COM524500 Optimization for Communications
Summary: Convex Sets and Convex Functions

1 Convex Sets

Affine Sets

- A set \(C \subseteq \mathbb{R}^n \) is said to be affine if
 \[
 x_1, x_2 \in C \implies \theta x_1 + (1 - \theta) x_2 \in C, \forall \theta \in \mathbb{R}
 \]
 \(1 \)

- A point
 \[
 y = \sum_{i=1}^{k} \theta_i x_i
 \]
 \(2 \)

where \(\theta_1 + \theta_2 + \ldots + \theta_k = 1 \), is an affine combination of the points \(x_1, \ldots, x_k \).

- An affine set can always be expressed as
 \[
 C = V + x_o
 \]
 \(3 \)

where \(x_o \in C \), and \(V \) is a subspace.

- The affine hull of a set \(C \) (not necessarily affine) is
 \[
 \text{aff} C = \{ \theta_1 x_1 + \ldots + \theta_k x_k \mid x_1, \ldots, x_k \in C, \theta_i \in \mathbb{R}, i = 1, \ldots, k, \theta_1 + \ldots + \theta_k = 1 \}
 \]
 \(4 \)

The affine hull is the smallest affine set that contains \(C \).

Convex Sets

- A set \(C \subseteq \mathbb{R}^n \) is said to be convex if
 \[
 x_1, x_2 \in C \implies \theta x_1 + (1 - \theta) x_2 \in C, \forall \theta \in [0,1]
 \]
 \(5 \)

- A point
 \[
 y = \sum_{i=1}^{k} \theta_i x_i
 \]
 \(6 \)

where \(\theta_1, \ldots, \theta_k \geq 0, \theta_1 + \theta_2 + \ldots + \theta_k = 1 \), is a convex combination of the points \(x_1, \ldots, x_k \).

- The convex hull of a set \(C \) (not necessarily convex) is
 \[
 \text{conv} C = \{ \theta_1 x_1 + \ldots + \theta_k x_k \mid x_1, \ldots, x_k \in C, \theta_i \geq 0, i = 1, \ldots, k, \theta_1 + \ldots + \theta_k = 1 \}
 \]
 \(7 \)

The convex hull is the smallest convex set that contains \(C \).

Convex Cones

- A set \(C \subseteq \mathbb{R}^n \) is said to be a convex cone if
 \[
 x_1, x_2 \in C \implies \theta_1 x_1 + \theta_2 x_2 \in C, \forall \theta_1, \theta_2 \geq 0
 \]
 \(8 \)
• A point

\[y = \sum_{i=1}^{k} \theta_i x_i, \]

where \(\theta_1, \ldots, \theta_k \geq 0 \), is a conic combination of the points \(x_1, \ldots, x_k \).

• The conic hull of a set \(C \) (not necessarily convex) is

\[\text{conic}C = \{ \theta_1 x_1 + \ldots + \theta_k x_k \mid x_1, \ldots, x_k \in C, \theta_i \geq 0, i = 1, \ldots, k \} \]

Some Examples of Convex Sets

• Hyperplane: \(\{ x \mid a^T x = b \} \).

• Halfspace: \(\{ x \mid a^T x \leq b \} \).

• Norm ball associated with norm \(\| \cdot \| \):

\[B(x_c, r) = \{ x \mid \| x - x_c \| \leq r \} \]

where \(x_c \) is the center and \(r \) is the radius. When \(\| \cdot \| \) is the 2-norm it is known as the Euclidean norm.

• Ellipsoid:

\[E = \{ x \mid (x - x_c)^T P^{-1} (x - x_c) \leq 1 \} \]

where \(P \succ 0 \).

• Norm cone associated with \(\| \cdot \| \):

\[K = \{ (x, t) \mid \| x \| \leq t \} \]

When \(\| \cdot \| \) is the 2-norm \(K \) is called the 2nd-order cone or the ice cream cone. A norm cone is not only convex but also a convex cone.

• Polyhedron:

\[P = \{ x \mid Ax \preceq b, Cx = d \} \]

\[= \{ x \mid a_j^T x \leq b_j, j = 1, \ldots, m, c_j^T x = d_j, j = 1, \ldots, p \} \]

A bounded polyhedron is called a polytope.

• Simplex: Given a set of vectors \(v_0, \ldots, v_k \) that are affine independent, a simplex is

\[C = \text{conv} \{ v_0, \ldots, v_k \} = \{ \theta_0 v_0 + \ldots + \theta_k v_k \mid \theta \succeq 0, 1^T \theta = 0 \} \]

A simplex is a polyhedron.

• PSD cone: \(S^n_+ = \{ X \in S^n \mid X \succeq 0 \} \) is a convex cone. (recall that \(S^n \) is the set of all real \(n \times n \) symmetric matrices.)

• The empty set \(\emptyset \) is convex. A singleton \(\{ x_0 \} \) is convex.
Convexity Preserving Operations

- Intersection:
 \[S_1, S_2 \text{ convex} \implies S_1 \cap S_2 \text{ convex} \quad (16) \]
 \[S_\alpha \text{ convex for every } \alpha \in \mathcal{A} \implies \bigcap_{\alpha \in \mathcal{A}} S_\alpha \text{ convex} \quad (17) \]

- Affine mapping: If \(S \subseteq \mathbb{R}^n \) is convex and \(f : \mathbb{R}^n \to \mathbb{R}^m \) is affine, then the image of \(S \) under \(f \)
 \[f(S) = \{ f(x) \mid x \in S \} \quad (18) \]
is convex. Similarly, if \(C \subseteq \mathbb{R}^m \) is convex and \(f : \mathbb{R}^n \to \mathbb{R}^m \) is affine, then the inverse image of \(C \)
under \(f \)
 \[f^{-1}(C) = \{ x \mid f(x) \in C \} \quad (19) \]
is convex.

- Image under perspective function: The perspective function \(P : \mathbb{R}^{n+1} \to \mathbb{R}^n \), with domain \(\text{dom}P = \mathbb{R}^n \times \mathbb{R}^+ \)
is given by
 \[P(z, t) = z/t \quad (20) \]
If \(C \subseteq \text{dom}P \), then \(P(C) \) is convex.

Proper Cones and Generalized Inequalities

- A cone \(K \subseteq \mathbb{R}^n \) is proper if
 - \(K \) is convex
 - \(K \) is closed
 - \(K \) is solid; i.e., \(\text{int}K \neq \emptyset \)
 - \(K \) is pointed; i.e., \(x \in K, -x \in K \implies x = 0 \)

- Generalized inequality associated with a proper cone \(K \):
 \[x \preceq_K y \iff y - x \in K \quad (21) \]
 \[x \prec_K y \iff y - x \in \text{int}K \quad (22) \]

- Properties of generalized inequalities
 - \(x \preceq_K y, u \preceq_K v \implies x + u \preceq_K y + v \)
 - \(x \preceq_K y, y \preceq_K z \implies x \preceq_K z \)
 - \(x \preceq_K y, \alpha \geq 0 \implies \alpha x \preceq_K \alpha y \)
 - \(x \preceq_K y, y \preceq_K x \implies y = x \)

- Some examples:
 - \(K = \mathbb{R}^n_+ \). Then, \(x \preceq_K y \iff x_i \leq y_i \) for all \(i \).
 - \(K = S^n_+ \). Then, \(X \preceq_K Y \) means that \(Y - X \) is PSD.

- Minimum and minimal elements: A point \(x \in S \) is the minimum element of \(S \) if
 \[y \in S \implies x \preceq_K y \quad (23) \]
provided that such an \(x \) exists. The minimum element, if it exists, is unique. A point \(x \in S \) is a
minimal element of \(S \) if
 \[y \in S, y \preceq_K x \implies y = x \quad (24) \]
Separating Hyperplane Theorem
Suppose that $C, D \subseteq \mathbb{R}^n$ are convex and that $C \cap D = \emptyset$. Then there exist $a \neq 0$ and b such that
\begin{align*}
a^T x \leq b & \implies x \in C \quad (25) \\
a^T x \geq b & \implies x \in D \quad (26)
\end{align*}
The hyperplane \{ $x \mid a^T x = b$ \} is called a separating hyperplane for C and D.

Supporting Hyperplanes
Suppose that $x_o \in \text{bd}C$ (a boundary point of C). If there exist $a \neq 0$ such that $a^T x \leq a^T x_o$ for all $x \in C$, then \{ $x \mid a^T x = b$ \} is called a supporting hyperplane to C at point x_o.

For any nonempty convex set C, and for any $x_o \in \text{bd}C$, there exists a supporting hyperplane to C at x_o.

Dual Cones
- The dual cone of a cone K is
 \begin{equation}
 K^* = \{ y \mid y^T x \geq 0 \ \forall x \in K \} \quad (27)
 \end{equation}
 A cone K is called self-dual if $K = K^*$.
- If K is proper then K^* is also proper.
- Some examples: \mathbb{R}_+^n and S_n^+ are self-dual. The dual cone of a norm cone $K^* = \{(x,t) \mid \|x\| \leq t \}$ is
 \begin{equation}
 K^* = \{(x,t) \mid \|x\|_* \leq t \} \quad (28)
 \end{equation}
 where \|.$\|_*$ is the dual norm of $\|.$\|.
2 Convex Functions

Definition

- A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if $\text{dom}f$ is convex and for all $x, y \in \text{dom}f$, $0 \leq \theta \leq 1$,
 \[
f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
 \] \hspace{1cm} (29)

- A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is strictly convex if $\text{dom}f$ is convex and for all $x, y \in \text{dom}f$, $x \neq y$, $0 < \theta < 1$,
 \[
f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)
 \] \hspace{1cm} (30)

- A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is concave if $-f$ is convex.

Fundamental Properties

- f is convex if and only if it is convex when restricted to any line that intersects its domain; i.e., for all $x \in \text{dom}f$ and ν,
 \[
g(t) = f(x + t\nu)
 \] is convex over $\{t \mid x + t\nu \in \text{dom}f\}$.

- First order condition: Suppose that f is differentiable. A function f with a convex domain $\text{dom}f$ is convex if and only if
 \[
f(y) \geq f(x) + \nabla f(x)^T(y - x)
 \] \hspace{1cm} (32)
 for all $x, y \in \text{dom}f$.

- Second order condition: Suppose that f is twice differentiable. A function f with a convex domain $\text{dom}f$ is convex if and only if its Hessian
 \[
 \nabla^2 f(x) \succeq 0
 \] \hspace{1cm} (33)
 for all $x \in \text{dom}f$. A function f with a convex domain $\text{dom}f$ is strictly convex if
 \[
 \nabla^2 f(x) \succ 0
 \] \hspace{1cm} (34)
 for all $x \in \text{dom}f$ (the converse is not true).

- Sublevel sets: The sublevel set of f is
 \[
 C_\alpha = \{x \in \text{dom}f \mid f(x) \leq \alpha\}
 \] \hspace{1cm} (35)
 If f is convex, then C_α is convex for every α (the converse is not true).

- Epigraph: The epigraph of f is
 \[
 \text{epi}f = \{(x, t) \mid x \in \text{dom}f, f(x) \leq t\}
 \] \hspace{1cm} (36)
 f is convex if and only if $\text{epi}f$ is convex.
Examples

• Examples on \mathbb{R}:
 - e^{ax} is convex on \mathbb{R}
 - $\log x$ is concave on \mathbb{R}_{++}
 - $x \log x$ is convex on \mathbb{R}_{++}
 - $\log \int_{-\infty}^{\infty} e^{-t^2/2} dt$ is concave on \mathbb{R}

• Examples on \mathbb{R}^n:
 - A linear function $a^T x + b$ is convex and concave.
 - A quadratic function $x^T Px + 2q^T x + r$ is convex if and only if $P \succeq 0$, and is strictly convex if $P \succ 0$.
 - Every norm $\|x\|$ is convex.
 - $\max\{x_1, \ldots, x_n\}$ is convex.
 - The geometric mean $(\prod_{i=1}^{n} x_i)^{1/n}$ is concave on \mathbb{R}_{++}^n.

• Examples on $\mathbb{R}^{n \times m}$
 - $\text{tr}(AX)$ is linear on $\mathbb{R}^{n \times m}$, and hence is convex and concave.
 - The negative logarithmic determinant function $-\log \det X$ is convex on \mathbb{S}^n_{++}.
 - $\text{tr}(X^{-1})$ is convex on \mathbb{S}^n_{++}.

Jensen Inequality

• For a convex f,
 \[f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y) \] (37)
 holds for any $x, y \in \text{dom} f$ and $0 \leq \theta \leq 1$.

• Extension: For a convex f,
 \[f(Ez) \leq Ef(z) \] (38)
 for any random variable z.

• Jensen inequality can be used to derive certain inequalities; e.g., the arithmetic-geometric mean inequality:
 \[\sqrt{ab} \leq \frac{a + b}{2}, \quad a, b \geq 0 \] (39)
 and
 \[\left(\prod_{i=1}^{n} x_i \right)^{1/n} \leq \frac{1}{n} \sum_{i=1}^{n} x_i, \quad x_i \geq 0, i = 1, \ldots, n \] (40)
Convexity Preserving Operations

- Nonnegative weighted sums:
 \[f_1, \ldots, f_m \text{ convex, } w_1, \ldots, w_m \geq 0 \implies \sum_{i=1}^{m} w_i f_i \text{ convex} \quad (41) \]
 \[f(x, y) \text{ convex in } x \text{ for each } y \in A, w(y) \geq 0 \text{ for each } y \in A \implies \int_{A} w(y)f(x, y)dy \text{ convex} \quad (42) \]
 Example: \(f(x) = \sum_{i=1}^{n} x_i \log x_i \) is convex on \(\mathbb{R}^n_{++} \).

- Composition with an affine mapping:
 \[g(x) = f(Ax + b) \quad (43) \]
 is convex if \(f \) is convex.

- Pointwise maximum and supremum:
 \[f_1, f_2 \text{ convex} \implies g(x) = \max\{f_1(x), f_2(x)\} \text{ convex} \quad (44) \]
 \[f(x, y) \text{ convex in } x \text{ for each } y \in A \implies g(x) = \sup_{y \in A} f(x, y) \text{ convex} \quad (45) \]

Examples:
- A piecewise linear function \(f(x) = \max_{i=1, \ldots, L} a_i^T x + b_i \) is convex.
- \(f(x) = \sup_{y \in C} \|x - y\| \) is convex for any set \(C \).
- The largest eigenvalue of \(X \)
 \[f(X) = \lambda_{\max}(X) = \sup_{\|y\|_2 = 1} \|xy\|_2 = \sup_{\|y\|_2 = 1} \text{ tr}(Xyy^T) \quad (46) \]
 is convex on \(\mathbb{S}^n \).
- The 2-norm of \(X \)
 \[f(X) = \|X\|_2 = \sup_{\|y\|_2 = 1} \|Xy\|_2 \quad (47) \]
 is convex on \(\mathbb{R}^{n \times m} \).

- Composition: Let \(f(x) = h(g(x)) \), where \(h : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R}^n \to \mathbb{R} \). Let
 \[\tilde{h}(x) = \begin{cases} h(x), & x \in \text{dom} h \\ \infty, & \text{otherwise} \end{cases} \quad (48) \]
 Then, \(f \) is convex if \(\tilde{h} \) is convex and nondecreasing, and \(g \) is convex.
 \(f \) is convex if \(\tilde{h} \) is convex and nonincreasing, and \(g \) is concave.

- Minimization:
 \[f(x, y) \text{ convex in } (x, y), C \text{ convex nonempty} \implies g(x) = \inf_{y \in C} f(x, y) \text{ convex} \quad (49) \]
 provided that \(g(x) > -\infty \) for some \(x \).

Examples:
\(- \operatorname{dist}(x, S) = \inf_{y \in S} \|x - y\| \) is convex for convex \(S \).

- The Schur complement

\[
\begin{bmatrix}
A & B \\
B^T & C
\end{bmatrix} \succeq 0 \iff C \succeq 0, A - BC^T B \succeq 0
\] (50)

may be proven by the convex minimization property.

- Perspective: The perspective of a function \(f : \mathbb{R}^{n+1} \rightarrow \mathbb{R} \)

\[
g(x, t) = tf(x/t), \quad \text{dom} g = \{(x, t) \mid x/t \in \text{dom} f, t > 0\} \] (51)

If \(f \) is convex then \(g \) is convex.

Conjugate Function

\[
f^*(y) = \sup_{x \in \text{dom} f} (y^T x - f(x))
\] (52)

- \(f^* \) is convex irrespective of the convexity of \(f \).
- \(\text{dom} f^* \) consists of \(y \) for which the supremum is finite; i.e., \(\text{dom} f^* = \{y \mid f^*(y) < \infty\} \).
- Examples:
 - The conjugate function of \(f(x) = \frac{1}{2}x^T Q x, \quad Q \succ 0 \)
 is \(f^*(y) = \frac{1}{2} y^T Q^{-1} y \).
 - The conjugate function of \(f(X) = -\log \det X, \quad \text{dom} f = S^n_+ \) is \(f^*(Y) = \log \det (-Y^{-1}) - n \),
 \(\text{dom} f^* = -S^n_+ \).

Quasiconvex Functions

- Definition:
 - A function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is quasiconvex (or unimodal) if \(\text{dom} f \) is convex and the sublevel set

\[
S_\alpha = \{x \in \text{dom} f \mid f(x) \leq \alpha\}
\] (53)

is convex for every \(\alpha \).
 - A function \(f \) is quasiconcave if \(-f\) is quasiconvex.
 - A function \(f \) is quasilinear if \(f \) is quasiconvex and quasiconcave.

- Examples:
 - \(\log x \) is quasilinear on \(\mathbb{R}_{++} \).
 - A linear fractional function

\[
f(x) = \frac{a^T x + b}{c^T x + d} \quad \text{dom} f = \{x \mid c^T x + d > 0\}
\] (54)

is quasilinear.
 - \(\text{rank} X \) is quasiconcave on \(S^n_+ \) (proven using the modified Jensen inequality).
- Modified Jensen inequality: \(f \) is quasiconvex if and only if for any \(x, y \in \text{dom} f \), and \(0 \leq \theta \leq 1 \),

\[
f(\theta x + (1 - \theta) y) \leq \max\{f(x), f(y)\}
\] (55)
First-order condition: Suppose that f is differentiable. f is quasiconvex if and only if $\text{dom} f$ is convex and for all $x, y \in \text{dom} f$
\[f(y) \leq f(x) \implies \nabla f(x)^T(y - x) \leq 0 \] (56)

Second-order condition: Suppose f is differentiable. If f is quasiconvex then for all $x \in \text{dom} f, y \in \mathbb{R}^n$,
\[y^T \nabla f(x) = 0 \implies y^T \nabla^2 f(x)y \geq 0 \] (57)

Convexity with respect to Generalized Inequality

Let K be a proper cone. A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is K-convex if for all $x, y \in \text{dom} f$ and $0 \leq \theta \leq 1$,
\[f(\theta x + (1 - \theta)y) \preceq_K \theta f(x) + (1 - \theta)f(y) \] (58)

For $K = \mathbb{R}^n_+$, a K-convex function is a function for which each component function f_i is convex.

Consider $K = S^n_+$.
- $f(X) = X^T X$ is K-convex on $\mathbb{R}^{n \times m}$.
- $f(X) = X^{-1}$ is K-convex on S^n_+.

9