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A New Model-Based Rotation and
Scaling-Invariant Projection Algorithm for

Industrial Automation Application
Huang-Chia Shih, Member, IEEE , and Kuan-Chun Yu

Abstract—This paper describes a simple approach
for model-based template matching, which is robust to
undergo rotation and scaling variations. An efficient image
warping scheme spiral aggregation image (SAI), which has
been utilized in this paper, provides a method for gener-
ating projection profiles for matching. In addition, it deter-
mines the rotation angle and is invariant to scale changes.
The proposed spiral projection algorithm (SPA) for template
matching enables the simultaneous representation for each
value of projection profile, obtained through SAI, and pro-
vides structural and statistical information on the template.
The experimental evaluation shows that the proposed SPA
achieves very attractive results for template matching in the
industrial automation application.

Index Terms—Image warping, industrial automation,
rotation invariant, scale invariance, template matching.

I. INTRODUCTION

S TATE-of-the-art research in machine vision techniques in
industrial applications has been successfully implemented

in such area as inspection system [1]–[3], robotic vision sys-
tems [4], [5], autonomous vehicle navigation [6]–[10], and
recognition system [11], [12]. Template matching is a critical
technique in numerous visual-based pattern recognition appli-
cations. To cope with the template undergoing unpredictable
geometric transformations, it is not surprising that the use
of the invariant local descriptor is indispensable. Frequently,
template matching suffers from such problems in rotation, scal-
ing, translation, and brightness/contrast changes. Conventional
approaches are seldom able to handle these problems simulta-
neously, depending on the model.

Generally speaking, template matching algorithms are clas-
sified into projection-based and transformation-based methods.
The projection-based method focuses on extracting the intrinsic
characteristics from a particular sampling model or projec-
tion path. The local structural information of the template can
be preserved and enhanced using an appropriate descriptor
that is insensitive to geometric transformations. For instance,
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the radial projection [13] is a sampling method from two-
dimensional (2-D) image pixels under radial lines into a one-
dimensional (1-D) profile as a function of the radial line angle.
The 1-D profile obtained from the radial projection is nor-
mally invariant to scale changes. In addition, the ring projection
[14]–[18] is a simple algorithm that enables transforming 2-D
patterns into 1-D profiles by circularly aggregating pixels on the
same radius from the center point, in order to achieve rotation-
invariant features. One of the most capable schemes for dealing
with both rotation and scale-invariant properties is based on the
cascade model. Kim and Araujo [19] showed that a cascade
framework that ring projection method was used to deal with
the rotation variation and that the radial projection method was
applied to estimate the local rotation angle.

On the other hand, the transformation-based framework con-
verts the spatial image plane to the feature plane using transfor-
mation methods. Furthermore, combining the projection-based
and transformation-based scheme has been considered in [20]–
[22]. Apparently, the fusion framework significantly increased
the complexity of the system but was still unable to deal with
the serious geometric changes. Thus, we focused on modeling
the image directly in the spatial domain and recovered the best
rotation and scaling by performing a correlation on tiles that
were projected into feature coordination called spiral aggrega-
tion image (SAI). We concentrated on solving the geometric
variability due to the change in pose and the different angle of
the viewpoint by using a single projective model called spiral
projection algorithm (SPA).

In this paper, a projection-based grayscale template match-
ing is proposed to understand more structural information from
the template and to remove the computational burden from
the transformation cost. As mentioned earlier, the projection-
based approach such as the ring and radial projection methods,
although they show promising results in experiments, has some
unsolvable drawbacks. Although profiles of the ring projec-
tion method for object search have been used numerously for
rotation-invariant template matching [16], [23], [24], they are
not applicable in some situations, such as when the template
has a circular symmetrical pattern with a radial appearance in
a particular orientation such as a clock, compass, color wheel,
and so on. In addition, each value of the projection profile is
collected from a different number of sampling pixels, which
is a function of the radius. In other words, the spatial resolu-
tion sampling from the inner circle must be less than that of
the outer circle. Each value of the projection profile is acquired
from a different number of sampling pixels. However, it is very
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difficult to provide an equivalent sampling resolution for each
of the values, making it impossible to accurately handle the
overall error model.

The remainder of this paper is organized as follows.
Section II presents the proposed algorithm: spiral projection
and the image warping method that is robust to rotation
and scaling invariance. Experimental results are provided in
Section III and finally we discuss our findings and draw our
conclusion in Section IV.

II. ALGORITHM

A novel projection algorithm for robust template matching
is developed in this study. This algorithm is a model-based
projection scheme, sampling pixels by using the spiral expan-
sion model for both the template and the test subimage.
Based on the characteristics of spiral expansion, the sample
evolution included both horizontal and vertical displacements
simultaneously.

A. Spiral Projection Algorithm

According to the definition of Archimedean spirals [25], a
continuous spiral trajectory can be described as

ρ∅ = α∅, 0 ≤ ∅ < ∞ (1)

where α denotes a constant describing the radial distance in a
polar coordinate system, and ρ∅ is the distance from the point
on the spiral line to the origin with the corresponding angle
∅. The trajectory can be formed as ∅ = 2πc+ ω, where c ∈ Z

indicates the number of laps, and ω is the angle of the x-axis
in the Cartesian plane, which can act as the angular velocity,
periodically rotating with the origin point. To align the origin of
the spiral trajectory with the Cartesian coordinate, we designed
∅ = 2πk, where k denotes the number of laps, and k ∈ R in
order to satisfy the requirement of the noninteger laps. Thus,
the spiral line can be transformed onto the Cartesian plane

{
u∅ = α∅ cos ∅,
v∅ = α∅ sin ∅, 0 ≤ ∅ < ∞. (2)

In order to deal with the scaling variation, we attempted
to design a similar spiral line regardless of the size of the
test subimage. This provided a consistent sampling path from
the point of origin (u 0, v 0) to the boundary of the image.
The intrinsic texture features were preserved by the stationary
sampled points on the reference template and test subimage.
Consequently, it was important that the number of cycles after
a certain evolution time remained unchanged. Fig. 1 shows a
graphical illustration of the spiral sampling model. Let us con-
sider two points (ρ, ∅) and (ρ′, ∅+ 2π) that are located in the
same angle. If we apply for (1), then we have ρ = α∅, ρ′ =
α (∅+ 2π), and d = |ρ− ρ′| = 2πα. Let d denote the smallest
radial distance (i.e., radial interval) between these two points.

Suppose that the size of the image is N×N, and K denotes
the maximum number of laps from the point of origin to the
boundary point, which is used to restrict the evolution of the

Fig. 1. Illustration of the spiral sampling algorithm.

spiral span. Let ρmax denote the farthest point from the point of
origin on the spiral line that equals N/2, so that

ρmax = dK = 2παK. (3)

Substituting α = ρmax/2πK into (1) satisfies our require-
ment that the finite samples with the bound of expansion
∅max = 2πK. Thus, we obtain a time-limited spiral line in the
polar plane

ρ∅ = α∅, 0 ≤ ∅ < 2πK. (4)

Based on the time-limited spiral function, we have a sample
location (ui , vi ) in the Cartesian plane

{
ui = α∅i cos ∅i,
vi = α∅i sin ∅i, 0 ≤ ∅i < 2πK (5)

where ∅i denotes the corresponding angle arranged on
[ 0, ∅max) .

In the digital image, we need to find discrete samples along
the spiral trajectory. A discrete approximation of the sample
pixels along a spiral trajectory is given by the predefined K and
the size of the image. Let S denote the collection of the spiral
samples along the spiral trajectory from the reference template
T(u, v), expressed as

S � {si}|i=1∼P =
⋃P

i=1
T (ui, vi) (6)

where P denotes the amount of sampling points. The angular
interval ωj of the jth sample can be computed as follows:

ωj =

(
θmax

P

)
*j (7)

where j denotes the sample index.
We defined a single spiral curve in (1), i.e., ρ∅, where 0 ≤

∅ < ∞ in polar plane. Here, we constructed a projection model
based on the spiral sampling. Each value of the projection pro-
file is obtained by aggregating all of the pixels in the spiral
curve. Suppose T(u,v) is a template image with size N×N in
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the Cartesian plane, then the pixels on the spiral curve sample
can be written as

{sn}|n=1∼P � ρ∅ = T (u (ωn) , v (ωn)) ,

0 ≤ ωn < θmax and n = 1, 2, 3, . . . , N (8)

where {
u(·) = αωn cosωn

v(·) = αωn sinωn
(9)

where αωn is controlled by the number of laps K. Assume that
we need to rotate the spiral line via the center of the template.
Using the geometric rotation operation to transform the pixel
locations (u, v) from the input image to (u′, v′) in the output
image, then the new sampling points with clockwise rotating of
angle ϕ are expressed by

{
u′(·) = u cos ϕ− v sin ϕ
v′(·) = u sin ϕ+ v cos ϕ.

(10)

By replacing u and v in (10) by (9), we obtain
{

u′(·) = αωn cosωn cos ϕ− αωn sinωn sin ϕ
v′(·) = αωn cosωn sin ϕ+ αωn sinωn cos ϕ.

(11)

Using the compound angle formula
⎧⎪⎪⎨
⎪⎪⎩

u′(·) = αωn(cos ωn cos ϕ− sin ωn sin ϕ)
= αωn cos (ωn + ϕ)

v′(·) = αωn (cos ωn sin ϕ+ sin ωn cos ϕ)
= αωn sin (ωn + ϕ)

(12)

where 0 ≤ ϕ < 2π.
Consequently, the SAI of whole template is indexed by angle

ϕ, which can be formulated as

PT (ϕ) =

(
1

P

) P∑
j=1

T [αωj cos (ωj + ϕ) , αωj sin (ωj + ϕ)],

0 ≤ ϕ < 2π. (13)

Based on the definition of the Archimedean spiral, the
appearance of a spiral curve does not change with the size of
the image. The SAI is scaling invariant, and we can extract
the desired projection profiles from it. In this paper, we sim-
ply used the mean value as the profile value. Let PH denote the
horizontal projection of the SAI, we have

PH (ϕ) =

(
1

P

) P∑
i=1

SAI (i, ϕ) . (14)

In addition, if PV denotes the vertical projection of the SAI,
which is composed by the spiral inner-ring pixels indexed by i,
then we have

PV (i) =

(
Δϕ

2π

) 2π∑
ϕ=0

SAI (i, ϕ) (15)

where Δϕ denotes the sampling offset in the rotation angle of
spiral.

According to the characteristics of SAI, we can derive the
projection profile using PT (ϕ) = PH (ϕ), where 0 ≤ ϕ < 2π.
Similarly, the projection profile of the instance of the test
subimage Is with center location (xs, ys) is formed as

PIS(xs,ys) (ϕ) =

(
1

P

) P∑
k=1

Is
[(
xs + dkx

)
,
(
ys + dky

)]
(16)

where (dkx, d
k
y) denotes the offset in the x- and y-directions along

the spiral curve, which is computed by
{
dkx = αωk cos (ωk + ϕ) ,
dky = αωk sin (ωk + ϕ) ,

0 ≤ ϕ < 2π. (17)

The major goal of the algorithm is to model the reference
template and use it to estimate the rotation angle of test subim-
age Is with center location (xs, ys). Intuitively, the normalized
correlation γ (xs, ys) is used in the matching process to deter-
mine the similarity between the reference template and the test
subimage with center location (xs, ys). The rotation angle ϕ∗

can be determined by the offset τ , which produces the max-
imal normalized cross-correlation (NCC) value between the
parametric template and test subimage as follows:

ϕ* = argmaxτ {γ (xs, ys) , τ} ∀τ ∈ ϕ (18)

where

γ (xs, ys) � PT ,PIS(xs,ys) =
ηs

‖ PT ‖ · ‖ PIS ‖ (19)

where denotes the l-2 norm distance, and ηs refers to the cor-
relation between the reference template and the current test
subimage, is defined as follows:

ηs =

2π∑
ϕ=0

PT (ϕ) · PIS(xs,ys) (ϕ) . (20)

B. Properties of the SAI

A constant-size feature map is constructed by collecting pix-
els from the original image regardless of the size of the image.
The so-called SAI is created by the set of pixels on the spiral
line with the corresponding angle from image space (u, v) to
projection space (i, ϕ). Let SAI (i, ϕ) denote the feature map
sampled from the pixels along the spiral line at a rotation of ϕ
degrees, and i denotes the index of the pixel sample. Each group
of sample pixels is vertically replaced into SAI (i, ϕ) accord-
ing to their angle. As mentioned above, i = 1 ∼ P , where P
is the number of sample pixels on each spiral line. Assuming
that the spatial resolution of the spiral line is Δϕ degrees, we
have 2π/Δϕ sets of samples on each spiral line, rotating at ϕ
degrees. Therefore, we can obtain a feature map with a fixed
size of 2π/Δϕ by P.

A conceptual illustration of the SAI construction is shown in
Fig. 2. We draw two spiral lines in ϕ = 0◦ and π with blue and
magenta star marks in Fig. 2(a). Each one is then sequentially
arranged to the horizontal slice as shown in Fig. 2(b). Then, the
horizontal and vertical profiles can be obtained as Fig. 2(c). To
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Fig. 2. Graphical illustration of the SAI, K = 0.5.

integrate all samples on each horizontal slice, we construct a
spiral projection profile. The concentric circles with red dashed
marks denote the samples with the same serial number i on each
rotated spiral line. In the feature map, this is displayed on the
vertical slice with position i. To integrate all samples on each
vertical slice, we construct a spiral inner-ring projection profile.

In short, the SAI has two important properties: 1) It is
scale-invariant: when the size of the test image changes, the
horizontal and vertical projection profiles of SAI remain glob-
ally stationary. 2) It is rotation-distinguishable: if the image
is rotated, it is reflected on the SAI by a vertical shift. The
rotation angle can be determined by the vertical displacement
of the feature map, and finding the maximal offset of the
cross-correlation coefficient between the SAIs of the reference
template and the test subimage.

C. Template Matching Using SPA

In this study, we aim to determine the position and orientation
of the reference template T from each sampled subimage Is
from the test image.

The advantage of the SAI image is that scale changes do
not affect the appearance of the SAI. Histogram equalization
(HE) [26] is used to balance the local contrast variation between
the template and the test subimage. The rotation performed in
the original image will reliably respond to the SAI with verti-
cal scrolling. Therefore, we attempted to solve the problems of
scaling and rotation simultaneously.

From the vertical aspect, the scaling and rotation variations
will not affect the vertical projection of the SAI. For a given
test subimage, we first obtain PS(xn,yn)

V (i) that forms the vec-
tor with 360 values (i.e., ϕ = 0− 2π) on each candidate point
n and the ith spiral inner-ring pixel by means of (15). When
compared with the set of points on the reference template, i.e.,
PT
V (i), the average error of each point is less than the pre-

defined constant β1, then the corresponding feature score is
added. β1 reflects the distinction between the mean of the spiral
inner-ring projection on the test subimage and the reference
template. Let Fv(n) denote the integral similarity score of the

nth test point from L[sn], in other words

FV (n) =

P∑
i=0

u
[∣∣∣PS(xn,yn)

V (i)− PT
V (i)

∣∣∣ , β1

]
(21)

where

u [A,B] =

{
1 if A < B
0 if A > B.

(22)

From the horizontal aspect, we can compute the horizontal
projection PS(xn,yn)

H (ϕ) of the test subimage and PT
H (ϕ) from

the reference template using (14). Substituting PS(xn,yn)
H (ϕ)

and PT
H (ϕ) into (18)–(20), we find the best matched rotation

angle ϕ∗. Based on the SAI characteristics, these two horizontal
projections satisfy the shift relationship. Hence, we can obtain
the horizontal similarity score

FH (n) =
2π∑
ϕ=0

u
[∣∣∣PS(xn,yn)

H (ϕ+ ϕ∗)− PT
H (ϕ)

∣∣∣ , β2

]
(23)

where β2 denotes a predefined constant reflecting the distinc-
tion between the mean of the horizontal projection on the test
subimage and the reference template.

Finally, we sort the similarity score of both the vertical and
the horizontal results. When the similarity scores Fv and FH are
both top-ranked, then the corresponding point will be preserved
in L.

III. PERFORMANCE EVALUATION

To demonstrate the performance of the proposed algorithm to
template matching, the experiments were performed with three
different types of datasets.

A. Preliminary

For this study, we collected the templates from three datasets,
as shown in Table I.
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TABLE I
TESTING DATASETS IN THE EXPERIMENTS

1) Dataset-1: Logos and Badges: There were a total of
20 templates used in the evaluation of the system, 5 from the
car logo, 12 from the university badge, and 3 from an official
badge.

2) Dataset-2: Image Patches: Nine query templates
were resized by scaling factors chosen randomly in the
range [0.7 and 1.4], and pasted them in random nonover-
lapping locations to form as eight test images, which col-
lected from the source website of [27]: http://www.lps.usp.br/
hae/software/forapro/. Using the rotation and scaling versions
of the sample instances randomly embedded onto background
images.

3) Dataset-3: PCB Elements: Images of circuit samples
from e-book: 4 printed circuit board (PCB) images were used
to crop 44 instances, including integrated circuit, capacitors,
chipsets, switch, junctions, mercury batteries, etc. Nevertheless,
some geometric deformations will be induced due to the captur-
ing orientation. The minimum resolution among the instances
was 15× 12.

The reference template was first selected and its center posi-
tion defined. Before the SPA can be utilized, the vertex samples
must be restored from the SAI feature space with different scal-
ing factors. This enables the system to generate robust feature
descriptions for searching the sample instance of the test image
and attack the rotation and scale deformation. The main pur-
pose of template matching is to determine the accurate position
and orientation of the template of the noise corrupted image.

B. Sensitivity Analysis of the Spiral Parameters

In the first experiment, we evaluated the sensitivity to dis-
tinguish the proposed SPA. In sampling the spiral model, the
number of circles (i.e., K) in the spiral plays an important role
in the degree of accuracy. Therefore, our aim was to test the

TABLE II
ABBREVIATIONS OF CORRUPTED NOISES FOR EVALUATION

Fig. 3. True positive rate (TPR) of different illumination, contrast, and
noise distortions for a varying number of circle K.

Fig. 4. False alarm rate (FAR) of different illumination, contrast, and
noise distortions for a varying number of circle K.

sensitivity of the spiral parameter K using the rotation versions
of the sample instances randomly embedded onto a cluttered
background. As shown in Table II, the predefined illumination
change, contrast adjustment, and noise corruption are employed
to the dataset-1: logos and badges. All of the instance sam-
ples are set into a cluttered background image with random
orientation and corrupted with different noise variations.

We tested the template matching performance of the pro-
posed SPA. To investigate the sensitivity of the proposed
algorithm to the spiral parameter, the detection was performed
by varying the K parameter to test the image datasets for inten-
sity, contrast transformation, and a variety of noise, all on a
cluttered background. To quantitatively measure the sensitivity
of the proposed method, the TPR and an FAR against the K
values are shown in Figs. 3 and 4.

From Figs. 3 and 4, we can conclude that when the circle
of the spiral increases, the accuracy of the template matching
decays. Moreover, the error rate will increase at the same time.
However, the circle of the spiral model (i.e., K) cannot shrink
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forever, and when K is selected to be less than 0.5, the true
positive rate and the FAR will show a similar performance. If
the amount of corrupted noise is substantial, then the accuracy
of the system performance is compromised, especially when K
is less than 0.1. Therefore, the best K will range between 0.2
and 0.5. Based on our observations, the system performs best
for the TPR measurement when K is 0.2.

Nevertheless, the best performance for the FAR value is K =
0.3. In order to avoid missing the true instances, we applied
K = 0.3 in the following experiments.

It is worth to discuss that the selection of the number of the
laps K. When a large K is chosen, much of the uncorrelated
information has been sampled in the spiral line. Hence, the less
distinctive representations will be observed. In addition, a great
number of noises could be sampled, it results in a significant
increase of the false candidates are detected surrounding the
true location. From a statistics view point, we observed the
single spiral line over different K for each sample. A large K
always performs worse due to the loss of intrinsic character-
istics. Based on our observation, the variance of the entropy
values will tend to small when a large K is used. It means that
more undesired noise has been added, the same reason to the
variance of homogeneity and contrast computations.

C. Robustness to the Rotation and Scaling Variations

To evaluate the robustness of the proposed method, a few
vertex templates were created from the given reference template
with different rotation angles and scaling factors with noise cor-
ruptions. In this experiment, two evaluations are demonstrated.
For the first evaluation, we set K = 0.3 to test the robustness of
the rotation-invariance. Three scaling factors {0.8, 1, and 1.5}
were used to evaluate the robustness of scale changes.

In order to quantitatively measure the effectiveness of our
proposed SPA for dealing with the rotation and scaling transfor-
mations, we applied two commonly used metrics of precision
and recall to describe the performance of the template matching
algorithm. They are defined as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(24)

where TP, FP, and FN denote true positive, false positive, and
false negative, respectively. However, when the recall rate is
high, it is difficult to achieve a high precision rate; conversely,
if the precision rate is high, it is impossible to have a high
recall rate. Consequently, we used the F-measure to evaluate
the overall performance as follows:

F -measure = 2 ×
(

precision × recall
precision + recall

)
. (25)

1) Rotation Invariance: In order to test the rotation-
invariant property of the proposed SPA framework, we set K =
0.3 for finding the location and orientation of the instances.
Fig. 5 shows the matching result using reference template as
shown in Fig. 5(a). The corresponding center position and
orientation are shown in Fig. 5(b). When SPA was used, four
peaks of matching scores were obtained, as shown in Fig. 5(c).

Fig. 5. Results of matching with the rotation variations. (a) Template
image. (b) Detected patches with bounding box and orientation.
(c) Matching scores (four peaks denote the center location of the
instances).

TABLE III
MATCHING PERFORMANCE OF THE ROTATION VARIATIONS

We created 1100 instance samples and set into the cor-
responding background image with random orientation and
corrupted with different noise variations. Using the F-measure
is the only way to obtain a high performance that simultane-
ously has a high precision and high recall rates. As shown
in Table III, the proposed method applied for test the image
datasets without the addition of noise achieved a performance
of 91.79% in the F-measure. The overall precision rate is not
very sensitive to illumination and contrast changes, which is
less than 5% of the overall precision rate. Overall, the pro-
posed matching algorithm achieved a 84.97% precision rate and
78.75% recall rate when corrupted by the different noises. On
average, it achieved a performance of 83.45% when the three
types of image distortions were applied.

2) Scaling Invariance: In this experiment, three scaling
factors {0.8, 1, and 1.5} were used to evaluate the robust-
ness of scale changes. The vertex templates were generated
based on the proposed image warping scheme. The same SAI
images could be obtained for different scales of vertex tem-
plates. The resolution of the test image was 400× 400. The
vertex templates with accurate scale factors, rotation angles,
and the positions for test set 1 (with K = 0.3) were all detected
correctly.

In addition, we extended our experiment and tested the
robustness for noise interference such as listed in Table II (e.g.,
change in intensity, contrast adjustment, lossy JPEG compres-
sion, and some kernel noises). Fig. 6 shows the results of the
scale-invariance experiment for the normal sample and tem-
plate. The number and the orientation of the bounding box
denote the sign code and rotation angle of the detected instance.
Table IV shows the performance of template matching with
noise corruptions.
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Fig. 6. Result of template matching for four templates of groups with
rotation and scaling variations (K = 0.3).

TABLE IV
MATCHING PERFORMANCE OF THE SCALING VARIATIONS

TABLE V
PERFORMANCE COMPARISON OF THE SPIRAL PROJECTION AND

RADIAL PROJECTION

E. Comparison With Radial Projection Method

As aforementioned, a radial projection is a kind of extreme
case of spiral projection. However, spiral projection method
reserved more orientation information and texture properties
about the image. In this section, we have conducted an experi-
ment to demonstrate the accuracy using a particular number of
radial and spiral sampling lines. More specifically, a part of spi-
ral lines among 360◦ would be used to represent the template.
Table V shows the comparison between spiral and radial projec-
tion methods using recall, precision, and F-measure indexes.
This demonstrates that the recall rate of radial projection was
significantly lower than it of spiral projection, especially when
a small number of spiral lines were adopted. According to the
result of F-measure evaluation, the spiral projection method
outperforms the radial projection algorithm about 10% in accu-
racy. Except of more spiral lines being used, it is because that
the more chaos will be induced unexpectedly. As well, the num-
ber of sampling lines reflects the execution time. Consequently,
it can be treated as a tradeoff problem between computational
cost and detection accuracy.

Fig. 7. Results of SPA using the dataset-2 from [27], where ns = 8 and
nc = 1.

TABLE VI
COMPARISON BETWEEN THE SPA AND Forapro-NCC

F. Comparison of State-of-the-Art Method and Datasets

Previous studies have examined that the template matching
algorithms can be divided into two groups: projection-based
and transformation-based approaches. Recently, the growth of
research trends has focused on the hybrid approach. For exam-
ple, Forapro (Fourier coefficients of radial projections) [27] is
an efficient template matching approach. It uses the radial and
circular features to detect the matching candidates.

The NCC is used to decide whether each of matching can-
didates is a true or false matching result. Another possible
filtering method is based on the generalized Hough transform
[28]. However, it requires a set of stable subtemplates provid-
ing to against the partial occlusions. For the purpose of fairness,
we compare our method only with the Forapro-NCC method.

We repeated the experiment of scale changes using the
dataset in [27], including 24 memory game cards with 12
different figures. In this experiment, the dataset-3: PCB com-
ponents were applied for evaluations. This dataset for testing
the template matching algorithm is more challenging due to
the high-corrupted background and greater scale factor ranges.
In the beginning, nine query templates were resized by scal-
ing factors chosen randomly in the range [0.7 and 1.4], and
pasted them in random nonoverlapping locations to form as
eight test images. Fig. 7 shows the matching results includ-
ing the rotation-scaling variations. Table VI depicts the number
of observed errors using the Forapro-NCC and the proposed
method, varying the number of candidate pixels nc and the
number of scales ns. According to the results of Table VI, the
proposed algorithm is capable of scale variations. To localize
the template locations in the test image, the SPA outperforms
the Forapro-NCC method. For example, the number of match-
ing candidates nc represents the matching tolerance of the
location offset. When a smaller value of nc being assigned,
it needs to search a pixel location more precisely. Based on
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our observations, with the same condition, i.e., nc = 10, our
method obtains less errors than Forapro-NCC method.

IV. CONCLUSION

In this paper, we proposed a theoretically and computation-
ally simple approach that is sufficiently robust to undergo rota-
tion and scaling variations and can be applied for realistic visual
template matching application. A simple and well-defined fea-
ture map, the proposed SAI is illustrated to deal simultaneously
with the rotation- and scaling-invariance transformation. The
scale changes do not affect the appearance of the SAI. The
rotation performed in the original image faithfully responds
to the SAI when scrolled vertically. More specifically, when
the original image suffers from a counter-clockwise rotation,
the SAI rotates downward. Similarly, if a clockwise rotation
occurs, the SAI rotates upward. The proposed SPA that pro-
vides structural and statistical information on the template in
a more general and easier to comprehend format is presented
here. Compared to the ring projection method, the spiral-based
projection provides a high level of sensitivity and scanning
efficiency. As well, the inherent spatial information will be
better preserved than by using the radial projection algorithm.
Many prospective applications are possibly addressed such as
automated industrial inspections, vision-based defect detection,
object modeling, and industrial automation applications. As
long as the reference template is provided, the proposed SAI
can be used to construct a robust model library. It not only
enables to attack the rotation variations but also performs to
attack the scaling variations.
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