral projection
method outperforms the radial projection algorithm about
10% in accuracy. However, if more spiral lines being used, the
more chaos will be induced. The number of sampling lines
reflects the execution time as well. Consequently, it can be
treated as a trade-off problem between computational cost and
detection accuracy.

3.7. Comparison with state-of-the-art method

Previous studies have examined that the template matching
algorithms can be divided into two groups: model-based and
transformation-based approaches. Recently, the growth of
research trends has focused on the mixed approach. For example,

Forapro (Fourier coefficients of radial projections) [30] is an
efficient template matching approach. It uses the radial and
circular features to detect the matching candidates. The normal-
ized cross-correlation (NCC) is used to decide whether each of the
matching candidates is a true or false matching result. Another
possible filtering method is based on the generalized Hough
transform [35]. However, it requires a set of stable sub-templates
to against the partial occlusions. For the purpose of fairness, we
compare our method only with the Forapro-NCC method.

We repeated the experiment of scale changes using the dataset
in Ref. [30], including 24 memory game cards with 12 different
figures. This dataset for testing the template matching algorithm is
more challenging due to the high-corrupted background and
greater scale factor ranges. In the beginning, 9 query templates
were resized by scaling factors chosen randomly in the range [0.7
1.4], and pasted them in random non-overlapping locations to
form eight test images. Table 6 depicts the number of observed
errors using the Forapro-NCC and the proposed method, varying
the number of candidate pixels nc and the number of scales ns.
According to the results of Table 6, the proposed algorithm is
capable of scale variations. To localize the template locations in the
test image, the SPLAM with fast algorithm outperforms the
Forapro-NCC method. For example, the number of matching
candidates nc represents the matching tolerance of the location
offset. When a smaller value of nc is assigned, it needs to search a
pixel location more precisely. Based on our observations, with the
same condition, i.e., nc¼10, our method obtains less errors than
Forapro-NCC method. Regardless of whether the nc has been
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Fig. 8. FAR of different (a) illumination, (b) contrast, and (c) noise distortions for a varying number K.
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assigned as 5 or 1 (i.e., exactly hit), the proposed method still be
robust to scale changes.

3.8. Remarks on the experiments

In this paper, a new model-based descriptor taking advantage
of both structural and statistical information was proposed. The
algorithm of the descriptor was outlined as follows: First, a

projection profile was constructed by sampling pixels along the
time-limited spiral model. Second, the information implied in the
projection profile was statistically integrated to form a feature
vector. Third, a novel model-based image warping scheme was
presented to build a feature map with fixed dimensions providing
projection profiles for matching. The major advantage of the
descriptor is that it enables scale- and rotation-invariance at the
same time. It is also not susceptible to any change in illumination,

Fig. 9. Results of matching with the rotation variations: (a) original image; (b) result of coarse filtering; (c) result of interval filtering; (d) matching result by spiral inner-ring
filtering; (e) detected logos with bounding box and orientation; and (f) matching scores (5 peaks denote the center location of the instances). (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)

Table 2
The matching performance with RST-variations for the proposed algorithm.

Noise # Instances True positive False positive False negative Precision (%) Recall (%) F-measure (%)

Normal 100 95 12 5 88.79 95.00 91.79
DI-10 100 86 13 14 86.87 86.00 86.43
DI-20 100 81 14 19 85.26 81.00 83.08
BI-10 100 83 15 17 84.69 83.00 83.84
DC-10 100 90 17 10 84.11 90.00 86.96
DC-15 100 89 13 11 87.25 89.00 88.12
EC-10 100 66 13 34 83.54 66.00 73.74
JPEG 100 88 20 12 81.48 88.00 84.61
SPN 100 94 16 6 85.45 94.00 89.52
GSF 100 66 21 34 75.86 66.00 70.59
PN 100 67 2 33 97.10 67.00 79.29
Contrast adjusted 300 245 43 55 84.97 81.67 82.94
Illumination changed 300 250 42 50 85.61 83.33 84.45
Noise corrupted 400 315 59 85 84.97 78.75 81.00
Total/average 1100 905 156 195 85.59 82.27 83.45
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contrast variation, or noise corruption. The results show that the
proposed algorithm was successful in determining the real posi-
tion of the template and acquired the precise angle of rotation of
all the images.

4. Discussion and conclusion

The findings of this study could play an important role in
developing an efficient template matching system to deal with

unpredictable variations. The main contribution of this paper is
the description of a simple and compact spiral-like feature
descriptor which preserves structural and coherence informa-
tion for image templates. By taking the advantage of the
circular and radial projection, any variation in rotation and
scaling of the template can be addressed simultaneously. The
spiral projection model (SPM) was used to describe the texture
feature of the template, and the SPiraL Aggregation Map
(SPLAM) was proposed to determine the rotation angle of the
template and effectively handle the scaling problem. It pre-
serves more details of the reference template and enables us to
deal more effectively with the rotation, scaling, and translation
variations. The proposed feature representation method can be
effectively treated as the index to retrieve the template location
in a coarse-to-fine scenario for the test image. In our experi-
ments we achieved many highly encouraging results for RST-
invariant template matching applications.

The proposed descriptor is capable of expressing the tem-
plate with high-order texture characteristics. The statistical
discrimination can be accomplished by computing the statistics
of the spiral line. The unobservable texels (texture elements)
repeated in the template image can be measured by means
of maximum probability, moments, contrast, homogeneity,
entropy, energy and others. However, in order to reduce the
complexity of the system, the second-order statistical

Fig. 10. Template images of the test sets and the SPLAM image with sign code (different resolutions).

Fig. 11. Result of template matching for 4 templates with RST variations (K¼0.3).
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characteristics of the texture information were observed only in
this study.

On the other hand, this new descriptor does not use the color
information as pixel density in the projection step. Color provides
a powerful representation for pattern matching. If the color

feature would be used, it could improve the overall performance
of the system. However, using the color or not is a trade-off
between computational burden and system accuracy in the
matching process. Currently, we are developing a new model for
matching image points of interest with a patch-based random

Fig. 12. More results of the scale- and rotation-invariance experiments.

Table 3
Performance in template matching for noise-corrupted images.

Noise # Instances True positive False negative Hit rate (%)

Normal 60 59 1 98.33
DI-10 60 53 7 88.33
DI-20 60 50 10 83.33
BI-10 60 52 8 86.67
DC-10 60 57 3 95.00
DC-15 60 56 4 93.33
EC-10 60 46 14 76.67
GSF 60 38 22 63.33
JPEG 60 55 5 91.67
SPN 60 59 1 98.33
PN 60 42 18 70.00
Contrast adjusted 180 159 21 88.33
Illumination changed 180 155 25 86.11
Noise corrupted 240 194 46 80.83
Total/average 660 567 93 88.40

Table 4
The performance of the full search mechanism for noise-corrupted images.

Noise # Instances True positive False negative Hit rate (%)

Normal 60 60 0 100.00
EC-10 60 53 7 88.33
BI-10 60 50 10 83.33
GSF 60 45 15 75.00
JPEG 60 58 2 96.67
PN 60 58 2 96.67
Total/average 360 324 36 90.00
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Fig. 13. Comparisons of TPR between the fast and the full search with different K: (a) illumination and contrast changes and (b) noise corrupts.
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Fig. 14. Comparisons of FAR between the fast and the full search with different K: (a) illumination and contrast changes and (b) noise corrupts..
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color index for reducing the computational cost. We believe that
the new model will provide resistance to partial occlusion and will
not be sensitive to changes in the geometric transformations.
Moreover, the proposed SPM can be easily modified for other
types of spiral sampling. Our long-term goal is to investigate the
possibility of 3D spiral projection for representing video data.
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Fig. 16. (a) FAR comparisons between the fast and the full search without noise corruption and (b) the average FAR of the fast and full search with noise corruption.

Fig. 17. Examples of circular symmetry templates (the center part of template has been rotated).

Table 5
Performance comparison between spiral and ring projection models.

#
Instances

True
positive

False
positive

False
negative

Precision
(%)

Recall
(%)

F-
measure
(%)

Spiral 20 20 3 0 86.95 100 93.02
Ring 20 20 20 0 50.00 100 66.67

Fig. 18. Performance comparison of the result of spiral projection and radial
projection.
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Table 6
Comparison between the proposed algorithm and Forapro-NCC on the robustness to scaling.

Errors (maximum¼72) SPLAM with fast algorithm Forapro-NCC [30]

nc¼1 nc¼5 nc¼10 nc¼20 nc¼45 nc¼10 nc¼20 nc¼45

ns¼4 5 4 4 4 4 8 10 4
ns¼5 3 3 3 3 2 3 0 1
ns¼6 0 0 0 0 0 1 0 0
ns¼8 0 0 0 0 0 1 0 0
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