Chapter 9 Eigenvalues and Pseudospectra

Example 1: Mathieu equation
(Eq.1) -u,+2qcos(2x)u=Au on xe[0,27]

with periodic boundary condition u(0)=u(2r) and u,(0)=u,(27).

We use Fourier basis on discrete grid %, =0,X,%,,---X, where x; = jh, h :% and N is
even. Under such basis, boundary condition is automatically satisfied.

(Eq.2)  p(x) =iPk_Zm:me”‘x\7k = gkaN (x—x,) and

the derivative is according to

(Eq. 3) Wj:p”(xj)=ZN:ka,’g(xj—xk) for j=1,2,---,N
k=1

Prop 1: direct compute 2nd directive of S (x)= (2;;1()7:;/(};)/2) on [0,27]
2
—l—ﬂ—z, j =0(mod N)
. 6 3h
(Eq 4) SN (Xj ) = (_1)J
, j #0(mod N)

- 2sin?(jh/2)
Since N iseven, second order differentiation matrix is symmetry

—%cscz(Zhlz)
1

= h/2
chc( )

(Eq.5) DP=|.. 1. 7T

—%CSCZ(Zh/Z)

we use MATLAB build-in function “TOEPLITZ(R) is a symmetric (or Hermitian) Toeplitz

. o (1 2 S
matrix.” To create such Toeplitz matrix D2 =toeplitz| —————,——— .
6 3h°" 2sin*((1:N-1)h/2)

Under (Eq. 4), we can discretize (Eg. 1) as

w 9 cos(2x)
(Eqg. 6) Pl=L| where L, =-D? +2q cos(2x;)
Wy Wz cos(2xy )
The dispersion relation is shown in Figure 1, we order the eigenvalue as red, blue and black in
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order monotone increasing.

dispersion relation over potential stranath o
40 -

Figure 1: the first 11 eigenvalues of

Mathieu equation.
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Conclusion:

(1) We can regard potential V, (x)=2qcos(2x) is a perturbation of kinetic operator —A , we
know eigen-pair of —u_ = Au with periodic B.C.is 4 =k* for k=0,1,2,--- and
eigenvector {1,coskx,sinkx}, this system has degeneracy for k=1,2,---,say coskx and

sinkx have the same energy since combination of both corresponds to forward wave €*
and backward wave e . From Figure 1, it is clear that eigen-value locates at A, =k* for
g=0 butwhen q>0, the degeneracy is broken, or say splitting of eigen-value.

(2) If we characterize curve A4, (q) as eigen-value of k-th order, then can we estimate the slope

of diﬂk(o),for example, from Figure 1, diﬂl(o)<0 (corresponds to U, (0,X) =cos x)
q q

and diq;tz(o)>0(corresponds to u,(0,x)=sinx).

2

From Feymann theorem (see appendix A), let H (q)= —%+ 2qcos(2x), then
X

dqu (g) =2cos(2x), we have
d dH (O) 2z
(1) d—q,1o(o)=<1|d—q|1>:j0 2c0s(2x)dx =0
(2) diqﬂl(o) =(sin x| dI—;((qO) |sin x) = —%, corresponding to blue line

H
(3)——4,(0)=(cos x|dd—((qo)| COS X) = % , corresponding to black dashed line.
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(4) (coskx| d (O)|coskx> 0 and (sin kx| |smkx> 0 for k>1, hence the slope of

d
ther — 1, (0)=0.
other dqj“‘( )

Question 1: Can we distinguish the curve corresponds to coskx or sinkx?
<Ans> if we apply Feymann thorem again, we have
d2

L= DR A )+ v ()

R Sv ()

2
In our problem %;tk (0)=2(y, (0)‘%—2‘%% (O)> however we don’t know diqw" (0), so

L H @ ()

we cannot estimate —ﬂk( ).

If we use perturbation theorem (for non-degenerate version, in fact this version is not adequate for
2

this problem since H, =— is degenerated), then A% =" — IV”"|E , first we consider

W k=n L, K
n=2 and (°)>=c052x,then Vzozrﬁcos (2x)cos(2x)dx =
27 | COS KX 2 | COS KX
VZK:I0 {sinkx}cos(ZX)cos(Zx :—I { kX}cos(4x)dx,then

V,,,C0s4X = %r” cos? (4x)dx = % and V,, =0 otherwise.

V|| M 11
ppeeg Yl Ml 11,

Similarly for ‘2 >:sm2x,we have

= [ cOS KX = [ COS kX
_IZ cos(2x)sin(2x)d :—Iz sin(4x)dx, then V,,, sindx=2and
sin kx sin kx 2

V,, =0 otherwise. A(z),sm2x_—ﬁ<0

Hence we know curve of even function ‘2(°)> =cos2x is increasing and curve of odd function
‘2(°)> =sin2x s decreasing.

However for n> 2, we have

x kx
Vi, €os(nx) = Jj {:nskx}cos(ZX) cos (nx) dx

T
=—.[ZH{COSKX}[COS n+2)x)+cos((n—2)x)}dx= 2’ k=n+2k=n-2
sin kx 0, otherwise



Vnk,sin(nx):J‘

0

2z [ cOS kX )
{sin kx}cos(Zx)sm (nx) dx

T
:_J'M{Coskk::}[sm n+2)x)+sin((n—2)x)}dx: 2’ k=n+2,k=n-2
sin 0, otherwise

2
A2 1 S+ 1 > |= 2r >0, we only know both curves of
4| n? _(n_Z) nZ_(n+2) (4n—4)(4n+4)

n<°>> _

higher one.

n(°)> =sinnx are increasing locally but we cannot distinguish which is

Next we explicit calculate eigenmodes

Let u:a0+iancosnx+ibnsinnx,then
n=1 n=1
cos(2x)u = a, cos(2x +Zoolan cos(nx)cos(2x)+ Zb sin(nx)cos(2x)

n=

:aocos(2x)+g%[cos((n+2)x)+cos((n—2)x)]
+§1: ”[sm((n+2 )+sin((n—2)x)]
+E(a1+a3)cosx+(ao+a )cos 2X) i (a,, +a,,,)cos(nx)

=3

[EEN

%
2

0

+=(~b +b,)sin x+%sm(2X) Z%(bn_z +h,.,)sin(nx)

n=3

NI—‘

Substitute into —u,, +2qcos(2x)u = Au, we have
ga, = A8,

’a +q(a +a;)=1a
2’a, +0(2a,+4a,) = 1a,
n‘a, +a(a, , +a,,)=1a,
Ifweset a=(a|ala,|-|a,|---) and b=(ky,|b|b,|---|b,|-+), then we can abbreviate

b +a(-b+b)=1b
and <2°b, +qb, = Ab,
n’b, +q(b,_, +b

n n+2

(Eq.7)
)= b,

a a
(Eq. 7) as {Al A }(bj = /{bj’ say system is decompose into modes of even function (related
2

to a,i.e cosnx)and modes of odd function (related to b, i.e. sinnx). Moreover if we look at
(Eq. 7) carefully, it is not difficult to find further decomposition

2’°a, +q(2a,+4a,) = 1a,
' (2k+1)" 8y + OBy + Bogers) = Ay

(2K)” @y + (B, + Bz ) = A2y,



{12b1+Q(bl+Q)=/1b1 o {fbﬁqmm
(2k+1)2 By,s + Q(bzk-1 + b2k+3) =Aby (Zk)z by, + Q(bzk—z + b2k+2) = by,

Remark 1: such sub-decomposition holds even in truncated matrix. For example, if we denote
2

Kinetic operator Ku = —% and potential operator Vu= 2cos(2x)u ,thenfor N=4,

X2
K,=diag(0,12,22,3*,4?), K, =diag(1’,2%,3",4%),
1
. . -1 1
1 (K,+aqV,)a=41a
V,=|2 1], V,= and then .
1 (K, +0qV,)b=1b
1 1
1

Question 2: It is easy to show that (K, +qV,) is symmetric but (K,+qV,) is not symmetric,
we know eigenvalue of (Kb + qu) is real, can you show me that eigenvalue of (Ka + an)
also real?

Figure 2: eigenmodes of (Eq. 7), red color is even function and blue color is odd function. This figure is
the same as Figure 1. For high oscillatory modes, its kinetic energy dominant the system, C0SKx and

sin kx are also near eigenmodes, as seen in right panel, we may called them scattering mode.

Table 1: choose N =4, 4 (a) denotes eigenvalue computed by (K,+qV,) and 4 (b)

denotes eigenvalue computed by (K, +qV; ). This table shows
(1) sub-decomposition is correct.



(2) Large q deviate coskx or sinkx to its neighbor
(3) Splitting of degenerate eigenmodes at q=0

0 1 2 3 4
q=0.1, A(a) -0.0050 4.0042 16.0008 9.0013 1.0987
q=0.1 0.9988 0 -0.0250 0 0.0001
_ 0 -0.9999 0 0.0127 0
u - ] l'“ya
=(33 ‘) -0.0499 0 -0.9997 0 0.0083
0 0.0127 0 0.9999 0
0.0003 0 0.0083 0 1.0000
q=15, 4 (a) -22.1808 10.1268 32.0540 -2.9029 27.9029
q=15 0.5327 0 -0.4752 0 0.3235
_ 0 0.6216 0 0.7833 0
u e , '...’a
=(33 ‘) -0.7877 0 -0.3208 0 0.6914
0 -0.7833 0 0.6216 0
0.3095 0 0.8193 0 0.6460
q=01, 4 (b) 0.8988 3.9992 9.0012 16.0008
q=0.1 -0.9999 0 -0.0123 0
u=(b.b. b 0 1.0000 0 0.0083
= (b, ‘) 0.0123 0 -0.9999 0
0 -0.0083 0 1.0000
q=15, 4 (b) -21.4011 -6.1555 16.4011 26.1555
q=15 -0.8968 0 0.4425 0
u=(b.b.-.b 0 0.8281 0 0.5606
= (b, ‘) 0.4425 0 0.8968 0
0 -0.5606 0 0.8281

Choose N =42,and g=15, we plot first 4 eigenmode in even configuration (Ka + an)a: Aa

and odd configuration (Kb + qu)b: Ab in frequency space and also in physical space. In

Figure 4, support of dominant frequency components only locates near neighbor and the root of
eigenmode is 0, 2, 4, 6 in order. In Figure 5, support of dominant frequency components only
locates near neighbor also and the root of eigenmode is 1, 3, 5, 7 in order.

0 1 2 3 4
q=15, 4, (a) -22.5130 -8.1011 5.0780 16.5874 25.3751
q=15,4, (b) -22.5130 -8.0993 5.1166 17.0373

Observation 1: even eigenmode U, o, (7[) ~0 (odd eigenmode is odd symmetric with respect to
X=1,50 U (7)=0), when eigenvalue 7, <maxV =2q=30, why?
From Figure 3, the first 4 eigenvalue is smaller than maxV , but we know (E)=(T)+(V) for

2

average (-) over any domain where (T)=(uj |[—%]|uk> is kinetic energy and
(V) =(u|2qcos2x|u,) is potential energy, since (T)>0,we musthave A4 =(E)>(V), but
V attains maximum at x=7 and then we must have u, (z)~0 to guarantee

Ac> [,




W) = 2qoosZ)
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Figure 3: for first 4 eigenmode, eigenvalue (energy) is
------ smaller than maximum of potential energy, so eigen-function
must be near zero at midpoint where potential energy attains

maximum.
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Figure 4: even eigenmode, left panel is eigenmode of combination of frequency space, right panel is

eigenmode in physical space.
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Figure 5: odd eigenmode, left panel is eigenmode of combination of frequency space, right panel is

eigenmode in physical space.

Observation 2: if we reflect graph (X < z) of first even eigenmode, then the graph is the same as
first odd eigenmode. | think this is due to



(1) sub-decomposition, say {1,cos(2kx)} corresponding to {sin((2k+1)x)} and
{cos((2k+1) x)} corresponding to {sin (2k)} .

(2) When g>>k* for k:eigenmode, then potential dominants 2, and

(3) Nodal set matching, say “if we reflect cos(2kx) about x= 7, then we must have one more

nodal point X= 7, this would match sin ((Zk +1) x) ”. Of course we need Sturn-Liouville
theorem to make sure nodal set is increasing without jump.

1 even EWW 2 1 odd EW
Reflect
2 -2
0 2 5] 8 ] 2 4 5} g
o P .

Example 2 (Airy function): From http://en.wikipedia.org/wiki/Airy_function

In mathematics, the Airy function Ai(X) is a special function named after the British
astronomer George Biddell Airy. The function Ai(x) and the related function Bi(x), which is also
called an Airy function, are solutions to the differential equation u,, =xu for xeR
known as the Airy equation or the Stokes equation. This is the simplest second-order linear
differential equation with a turning point (a point where the character of the solutions changes
from oscillatory to exponential).

Question 3: Why Airy function is exponential decay for x>0 and oscillatesat x<0, like
Figure 67
<ans> Informally, we can relate u,, = xu (Airy’s governing equation) to two kinds second order

u, +ku=0 for x<0 {UE{S“’]X,COSX} for x<0

. However formally
uesple’,e*} for x>0

equation (UXX = xu) - {u — kU for x>0 )

we require Sturn-Livoulle comparison theorem.

(Eq.8) Ai(x) :%J.:cos[§+ xt}dt

: 1 o= t° (P
Eq.9) Bi(x)=—| exp| ——+xt |+sin| —+xt |dt
Asymptotic behavior for x>1

. 1 2 . 1 . (2 V4
Eq. 10 Al (X)~——=——ex ——Xal2 and Ai(—X)~———sin —Xal2 —
(€100 ()~ rop| -2 | and A= osin| 2047

. 1 2 . 1 2 Vs
(Eq 11) B| (X) ~Wexp(gxslzj and BI(_X)"‘WCOS(E x3/2 +Zj
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Further function value at tuning point x=0

1 d 1

(Eq. 12) Ai(0)=3z/sr—(2,3)’ " (O)=3“3r—(1/3)
N R 3u/s
(Eq.13) Bi(0)= 3T (2/3)" dx Bi (0) I (1/3)

Figure 6: airy function Al (X) is exponential

decay for X >0 but has infinite number of

oscillations that decay with algebraically in

1/4

amplitude X " for X<0.

Table 2: zero of Airy function from http://mathworld.wolfram.com/AiryFunctionZeros.html

root 1st 2nd 3th 4th 5th 6th
Al (x) -2.33811 -4.0875 -5.52056 -6.7867144 -7.94413 -9.02265
Bi (x) -1.17371 -3.27109 -4.83074 -6.16985 -7.37676 -8.49195

If we want to use Chebyshev node to interpolate Airy function, then it has difficulty since domain
of Airy function is xe R, even we can truncate x>0 for x=L since Airy function decays
exponentially for x>0, however we cannot truncate Xx<0 for Xx=-L since Airy function is

oscillates for x<0 and decay slowly about x™*. Now if we sample x=-L is root of airy
function and image Ai(L)~ 0, then we can approximate Airy function by solving

(Eg.14) ug,=xu, u(L)=u(-L)=0

The existence of solution of (Eq. 14) is equivalent to following:

Let x=Ly, ye[-11], u(x)=U(y), then (Eq. 14) is equivalent to

(Eq.15) U, =LyU, u(l)=u(-1)=0

At first glance, (EqQ. 15) is generalized eigenvalue problem Au= ABu, why? Let us discretize
(Eq. 15) under Chebyshev node, then A=D?, B=diag(y,,¥,,":*,Yya), 4=L"

Let eigen-pair be {4,U,},and u (x)=U,(y), define L, =4".

Remark 2: Infact, Ai(L)>0 and Bi(L)>0, hence our eigen-function u, is combination of

Ai(x),Bi(x), say u,(x)=Ai(x)-pBi(x) satisfying u,(L)=0.So ﬁk:::g::;’in order

to estimate coefficient S, we use asymptotic estimate of Ai(x),Bi(x) (i.e (Eq. 10) and (Eq.

1exp[—2x3’2)
Al 14
11)), (X) _ 2xx 3 ~1exp(—ixs’2), B ~1exp(—ﬂﬂj. Moreover since
Bi(x) 1 exp 3x3’2 2 3 2 3
\/;XM 3




U (-L,)=0,wehave Ai(-L,)=4,Bi(-L,), from Figure 6, we know |Bi(x) <|Bi(0)<0.5,
hence ‘Ai (-L )‘ < %ﬂk. This means the value of S, determine the accuracy of approximation to

Airy function.

M=12 eig= 1060097 1652565 M=24 eig= 501.3517186350

. ; . Figure 7: the more grids, the more accurate
] R GARRREEEE S airy function is. When N = 12, the shape of

eigen-function is far away from Airy

function.

-1 0.5 0 0.5 1 T 0.5 0 05 1

MN=36 eig= 501.3453757471 M=43 eig= 501.3453757111

Question 4: If we don’t scale eigen-function u,, then u, is multiple of Ai, see Figure 8, why?

Airy function Aifx), L= 7.9441

12 T T T . .
i ]
A A R e Figure 8: Uy (0)=0.6629 but

Al (O) = 0.355. Eigen-function is multiple of

Airy function.

<ans> As far as equation is concerned, u, is also eigen-function when we do scaling, in
MATLAB, it do norm normalization such that |us[ =1, this is a degree of freedom since

, :
Ai (0) :lj cos(t—) dt . after we do scaling u, < u, A(0) ,then |Ai —u| =5.5117e-008
7 *0 3 .

s (0)

and | A —u

. =5.2487¢-008.
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Table 3: N =48, we use MATLAB built-in function AIRY to compute Ai(L,)=airy(L,) and

Bi(L,)=airy(2,L), then compute true S, = A_I(Lk) :
Bi(Ly)

1st 2nd 3th 4th 5th 6th
A 12.8239 | 68.3153 168.2478 312.5917 501.3484 734.5180
L = ,1&’3 2.3407 4.0880 5.5206 6.7867 7.9441 9.0227
B 0.0042 8.1822e-006 | 1.5416e-008 | 2.8910e-011 | 5.4121e-014 | 1.0123e-016
Al ( |_k) 0.0204 7.9326e-004 | 3.2070e-005 | 1.3215e-006 | 5.5033e-008 | 2.3073e-009
Bi ( L, ) 5.1675 99.4736 2.1142e+003 | 4.6254e+004 | 1.0264e+006 | 2.2969e+007
True B, |0.004 7.9746e-006 | 1.5169e-008 | 2.8570e-011 | 5.3618e-014 | 1.0045e-016

Example 3 (Laplace eigenvalue with Dirichlet B.C.)

(Eq. 16) —Au+ f(x,y)u=4u, -1<x,y<1 and u=0 on the boundary

2
Case 1: f =0, then ﬂkymz%(k%mz), uk'm:sin(%k(x+1)jsin(%m(y+1)j

We plot first 4 eigen-pair in Figure 9, 2" and 3" eigenmode are degenerated due to 2-fold
symmetry in domain and Laplacian operation is rotational symmetry. Here 2-fold symmetry
means that if we rotate domain by 90 degree, then the problem is the same.

(1) eig = 2.00000 pi2d

5t

{2) eig = 5.00000 pi2i4

B cosd
“|sing

11

—sind u .
, then we still have
cosé ), .,\V

2-fold symmetry.

Figure9: f =0, 2"and 3"

eigenvalues are degenerated since




—-A, U= 4u, for —1<u,v<1 and u=0 onthe boundary.

Remark 3: in case of degenerate eigenmodes, the choice of eigenvector is arbitrary. Here
MATLAB choose eigenvector with nodal line approximately along diagonal, due to orthogonality
property of degenerate eigenmode, both eigenvector has nodal line along diagonal.

Case2: f = exp(y— x—l) ,since f isnot2-fold symmetry, so degeneracy is broken, in fact,

supp( f)=~ {(x y)e [—1,1]2 Ty > x+1} is left upper corner, see Figure 10.

Tl y)=estpiy--1)

Figure 10: support of f is concentrated at
upper left corner, with 1/8 of the domain. f
is not 2-fold symmetry, so we expect that

degeneracy does not happen.

From Courant-Fisher theorem (minimum property of spectrum of Hermitain operator), we expect

that eigenvector would avoid fall into supp( f ) see Figure 11.

{1y eig= 2.11642 pi¥/4 {2) eig = 5.02359 pi%/4

e
S S 2

T

0.5

Figure 11: first 4 eigenmodes for

o

o f =exp(y—x—1), eigenvalues are

distinct.

0.5

-0.5




Remark 4: such barrier function f is equivalent to solve eigenvalue problem in non-supp(f),

say —Au=Au, (X, y)e[—l,l]z—supp(f) and u=0 on the boundary.

Remark 5: If we regard f isa perturbation of —Au= Au and regard it as a parameter, then we
expect to connect (2) in in Figure 9 and (2) in Figure 11, also connect (3) in in Figure 9 and (3) in
Figure 11. Since 3" eigenvector in —Au=Au has large portion in supp( f ) so it has large

deviation in eigenvalue (from 5 to 5.54891) since it need to suppress eigenvector in supp( f )
see Figure 12.

(3) eig = 5.00000 pi/4 (3) eig= 554891 pitid

Figure 12: due to barrier f , eigenvector of left panel is suppressed in supp(f) to become

eigenvector in right panel.

Question 5 (Exercise 1): for f =0, we can first report 4 eigenvalues, the first 4 eigenvalues has
12 digits accuracy even simulation grid is 16x16, but 5-th eigenvalue has only 9 digits, why?

Table 4: eigenvalues of —Au=Au ongrid 16x16.

1 2 3 4
4 2.00000000000006 5.00000000000337 5.00000000000355 8.00000000000668
ﬂ“k,m_z
T
4 = = = =
exact 4, — 2 (1’1) S (1,2) ) (2,1) 8 (2,2)
T
5 6 7 8
4 10.00000000131679 | 10.00000000131718 | 13.00000000132017 | 13.00000000132038
ﬂ“k,m_z
T
4 = = = =
exact 4, — 10=(1,3) 10=(31) 13=(2,3) 13=(3,2)
T

Recall interpolation theorem
Theorem 1(Newton Approximation, see p224 , p213[1] ): Assume that F;(x) is Lagrange
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polynomial (or Newton polynomial) to interpolate f (x)suchthat f(x)=P,(x)+E,(x).If

n

f e C™[a,b], then for each xe[a,b], there corresponds a number c=c(x)e(a,b) such that
error term

(n+1) n
(Eq. 17) E”(X):Tf)(? [ (x=x).

If we choose Chebyshev nodes, that max < 2—1n , then error formula (Eq. 17) becomes

lj(x—xj)

o<l

00

(Fq. 18) 2" (n+1)!

n+1

In our problem, eigenmodes are sin(zx), if we set f(x)=sin(zx), then Hf(”“) =™ s0

n+1

En(x)‘sm.

Table 5: Let n=16, we compute ‘Em (x)‘ with several parameter r =%k. This shows that

good approximation to sin [% kxj for k=1,2 upto 12 digits.

Kk 1 2 3 4 5

‘Em (x)‘ 9.2574e-017 1.2134e-011 1.1955e-008 1.5904e-006 7.0628e-005
Kk 6 7 8 9 10

‘Em (x)‘ 0.0016 0.0215 0.2085 1.5439 9.2574

Question 6 (exercise 2): A®(B®C)=(A®B)®C, true or false?
<ans> from http://en.wikipedia.org/wiki/Kronecker product
a,B - a,B

A®B= for AeR™, BeR"™, A®BeR™™

a,B - a,B
The Kronecker product is a special case of the tensor product, so it is bilinear and associative
(1) A®(B+C)=(A®B)+(A®C)

(2) (A+B)®C=(A®B)+(B®C)

(3) (kA)®B=A®(kB)=k(A®B)

(4) A®(B®C)=(A®B)®C

But The Kronecker product is not commutative, A® B~ B® A in general.

Question 7 (exercise 3) : Find lowest eigenvalue of —Au=Au in [—1,1]3 with u=0 onthe

boundary, estimate size of matrix, accuracy of eigenvalue and time to do “eig”. We know
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2
eigenmode is 4, ., =%(k2+m2+lz) and u, .., =sin(kx)sin(my)sin(lz) for k,ml=12,

Source code is F:\course\2008spring\spectral_method\matlab\p23_2.m and we construct L by
L = -kron( kron(D2,1), 1) - kron( kron(1,D2), 1) - kron( I, kron(1,D2)).

20 .
401
B0
80
100

120+

"

B0
nz = 1625

40

g0

100

Table 6: experiment platform is quartet 1.

Figure 13: sparse pattern of matrix L, with
N =6, dimensionof L is 5° =125

N =6 N=8 N =12
dimension 125 343 1331
Time to eig 0.024341 s 0.206931 s 7.321695 s
P 4 3.000024016211470 | 2.999999862669497 2.999999999998820
min ~_2
T
( P A ) 4 | 2.4016e-005 1.373305034135797e-07 | 1.179500941361766e-12
min ~ “111) 2
T

Table 7: we estimate

(. —Am)% filed in Table 6.

En(x)‘ for z‘=% (lowest eigenvalue 4,,,). This is consistent with

N=6

N=8

N =12

Es ()

7.3152e-005

6.2672e-007

1.3897e-011

Question 8 (exercise 4): continue exercise 3, but use “eigs” in MATLAB to solve eigenvalue of
large sparse matrix, we can replace “eye” by “speye” to generate sparse identity matrix, then

matrix L becomes sparse also.

Source code: F:\course\2008spring\spectral_method\matlab\p23_3.m
Table 8: experiment platform is quartet 1.

N=6

N=38

N =12

Time to eigs

0.244953 s

0.031894 s

0.248721 s
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P 4 3.000024016211436 2.999999862669430 2.999999999998738
min ~_ 2
VA

4 | 2.401621143599542e-05 | 1.373305700269611e-07 | 1.261657445184028e-12
2
Y3

(ﬁ“min - ﬂl,l,l)

EIGS Find a few eigenvalues and eigenvectors of a matrix using ARPACK
EIGS(A,K,SIGMA) return K eigenvalues based on SIGMA
'LM' or 'SM' - Largest or Smallest Magnitude

For real symmetric problems, SIGMA may also be:

'LA'or 'SA' - Largest or Smallest Algebraic

'BE' - Both Ends, one more from high end if K is odd
For nonsymmetric and complex problems, SIGMA may also be:

'LR' or 'SR’ - Largest or Smallest Real part

‘LI'or 'SI' - Largest or Smallest Imaginary part

Example 4 (harmonic oscillator with complex coefficient):
(Eg. 19) Lu=-u +cx’u, ceC

Although we have analytical solution 4, =+/c(2k+1) and u, = exp(—\/Ex2 /2) H, (c"*x) for

k=0,1,2,--- where H, isthe kth Hermite polynomial, operator L is not normal and then we
don’t expect that eigenfunctions form an orthonormal basis, this means that eigenfunctions form

ill-conditioned basis. Under such operator, system may be ill-conditioned (like ill-conditioned
matrix), we need to consider deviation of perturbation. In operator sense, we call pseudo-spectra.
Definition 1: for each £>0, the &— pseudospectrum of matrix A is the subset of the

complex plane A, (A)= {Ze C: H(zl —~ A)_lu 21/5} for some physical norm. When z, is

eigenvalue of A, we adopt H(zol — A)_lH =o,say 7 €A, (A).Alternatively A (A) canbe

characterized by eigenvalues of perturbed matrix
A,(A)={zeC:z=eig(A+E) for some |E|< s}

Remark 6: if we use 2-norm, then A, (A)={zeC:o,, (2 - A)<s} since |A],=,/p(A"A).

Now we choose c¢=1+3i and compute contour plotof o, (2 —L)=¢ for

£=10"°10",10"°,---,10™. In Figure 14, eigenvalues distributed along a ray with angle arg(c)

but distribution of pseudo-spectra is broad for large eigenvalues. We may say such large
eigenvalues are doubtful since smaller perturbation of system would cause large deviation of
eigenvalue.
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40

35| _
Figure 14: c=1+3i,
s
omn (2 —L)=¢ for
5|

ol £=10"°10"10"°,.--.10™

Question 9 (exercise 7): in exercise 6.8 we consider DJ™ =0 theoretically, but in numerically

we don’t have such property, our experimental data is

Table 9: use MATLAB, first number is double precision, second number is double-double and
third number is quad-double.

N=5 N =10 N =15 N =20
(o) 9.8017E-011 4.8672E-002 1.0941E+009 | 4.8124E+019
) 3.7644E-27 3.3708E-18 2.7839E-8 1.7886E+2
5.1923E-60 6.6438E-51 3.2691E-40 4.6363E-31
cond (D", 2) 16810E+017  [2.1488E+017  |6.8901E+016 | 3.0900E+017
det(D") 1.0232E-012 1.3201E-006 -2.5372E+001 | 4.0785E+009
max (max (D")) | 104721 40.8635 91.5231 162.4476

When N =20, we require quad-double precision to avoid accumulation of rounding error. Now
we plot eigenvalue of D,, and its pseudospectra for ¢=107,10",---,10™, then

max|A(D,, ) =3.5025 and min|A (D, )| =31.8496. If we write D,, = EAE™, then
min(svd (E))=4.1688e-015, max(svd(E))~3. E isill-conditioned basis.

cond (E™'E)=1.03 isstill good but cond(EE™)=393. If we set M = EA®E™, then
cond(M)=19E+13 and |M|,=1.1E+20.Evenweset A=D,,—EAE™, then
cond(A)=1.7E+5 and ||A|, =68. This means that result of “eig” may not be convinced.
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Figure 15: eigenvalue of D, is blue points, which is distributed around a circle with radius about 3.5025

but pseudo-spectra is broad.

In http://www.scholarpedia.org/article/Pseudospectrum

Question 10: Why do we need pseudospectra?

Pseudospectra are of importance in connection with many problems. One of the most prominent
of these problems is equations of the form Xx= Ax or X, = Ax,, which lead to the study of the

semi-groups €” and A". Eigenvalues and spectra can be employed to understand €* and A"
as t—o and n— oo, respectively. However, the behavior of the norms HetAH2 and ‘A” ,

over the entire range of t,n is controlled through theorems of the type of the Kreiss matrix

theorem by the resolvent norm H(A—/‘LI )_1

2
Case 1: A isnormal, satisfying A A= AA", then H(A—/ll)fl
-1

A-1l
j(a-ary7]

Case 2: A isnot normal, then from [1], let the spectral abscissa of A be defined by
a(A)=sup{Rez:ze A(A)}, then & < He‘AH < (V)e“™ forall t>0.Here

:lldist(/l,a(A)) and so

2

is completely determined by o(A) alone.

x(V)= |[\/||”V‘1H denotes condition number of a “matrix of eigenvector” V of A.
From [2], if A is diagonalizable, then HA“ “p <k, (V),o(A)k and also if one use Cauchy

integral representation of A“ (which involves a contour integral of the resolvent), then one can
show that

1 ¥
(Eq. 20) A, <p, (A
where ¢ — pseudospectral radius
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(Eq.21) p,(A)=max{|Z:zeA,(A)}

Remark 7: physical interpretation of pseudospectra from [1]

Consider a time-dependent driven system % = Au+e”f , the solutionis u(t)=e"(2 - A)_1 f,

1
== In other words, a
&

if zeA,(A), this means or certain choices of f, H H H ~A)”
system governed by a normal operator exhibits resonance only if the forcing frequency is close to
the spectrum, however a system governed by a nonnormal operator may exhibit resonance or
pseudo-resonance at frequencies far from the spectrum, like Figure 14.

Question 11 (exercise 5): consider a circular membrane of radius 1 that vibrates according to the

second-order wave equation y, =Ay= (ryr) ygg, y(r=1t)=0, written in polar
coordinate. Seperating variable leads to consideration of solution y(r,8,t)=u(r)e™e"™ with
u(r) satisfying

1 m
(Eg.22) -=(ru,) +—-u=wu, u (0)=u(1)=0.

r S
This is a form of Bessel’s equation, and solution are Bessel function J,,(wr) where w has

property J,(w)=0.
Remark 8: If we define x=wr , then (Eq. 22) becomes

(Eq. 23) x237+ x%+(x2 —mz)u:O, u,(0)=u(w)=0.

Solution is Bessel function J,, J' cos(mt—xsint)dt normalized by I dx:1.

Figure 16: Jl(x) don’t has vanished

flux component at origin.

=0.

=0.

From http://en.wikipedia.org/wiki/Bessel function

m m-1
Jm(X)%;(EJ for x— 0, hence iJm(x)—>;(§j . This means that
r(m+1)\2 dx 2(m-1)1 2

diJm(O)ZO for m=1, see Figure 16.
X
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Now we want to use spectral method to find eigenvalue w under given m.

First we scale domain into [-11], let us define x=-1+2r orsay r :%(x+1), then

du 1 du m’ wY
Eq.24) ————— =¥l u, u(-1)=u(@)=0.
(Ea. 24) dx? x+1dx+(x+1)2u (2) U, u(-1)=u(t)

Next we need to impose Neumann condition u, (—1) =0. As usual, we sample Chebyshev grid
on x; =cos(jz/N) for j=012,--,N.

At x=1 (j=0), we delete a row and a column of the differentiation matrix

At x=-1 (j=N), weimpose B.C u,(-1)=0 accordingto D,.

Then we will solve N x N linear system which N -1 equations enforce

- 3)2:: - Xil%-i_ (XT21)2 u= (VEVT u oninterior point j=1,2,---,N-1 and 1 equation is
u,(-1)=0.
neglect C-\ -~ ~N /-\4 zero
\M. Vl
"= D} v
Wy VN
neglect ’\-/ L . vy )

D{(2:N,2:(N+1))e(N-1)xN
Figure 17: we fix v, =0 and for each interior point, we have equation, at final pointat X =—1, we must

impose constraint U, (—1) = 0. The same setting holds for D,

1
N x+1 N N M
Vi
S Eina(nen) | |
_— — D,(2:N,2:(N+1
s Xy N ! .
X+1dx ¢
1 VN—l
— A _/ Vy
Xy +1 . Y
, N : du
Figure 18: compute interior point of ———.
X+1 dx
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2
Figure 19: > U on interior point, note that we fill zero for last variable V,,
(x+1)
e N
Vi
v, Figure 20: constraint U, (—1) =0, we can
0=u,(-1)= [ DN(N+1,2:(N+1))]
express Uy intermsof U ---Uy_;
V-1
Vn
- /

Finally we have

L Uing | A Uy (W ’
(Eq. 25) {DN(N+1,2:N+1)}[ " ]—( 0 j where ﬂ_(zj >0.

Last equation comes from constraint u,(-1)=0, and we can express u, intermsof u.,_,, say

U U

1 Dy(2:N)| i |=G

Dy (N+1,N+1)

Uy = , then we can remove constraint in (Eg. 25)

uNl

IN—l U:l U1
(Eq. 26) L(Nfl)xN G =4
u u

Table 10: zeros of J,(x) from http://mysite.du.edu/~jcalvert/math/bessels.htm

S N=0 N=1 N=2 N=3 N=4 N=5

1 2.405 3.832 5.135 6.379 7.586 8.780
2 5.520 7.016 8.147 9.760 11.064 12.339
3 8.654 10.173 11.620 13.017 14.373 15.700
4 11.792 13.323 14.796 16.224 17.616 18.982
5 14.931 16.470 17.960 19.410 20.827 22.220
6 18.071 19.616 21.117 22.583 24.018 25.431
7 21.212 22.760 24.270 25.749 27.200 28.628
8 24.353 25.903 27.421 28.909 30.371 31.813
9 27.494 29.047 30.571 32.050 33.512 34.983
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Table 11: compute first 6 eigenvalues w, ~w, by w, =2,/4, where A, iseigenvalue of (Eq.

26), we list eigenvalue for different grid points N =5,10,15,20

m=0 N=5 N =10 N =15 N=20
W 2.4048 2.4048 2.4048 2.4048
W, 5.4961 5.5201 5.5201 5.5201
W, 9.1697 8.6537 8.6537 8.6537
W, 12.2953 11.7931 11.7915 11.7915
W 14.8901 14.9309 14.9309
W 18.4337 18.0711 18.0711
m=1 N=5 N =10 N =15 N= 20
W 3.8283 3.8312 3.8317 3.8317
W, 6.8948 7.0148 7.0153 7.0155
W, 11.9241 10.1703 10.1731 10.1733
W, 13.7284 13.3299 13.3227 13.3235
W, 16.3106 16.4696 16.4702
W, 20.4061 19.6132 19.6154

Question 12: We know diJl(O) # 0, but our eigenvalue of m=1 is so close to root of J,?
X

Question 13 (exercise 6): continue exercise 5, we want to design a membrane with radius
dependent physical properties such that these w, =2w, (orsay A, =44 ). Consider the modified

boundary value problem
2
(Eq. 27) —%( p(r)ru,) +rrn—2u =wu, u (0)=u(1)=0

where p(r)=1+asin’(zr)>1 on re(0,1).

2
We rewrite (Eq. 27) as —p(r)u”—%r)u,JrT—zu:V\Fu where q(r)=%(rp)= p+1p’ |

p'=zasin(2zr). Again set x=-1+2r (r =%(x+1)), then

a(r) m w 2
(Eqg. 28) —p(r)uxx—X+1ux+(x+1)2u_(2j u

First, we plot first eigenvalue w; () and second 1/2 times eigenvalue %wz (a) as function of

a , (here we choose o =0:0.01:1) and find intersection point « ~0.77, see Figure 21. (source
code: F:\course\2008spring\spectral_method\matlab\chap9 ex6.m)
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Second we use Bisection method to determine critical value of o up to 6 digits, then
a =0.7695318.
Source code: F:\course\2008spring\spectral_method\matlab\chap9 ex6 v2.m

4.3
42+
41+

4 Figure 21: two curves intersect at o =~ 0.77
38+
38F

3.7 r

361

35 1 1 1 1 1 1 1 1 1
0 01 0.2 03 04 0s 0B 07 oe 09 1
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[2] Matrix powers in finite precision arithmetic, Nicolas, F:\course\2008spring\matrix_comp
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Appendix A perturbation

Theorem 2 (Hellmann-Feynman): let H (1) be a Hermitian operator which depends on a real
parameter A, let |y (1)) be the normalized eigenket of H(4) with E(4):

(Eq.29) H(A)|w(4))=E(4)|w(4)) under (y(4)||lw(2))=1
Then -E(2) =y (A) - H (D) (4)

<proof>

SE() = () H (@) (1)
d d

[ R D)l D R @) ] ()] (2)
_E(/I)<d/1 ‘\V/ +<W(i);7H(i)‘w(l>+E(i)<yx(ﬂ)“%yx(ﬂ)>
() () =1 imiies 0= () () ={ S5v (A () + v ()] S (2)

Theorem 3 (time-independent perturbation theorem, non-degenerate case): consider ‘n(°)>
is eigenket of Ho‘n(°)>=Ef]°)‘n(°)> with eigenvalue E'® and assume ‘n(°)> is complete, say
| = ‘ n(°)><n(°) ‘ . Assume spectrum of H, is non-degenerate, then consider perturbed problem
(Eq.30) (H,+AV)[n), =EX|n)

We assume |n>ﬂ and Eﬁﬂ) are analytic over A under following sense

(Eq. 31) | > :‘ (0)>+/1‘ (1)>+12‘ (2)>

(Eq.32) A, =E —E” =AU+ 22A?) 4

Then we have correction

2
o _ o_y_ Ml
Ba33) A=V, and A =3

n)=3| k(o>>V—kn and

k#n E,go) - E|(<0)

VAV V.V,
n(2)> - Z Z‘ k(0)> ( Er(10) _ Elgo)kj(lEr(,o) _ E|(O)) - Z‘ k(0)> S

k=n Izn k=n (E(O) _ EIEO))

n
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