
Chapter 9  Eigenvalues and Pseudospectra 
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Example 1: Mathieu equation  
(Eq. 1) ( )2 cos 2xxu q x u λ− + =   on [ ]0,2x π∈   

with periodic boundary condition ( ) ( )0 2u u π=  and ( ) ( )0 2x xu u π= . 

We use Fourier basis on discrete grid 0 1 20, , , Nx x x x=  where jx jh= , 2h
N
π

=  and  is 

even. Under such basis, boundary condition is automatically satisfied. 
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Since  is even, second order differentiation matrix is symmetry N
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we use MATLAB build-in function “TOEPLITZ(R) is a symmetric (or Hermitian) Toeplitz 

matrix.” To create such Toeplitz matrix 
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Under (Eq. 4), we can discretize (Eq. 1) as  

(Eq. 6)  where 
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The dispersion relation is shown in Figure 1, we order the eigenvalue as red, blue and black in 



order monotone increasing. 
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gard potential 

 
Conclusion: 

Figure 1: the first 11 eigenvalues of 

Mathieu equation.  

(1) We can re ( ) ( )2 cos 2qV x q x=  is a perturbation of kinetic operator , we 

u

−∆

know eigen-pair of xxu λ− =  with periodic B.C. is 2
k kλ =  for 0,1, 2,k =  an

eigenvector {
d 

}1,cos kx  this system has degene  1,k,sin kx , racy for 2,= , say 

the same energy onds to fo

 t
(2) If we characterize curv  the slope 

cos kx  and 

sin kx  have since combination of both corresp rward ikxe  
ckward wave ikxe− . From Figure 1, it is clear that eigen-value locates at 2

k kλ =
0q =  but when q > he degeneracy is broken, or say splitting of eigen-valu

e ( )k qλ  as eigen-value of k-th order, then can we estimate

 wave 
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0 , e. 

of ( )0d λ , for example, from Figure 1, kdq
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and ( )2 0 0d
dq
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From Feymann theorem (see appendix A), let ( ) ( )
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Substitute into u( )2 cos 2xxu q x u λ− + = , we have  

(Eq. 7) 
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b
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to , i.e ) and modes of odd function (related to 

(Eq. 7) as 11

22

A a a
A b

λ
⎡ ⎤ ⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

a cosnx b , i.e. ). Moreover if we look at 
(Eq. 7) carefully, it is not difficult to find further decomposition  

0 4 2

2

2

2

a a a

k a q a a a

λ

λ

⎪⎪ + =

+ + =

sin nx

( )2

2 2 2 2 2 2

2

k k k k

qa a

a q

λ

− +

⎧ =

+⎨
⎪
⎪⎩

 and 

( ) ( )

2 0
2

( )
( ) ( )22 1k a q a a aλ

2
1 1 3 1

2 1 2 1 2 3 2 1

1

k k k k

a q a a aλ

+ − + +

⎧ + + =⎪

⎩
⎨

+ + + =⎪
 



 5

1

2 1 k k k

b q b b b

k b q b b

λ

λ+ − +

⎧ + − + =⎪
⎨

+ + + =⎪⎩ 2k( ) ( )

2
2 4 2

2
2 2 2 2 2 2

2

2 k k k k

b qb b

k b q b b b

λ( )
( ) ( )

2
1 1 3 1

2
2 1 2 1 2 3 ( ) ( )

2
2 4 2

2
2 2 2 2 2

2

2 k k k

b qb b

k b q b b b

λ

2 1kb +

 and  and 
λ− +

⎧ + =⎪
⎨

+ + =⎪⎩
 

 
Remark 1: such sub-decomposition holds even in truncated matrix. For example, if we denote 
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Question 2: It is easy to show that 

=
. 

( )b bK qV+  is symmetric but ( )a aK qV+  is not symmetric, 

we know eigenvalue of ( )b bK qV+  is real, can you show me that eigenvalue of 
also real? 

( )a aK qV+  

Figure 2: eigenmodes of (Eq. 7), red color is even function and blue color is odd function. This figure is 

the same as Figure 1. For high oscillatory modes, its kinetic energy dominant the system,  and 

are also near eigenmodes, as seen in right panel, we may called them scattering mod
 

Tab

cos kx
sin kx  e. 

 

le 1: choose 4N = , ( )k aλ  denotes eigenvalue computed by ( )a aK qV+  and ( )k bλ

otes eigenvalue computed by (
 

)b bK qV+ . This table shows  
ecomposition is correct.  

den
(1) sub-d
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iate kx  or 
odes at 

(2) Large q  dev os sin kx  to its neighbor 
(3) Splitting of degenerate eigenm 0

 c
 q =

 0 1 2 3 4 
0.1q = , )aλ  -0.0050 4.0042 16.0(k

008 9.0013 1.0987 

0.1q =  0.9988 0 
( )0 1 4, , ,ku a a a=  9999 

-0.0250 0 
127 

0.0001 
0 
-0.0499 
0 
0.0003 

-0.
0 
0.0127 
0 

0 
-0.9997 
0 
0.0083 

0.0
0 
0.9999 
0 

0 
0.0083 
0 
1.0000 

15q = , .1808 .0540 .9029 ( )k aλ  -22 10.1268 32 -2.9029 27

15q =  
( )0 1 4, , ,ku a a a=  

0.5327 
0 
-0.7877 
0 
0.3095 

0 
6216 0.

0 
-0.7833 
0 

-0.4752 
0 
-0.3208 
0 
0.8193 

0 
7833 0.

0 
0.6216 
0 

0.3235 
0 
0.6914 
0 
0.6460 

0.1q = , ( )k bλ   0.8988 3.9992 .0008 9.0012 16

0.1q =  
( 1 2 4, , ,ku b b b=  )

 -0.9999 
0 
0.0123 
0 

0 
1.0000 
0 
-0.0083 

-0.0123 
0 
-0.9999 
0 

0 
0.0083 
0 
1.0000 

15q = , ( )k bλ   -21.4011 1555 .1555 -6. 16.4011 26

15q =  
( )1 2 4, , ,ku b b b=  

 -0.8968 
0 
0.4425 
0 

0 
0.8281 
0 
-0.5606 

0.4425 
0 
0.8968 
0 

0 
0.5606 
0 
0.8281 

 
Choose , and 42N = 15q = , we pl  eigenm en con n a( )a aK qV a λ+ot first 4 ode in ev figuratio =  

and odd configuration ( )b bK qV b bλ+ =  in frequen and als n physical sp
igure 4, support of dominant frequency components only locates near neighbor and the root of 

ponents only 

1 

cy space o i ace. In 
F
eigenmode is 0, 2, 4, 6 in order. In Figure 5, support of dominant frequency com
locates near neighbor also and the root of eigenmode is 1, 3, 5, 7 in order. 
 0 2 3 4 

15q = , ( )k aλ  -22.5130 -8.1011 5.0780 16.5874 25.3751 

15q = , ( )k bλ   -22.5130 -8.0993 5.1166 17.0373 

 
Obser tion odeva 1: even eigenm  ( ),k evevu π 0∼  enmode metric with respect to (odd eig is odd sym

x π= , so ( ), 0k oddu π = ), when eigenvalue qmaxV 2 30kλ < = =

rom Figure 3, the first 4 eigenvalue is smaller than , but we know 

, why? 

maxV E T V= +F  for 

average ⋅ omain where  over any d
2dT

⎛ ⎞
= 2k ku u

dx
−⎜ ⎟
⎝ ⎠

 is kinetic energy and 

2 cos 2k kV u q x u=  is potential energy, since 0T  we must have > , k E Vλ = > , but 

V  attains maximum at x π=  and then we must have ( ) 0π ∼  to guarantee ku
+

−
> ∫ .  2

k kVu dx
π δ

π δ
λ



Figure 3: for first 4 eigenmode, eigenvalue (energy) is 

smaller than maximum of potential energy, so eigen-function 

must be near zero at midpoint where potential energy attains 

maximum. 

 

Figure 4: even eigenmode, left panel is eigenmode of combination of frequency space, right panel is 

eigenmode in physical space.  
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Observation 2: if we reflect graph (

Figure 5: odd eigenmode, left panel is eigenmode of combination of frequency space, right panel is 

eigenmode in physical space. 

x π< ) of first even eigenmode, then the graph is the same as 
first odd eigenmode. I think this is due to  



(1) sub-decomposition, say ( ){ }1,cos 2kx  corresponding to ( )( ){ }sin 2 1k x+  and 

( )( ){ }cos 2 1k x+  corresponding to ( ){ }sin 2kx .  

(2) When  for , then potential dominants 2q k>> : eigenmodek kλ  and  
(3) Nodal set matching, say “if we reflect ( )cos 2kx  about x π= , then we must have one more 

nodal point x π= , this would match ( )( )sin 2 1k x+ ”. Of course we need Sturn-Liouville 
theorem to make sure nodal set is increasing without jump.  

 

 
Example 2 (Airy fun en.wikiped rg/wiki/Airy_function

 

Reflect  

 

 

ction): From http:// ia.o
In ma sthematic , the n Ai(x) is a special functionAiry functio  na r the British med afte

astronomer George Biddell Airy. The func  and the d function Bi(x), which is also 
called an Airy function, are solutions to the

tion Ai(x) relate
 differential equation xx xuu =  for x R∈  

is the simplest second-order linear known as the Airy equation or the Stokes equation. This 
differential equation with a turning point (a point where the character of the solutions changes 
from oscillatory to exponential). 
 
Question 3: Why Airy function is exponential decay for and oscillates at , like 
Figure 6? 
<ans> Informally, we can relate u verning equation) to two kinds second order 

equation 

0x >  0x <

xxu x=  (Airy’s go

( )
{ }
{ }

2

2

sin ,cos    for  00   for  0
,      for  0        for  0

xx
xx x x

xx

u x x xu k u x
u xu

u sp e e xu k u x −

⎧ ∈ <⎧ + = <⎪ ⎪= ⎨ ⎨
∈ >= >⎪ ⎪⎩ ⎩

∼ ∼ . However formally 

we require Sturn-Livoulle comparison theorem. 
 

q. 8) ( )
3

0

1 cos
3
tAi x xt dt

π
∞ ⎛ ⎞

= +⎜ ⎟
⎝ ⎠

∫  (E

 8

(Eq. 9) ( )
3 31 t t

0
exp sin

3 3
Bi x xt xt dt

π
= − + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫  

Asymptotic behavior for 1x  

∞ ⎛ ⎞ ⎛ ⎞

(Eq. 10) ( ) 3/ 2
1/ 4

1 2exp
32

Ai x x
xπ

⎛ ⎞−⎜ ⎟
⎝ ⎠

∼  and ( ) 3/ 2
1/ 4

1 2sin
3 4

Ai x x
x

π
π

⎛ ⎞− +⎜ ⎟
⎝ ⎠

∼  

Eq. 11) ( )( 3/ 2
1/ 4

1 2expBi x ⎛
⎜ ⎟∼ ( ) 3/ 2

1/ 4

1 2cos
3 4

Bi x x
x

π
π

⎛ ⎞− +⎜ ⎟
⎝ ⎠

∼  
3

x
xπ

⎞
⎝ ⎠

 and 



 9

ction value at tuning point 0x =  Further fun

(Eq. 12) ( ) ( )2/3

10Ai = , 
3 2 / 3Γ

( ) ( )1/30
3 1/ 3

d Ai
dx Γ

(Eq. 13) 

1
=  

( ) ( )1/ 6

10
3 2 / 3Γ

( )Bi = , 
( )

1/ 630
3

d Bi =  

 
zero of Airy function from htt hworld.wolfram.com/AiryFunctionZeros.html

1/dx Γ

Figure 6: airy function ( )Ai x  is exponential 

decay for but has infinite number of 

oscillations t  decay with algebraically in 

amplitude

0x >  

hat
1/ 4x−  for 0x < . 

Table 2: p://mat

root 1st 2nd 3th 4th 5th 6th 
( )Ai x  -2.33811 -4.0875 -5.52056 -6.7867144 -7.94413 -9.02265 

( )Bi x  -1.17371 -3.27109 -4.83074 -6.16985 -7.37676 -8.49195 

 
If we want to use Chebyshev node to interpolate Airy function, then it has difficulty since domain 
of Airy function is x R∈ , even we can truncate 0x >  for x L=  since Airy function decays 
exponentially for 0x > , however we cannot truncate 0x <  for x L= −  since Airy function is 
oscillates for 0x <  and decay slowly about . Now if we samp Lle x = −  is root of1/ 4x−  airy 
function and image ( ) 0Ai L ∼ , then we can approxim by solving  

(Eq. 14) u , 
The existence of solution of (Eq. 14) is equivale
Let 

ate Airy function 

xxu x= ( ) ( ) 0u L u L= − =  
nt to following: 

x Ly= , [ ]1,1y∈ − , , then (Eq. 14) is equivalent to  

(Eq. 15) 0
At first glance, (Eq. 15) is generalized eigenvalue problem 

( ) ( )u x U y=
3

yyU L yU= , ( ) ( )1 1u u= − =  
Au Buλ= , why? Let us discretize 

(Eq. 15) under Chebyshev node, then N
2A D= , ( )1 2 1, , , NB diag y y y −= , 3Lλ = .  

{ },k kUλ , and ( ) ( )k ku x U y= , define 1/ 3Let eigen-pair be kL kλ= .  

Remark 2: In fact, 
 

( )Ai 0  and L > ( ) 0> , hence our eigen-function Bi L mbination oku  is co f 

( )( ) ( ),Ai x Bi x , say ( ) ( ) ( )k ku x Ai x Bi xβ= −  satisfying ( ) 0k ku L = . So 
( )

kAi L
k

kBi L

to estimate coefficie k

β = , in order 

nt ( ), we use asymptotic estimate of β ( ),Ai x Bi x  (i.e (Eq. 10) and (Eq. 

11)), ( )
( )

3/ 2
1/ 4

3/ 2

3/ 2

2exp
1 43 exp

1 2 3

xAi x x x
Bi x x

⎛ ⎞−⎜ ⎟ ⎞⎝ ⎠ −⎜ ⎟⎞ ⎝ ⎠
∼ ∼ , 

1/ 4

1
2

2exp
3x

π ⎛
⎛
⎜ ⎟
⎝ ⎠π

1 4exp
2 3k kβ λ⎛ ⎞−⎜ ⎟

⎝ ⎠
∼ . Moreover since 
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L( ) 0ku − = , we have k ( ) ( )kk kAi L Bβ− = i L− , from Figure 6, we know ( ) ( )0 0.Bi x Bi≤ ≤ 5 , 

( ) 1hence 
2k kAi L β− ≤ . This means the lue of va kβ  determine the accuracy of approximation to 

 

 
As far as equation is concerned, is also eigen-function when we do scaling, in 

 

Airy function. 

Figure 7: the more ids, the more accurate 

tion is iry 

 gr

airy function is. When N = 12, the shape of 

eigen-func  far away from A

function.  

 

Question 4: If we don’t scale eigen-function 5u , then 5u  is multiple of Ai , see Figure 8, why? 

Figure 8: ( )5 0 0u = .6629  but 

( )0 0.355Ai = . Eigen-function is multiple of 

Airy function. 

<ans> 5

MATLAB, it do norm normalization such that
u  

5 1u = , is is a degree of freedom since  th

( )
3

0

10 cos
3
tAi d

π
∞ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∫ t . after we do scaling ( )
( )5 5

5

0
0

Ai
u u

u
← , then 5 5.5117e-008Ai u

∞
− =  

and 5 5.2487e-008
l

Ai u ∞− = . 

  



 11

, we use MATLAB built-in function AIRY to compute Table 3: 48N = ( ) ( )k kAi L airy L=  and 

, then compute true ( ) ( )2,k kBi L airy L=
( )
( )

k
k

k

Ai L
Bi L

β = .  

 1st 2nd 3th 4th 5th 6th 
12.8239 68.3153 168.2478 312.5917 501.3484 734.5180 kλ  

1/ 3
k kL λ=  2.3407 4.0880 5.5206 6.7867 7.9441 9.0227 

kβ  0.0042 8.1822e-006 1.5416e-008 1 5.4121e-014 1.0123e-0162.8910e-01

( )kAi L  0.0204 7.9326e-004 3.2070e-005 1.3215e-006 5.5033e-008 2.3073e-009

( )kBi L  5.1675 99.4736 2.1142e+003 4.6254e+004 1.0264e+006 2.2969e+007

True kβ  0.004 7.9746e-006 1.5169e-008 2.8570e-011 5.3618e-014 1.0045e-016

 

(Eq. 16) 

 
Example 3 (Laplace eigenvalue with Dirichlet B.C.) 

( ),u f x y u uλ−∆ + = , 11 ,x y− < <  and 0u =  on the boundary 

 1: , then 0f = ( )
2

2 2
,Case

4k m k mπλ = + , ( ) ( ), sin 1 sin 1
2 2k mu k x m yπ π⎛ ⎞ ⎛= +⎜ ⎟ ⎜

⎝ ⎠ ⎝
 ⎞+ ⎟
⎠

 plot first 4 eigen-pair in Figure 9, 2nd and 3rd eigenmode are degenerated due to 2-fold 
re 2-fold symmetry

means that if we rotate d then the problem is the same. 

 

We
symmetry in domain and Laplacian operation is rotational symmetry. He  

omain by 90 degree, 

Figure 9: 0f = , 2nd and

va t

 s

 3rd 

eigen lues are degenera ed since 

2-fold ymmetry. 

In mathematical language, we define 
cos sin
sin cos / 2

x u
y v

θ θ
θ θ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟ ⎜ ⎟ , then 

θ π=⎝ ⎠ ⎝ ⎠ ⎝ ⎠
we still have 



,u vu uλ−∆ = , for 1 , 1u v− < <  and  0u =  on the boundary. 

 

Remark 3: in case of degenerate eigenm
hoose eigenvector with 

odes, the choice of eigenvector is arbitrary. Here 
MATLAB c oximately al nal, d gonality 
property of degenerate eigenmode, both eigenvector has nodal 

 
Case 2: , since is not 2-fold symmetry, so degeneracy is broken, in fact, 

nodal line appr ong diago ue to ortho
line along diagonal.  

( )exp 1f y x= − − f  

( ) ( ) [ ]{ }2supp , 1,1 : 1f x y y x≈ ∈ − ≥ +  is left upper corner, see Figure 10. 

 
rom Courant-Fisher theorem (minimum property of spectrum of Hermitain operator), we expect 

Figure 10: support of f  

 1/

is concentrated at 

upper left corner, with 8 of the domain. f  

is not 2-fold symmetry, so we expect that 

degeneracy does not happen. 

F

that eigenvector would avoid fall into ( )supp f , see Figure 11. 

Figure 11: first 4 eigenmodes for 

( )exp 1f y x= − − , eigenvalues are 

distinct.  
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Remark 4: such barrier function f  is equivalent to solve eigenvalue problem in non-supp(f), 

say  u uλ−∆ = , ( ) [ ] ( )2, 1,1 suppx y f∈ − − d 0u an =  on the boundary. 

 
Remark 5: If we regard f  is a perturbation of u uλ−∆ =  and regard it as a parameter, then we 
expect to connect (2) in in Figure 9 and (2) in Figure 11, also connect (3) in in Figure 9 and (3) in 
Figure 11. Since 3rd eigenvector in u uλ−∆ =  has large portion in ( )supp f , so it has large 

deviation in eigenvalue (from 5 to 5.54891) since it need to suppress eigenvector in ( )supp f , 
see Figure 12.  

 

id is 

 

Question 5 (Exercise 1): for 0f = , we can first report 4 eigenvalues, the first 4 eigenvalues has 
12 digits accuracy even simulation g 16

 

Figu e to 

 

fre 12: du barrier , eigenvector of le  is sup r ome 

envector in right panel. 

ft panel p essed in supp(f) to bec

eig

r 16× , but 5-th eigenvalue has only 9 digits, why

Table 4: eigenva u u

? 

lues of λ−∆ = 16 16 on grid × . 

 1 2 3 4 

, 2

4
k mλ

π
 

2.00000000000006 5.00000000000337 5.00000000000355 8.00000000000668 

exact , 2

4
k mλ

π
 ( )2 1,1=  ( )5 1, 2=  ( )5 2,1=  ( )8 2,2=  

 
 5 6 7 8 

, 2

4
k mλ

π
 

10.00000000131679 10.00000000131718 13.00000000132017 13.00000000132038

exact , 2

4
k mλ

π
 ( )10 1,3=  ( )10 3,1=  ( )13 2,3=  ( )13 3,2=  

Recall interpolation theorem 
Theorem 1(Newton Approximation, see p224 , p213[1] ): Assume that  is Lagrange ( )nP x
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polynomial (or Newton polynomial) to interpolate ( )f x such that ( ) ( ) (n n )f x P x E x= + . If 

[ ]1 ,nf C a b+∈ , then for each [ ],x a b∈ , there corresponds a number  such that 
error term  

(Eq. 17) 

( ) ( ),c c x a b= ∈

( )
( ) ( )
( ) ( )

1

01 !

n n

n j
j

f c
E x x x

n

+

=

= −
+ ∏ .  

_____________________________________________________________________________ 

If we choose Chebyshev nodes, that ( )
0

1max
2

n

j n
j

x x
=

− ≤∏ , then error formula (Eq. 17) becomes  

(Eq. 18) ( )
( )

( )

1

2 1

n

n n

f
E x

n

+

∞≤
!+

  

In our problem, eigenmodes are ( )sin xτ , if we set ( ) ( )sinf x xτ= , then ( )1 1n nf τ+ += , so 

( ) ( )
1n

nx τ +

≤
+

. 
2 1 !nE

n

able 5: Let , we compute 16n = ( )16E x  with several parameter 
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T
2

kπτ = . This shows that 

good approximation to sin
2

kxπ⎛ ⎞
⎜ ⎟
⎝ ⎠

 for k 1, 2=  

2 3 4 5 

up to 12 digits. 

k 1  
( )16E x  9.2574e-017 1.2134e-011 1.1955e-008 1.5904e-006 7.0628e-005

 
k 6 7 8 9 10 

( )16E x  0.0016 0.0215 0.2085 1.5439 9.2574 

 
( ) ( )A B C A B C⊗ ⊗ = ⊗ ⊗Question 6 (exercise 2): , true or false? 

ans> from http://e k uc< n.wikipedia.org/wi i/Kronecker_prod t
11 1

1

n

m mn

a B a B
A B

a B a B

⎢ ⎥⊗ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 for 
⎡ ⎤

m nA R ×∈ , p qB R ×∈ , mp nqA B R ×⊗ ∈  

The Kronecker product is a special case of the tensor product, so it is bilinear and associative
(1) ( ) ( ) ( )A B C A B A C⊗ + = ⊗ + ⊗  

(2) ( ) ( ) ( )A B C A B B C+ ⊗ = ⊗ + ⊗  

( ) (A kB k= ⊗ =

(4) (
(3) )kA B A B⊗ ⊗  ( )

) ( )A B⊗ ⊗C A B C= ⊗ ⊗  
ronecker product is not commutative A B B A⊗ ≠ ⊗,  in general. But The K

 

Question 7 (exercise 3) : Find lowest eigenvalue of u uλ−∆ =  in [ ]31,1−  with 0u =  on the 

boundary, estimate size of matrix, accuracy of eigenvalue and time to do “eig”. We know 
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e is eigenmod ( )
2

2 2 2
, , 4k m l k m lπλ = + +  and ( ) ( ) ( ), , sin sin sink m lu kx my= lz  for 

atlab\p23_2.m  
( kro kron( I, kron(I,D2)). 

 
Table 6: experiment platfor uartet 1. 
 

, , 1, 2,k m l =  

Source code is F:\course\2008spring\spectral_method\m  and we construct L by 
L = -kron( kron(D2,I), I ) - kron n(I,D2), I) - 

Figure 13: sparse pattern of matrix , with L
6N = , dimension   is L 35 125= of  

m is q  
6N =  8N =  12N =  

dimension 125 343 1331 
Time to eig 0.024341 s 0.206931 s 7.321695 s 

minλ 2

4
π

 3.000024016211470 2.999999862669497 2.999999999998820 

( )n 1,1,1 2

4λmiλ
π

−  2.4016e-005 1.373305034135797e-07 1.179500941361766e-12

 

( )nE x  for 
2
πτ =  (lowest eigenvalue 1,1,1λTable 7: we estimate ). This is consistent with 

( )min 1,1,1 2

4λ λ
π

−  filed in Table 6. 

 6N =  8N =  12N =  
( )16E x  7.3152e-005 6.2672e-007 1.3897e-011 

 
 

large tity matrix, then 
matrix 

Question 8 (exercise 4): continue exercise 3, but use “eigs” in MATLAB to solve eigenvalue of
 sparse matrix, we can replace “eye” by “speye” to generate sparse iden

L  becomes sparse also. 
Source code: F:\course\2008spring\spectral_method\matlab\p23_3.m 
Table 8: experiment platform is quartet 1.  
 6N =  8N =  12N =  
Time to eigs 0.244953 s 0.031894 s 0.248721 s 



min 2

4λ
π

 3.000024016211436 2.999999862669430 2.999999999998738 

( )min 1,1,1 2

4λ λ
π

−  2.401621143599542e-05 1.373305700269611e-07 1.261657445184028e-12

 

 

harm tor with c ficient):  
(Eq. 19) 

EIGS  Find a few eigenvalues and eigenvectors of a ma PA  
EIGS(A,K,SIGMA) return K eigenvalues based on SIGMA 

'LM' or 'SM' - Largest or Smallest Magnitude 
For real symmetric problems, SIGMA may also be: 
       'LA' or 'SA' - Largest or Smallest Algebraic 
       'BE' - Both Ends, one more from high end if K is odd 
For nonsymmetric and complex problems, SIGMA may also be: 
       'LR' or 'SR' - Largest or Smallest Real part 
       'LI' or 'SI' - Largest or Smallest Imaginary part 

trix using AR CK

 
Example 4 ( onic oscilla omplex coef

2
xxLu u cx u+ , c C∈  = −

Although we have analytical solution ( )2 1k c kλ = +  and ( ) ( )2 1exp / 2 / 4u cx H c x= −  for 

 where 
k

ite polynomial, operator 
k
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0,1, 2,k = kH  is the kth Herm  is not normal and then we L
d
il

on’t expect that eigenfunctions form an orthonormal basis, this means that eigenfunctions form 
l-conditioned basis. Under such operator, system may be ill-conditioned (like ill-conditioned 

nsider on of ctra. 
 
Definition 1: fo

matrix), we need to co deviati  perturbation. In operator sense, we call pseudo-spe

r each 0ε > , the pseudospectrumε −  of matrix A  is the subset of the 

omplex plane ( ) ( ){ }1: 1/C zI Aεc A z ε−∈ − ≥  for some physical norm. When  is 

eigenvalue of 

Λ = 0z

A ( ) 1A −
− = ∞ , s0z I ay ( )0z Aε∈Λ . A ( )AεΛ, we adopt lternatively  can be 

haracterized by eigenvalues of perturbed matrix  c
( ) ( ){ }:  for some A z C z eig A E Eε εΛ = ∈ = + ≤  

Remark : if we use 2-norm, then ( ) ( ){ }min:A z C zI Aε σ εΛ = ∈ − ≤  since ( )2
HA A Aρ= .  6  

 
Now we choose and compute contour plot of 1 3c i= +  ( )min zI Lσ ε− =  for 

− 14, ei ( )0.5 110 ,10ε − −= 1.5 4, ,10− . I,10 n Figure genvalues distributed along a ray with angle arg
 say such large 

c  
but dist ution of ad fo  may
eigenvalues are doubtful 
eigenvalue. 

rib  pseudo-spectra is bro r large eigenvalues. We
since smaller perturbation of system would cause large deviation of 
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D

Figure 14: 1 3c i= + , 

( )min zI Lσ ε− =  for 

0.5 1 1.5 4

 

Question 9 (exercise 7): in exercise 6.8 we consider 1N
N
+ 0=  theoretically, but in numerically

ird number is quad-double. 

 

 

we don’t have such property, our experimental data is  

Table 9: use MATLAB, first number is double precision, second number is double-double and 
th

 N = 5 10N =  15N =  20N =  

( ) 1

2

NND
+

 

5.1923E-

1.0941E+009 

91E-40 

4.8124 +019

4 -31 

9.8017E-011 
3.7644E-27 

60 

4.8672E-002 
3.3708E-18 
6.6438E-51 

2.7839E-8 
3.26

E  
1.7886E+2 

.6363E
( ), 2Ncond D  1.6810E+017 2.1488E+017 6.8901E+016 3.0900E+017 

( )det ND  1.0232E-012 1.3201E-006 -2.5372E+001 4.0785E+009 

( )( )max max D  N 10.4721 40.8635 91.5231 162.4476 

 
hen , we require quad-double precision to avoid accumulation of rounding error. Now 

e of 6
W
w

20N =
e plot eigenvalu and its pseudospectra for ε20D  2 3 110 ,10 , ,10− − −= , then 

( )20max 3DΛ = ( ).5025  and 20min 31.8496DΛ = . If we write 1
20D E E −= Λ , then 

( )( )min 4.1688e-015svd E = , ( )( )max 3svd E ∼ . E  is ill-conditioned basis. 

( )1 1.03cond E E− =  is still good but ( )1 393cond EE− = . If we set 21 1M E E−= Λ , then 

( )cond M =1.9 13E +  and 
2

1.1 20M E= + . Even we set 1
20D E E −∆ = − Λ , then 

( ) 1.7 5cond E∆ = +  and 
2

68∆ = . ay not be convinced. This means that result of “eig” m

10 ,10 ,10 , ,10− − − −ε =  



 

Figure 15: eigenvalue of 20D  is blue points, which is distribu ith radius about 3.5025 ted around a circle w

but pseudo-spectra is broad. 

 18

 
In http://www.scholarpedia.org/article/Pseudospectrum

Question 10: Why do we need pseudospectra? 

seudospectra are of impo tance in connection ith many problem . One of the most prominent 
of these problems i he fo
P r w s

s equations of t rm x Ax=  or 1n nx Ax+ = , which lead the 
semi-groups  a values an be  unders  
as  and ly. H havi  

to the study of 
nd nA . Eigen  and spectra c employed to tand tAe  andtAe nA  

t →∞ n → tAe∞ , respective owever, the be or of the norms
2
 and 

2

nA  

over the entire range of Kreiss m,t n  is controlled through theorems of the type of the atrix 

theorem by the resolv  ( ) 1−

2
. ent norm A Iλ−

ase 1: A  is normal, satisfying * *A A AA= , then ( ) ( )( )1

2
1/ ,A I dist Aλ λ−− =C σ  and so 

( ) 1

2
A Iλ−  is completely determined by − ( )Aσ  alone. 

Case 2: A  is not norm n from [1], let the spec f al, the tral abscissa o A  be defined by 
( ) ( ){ } ( )sup Re :A z zα = ∈ , then AΛ ( ) ( )t A tAe eα ακ≤ ≤ all . Here t AV e  for 0t ≥

( ) 1V V Vκ −=  V  of denotes condition number of a “matrix of eigenvector” A . 

From [2], if ( ) ( )k
pp

A  is diagon  alizable, then kA V Aκ ρ≤ if one use Cauchy 

integral representation (which involves a contour integral
show that  

(Eq. 20) 

 and also 

of  of the resolvent), then one can kA  

( ) 1

2

1 kkA Aερε
+≤   

where  radius  pseudospectralε −



( ) ( ){ }max :A z z Aε ερ = ∈Λ  (Eq. 21) 

 

Remark 7: physical interpretation of pseudospectra from [1] 

Consider a time-dependent driven system ztdu Au e f
dt

= + , the solution is 

if 

( ) ( ) 1ztu t e zI A f−
= − , 

( )z Aε∈Λ , this means or certain choices of f , 
( )

( ) 1 1
zt

u t
zI A

e f ε
−− =∼ . In other words, a 

system governed by a normal operator exhibits resonance only if the forcing frequency is close to 
the spectrum, however a system governed by a nonnormal operator may exhibit resonance or 
pseudo-resonance at frequencies far from the spectrum, like Figure 14. 
 
Question 11 (exercise 5): consider a circular membrane of radius 1 that vibrates according to the 

second-order wave equation ( ) 2

1 1
tt r r

y y ry y
r r θθ= ∆ = + , ( )1, 0y r t= = , written in polar 

coordinate. Seperating variable leads to consideration of solution ( ) ( ), , im iwty r t u r e eθθ =  with 

( )u

(Eq

r  satisfying  

. 22) 
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( )
21 mru u− + = ( ) ( )0 1ru u 0= =2
2r r

w u
r r

, .  

This is a form of Bessel’s equation, and solution are Bessel function ( )mJ wr  where  has 

ecomes 

w

property ( ) 0J w = .  m

Remark 8: If we define x wr= , then (Eq. 22) b

(Eq. 23) ( )
2

2 2 2
2 0d u dux x x m u

dx dx
+ + − = , ( ) ( )0 0u u wx = = .  

Solution is Bessel function ( ) ( )
0

1 cos sinmJ x mt x t dt
π

π
= −∫  normalized by (

0
1mJ x dx

∞
) =∫ . 

 
unction

Figure 16: ( )1J x  don’t has vanished 

flux component at origin. 

From http://en.wikipedia.org/wiki/Bessel_f

( ) ( )
1 m

m 1 2
xJ x ⎛ ⎞→

m ⎜ ⎟Γ + ⎝ ⎠
 for , hence 0x → ( ) ( )

11 md x
2 1 ! 2mJ x

dx m

−
⎛ ⎞→ ⎜ ⎟− ⎝ ⎠

. This means that 

( )0d J 0mdx
=  for , see Figure 16. 1m ≠
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e want to use spectr to find eigenvalue  under given 

cale domain into 

w m . Now w al method 

[ ]1,1− , let us define 1 2x r= − +  or say ( )1 1
2

r x= +First we s , then  

q. 24) (E
( )

22 2

22

1d u du m wu u⎛ ⎞− − + = ⎜ ⎟ , 
1 21dx x dx x+ ⎝ ⎠+

( ) ( )1 1xu u 0− = = .  

( )1 0xu − =Next we need to impose Neumann condition . 

on 

As usual, we sample Chebyshev grid 

( )cos /jx j Nπ=  for .  
  (  o ferentiation matrix

At  ( ), we impose B.C 

0,1, 2, ,j N=

At 0= ), we delete a row and a column f the dif   1x = j
1x = − j N= ( )1 0xu − =  according to ND . 

Then we will solve N N×  linear system which 1N −  equations enforce 

( )

22 2

22

1d u du m wu u⎛ ⎞− − + = ⎜ ⎟  on interior point 1, 2, , 1j N
1 21dx x dx x+ ⎝ ⎠+

= −  and 1 equation is 

( )1 0xu − = .  

 

 

0w

1w

2w

Nw
1Nw −

0v

1v

2v

1Nv −

Nv

= 2
ND

zeroneglect

neglect

( )( ) ( )2 1 12 : , 2 :ND N

: we fix and for each interior oint, we have equatio final point at , we must 

The same setting holds for  

N N N+ ∈ − ×

Figure 17  p n, at 0 0v =  1x = −
impose constraint ( )1 0xu − = . ND .

Figure 18: compute interior point of 
1

1
du

x dx+
. 

1v

2v

Nv
1Nv −

=
1 1

1 |
1 Nx x

du
x dx −+

1

1
1x +

1

1
1Nx − +

( )( )2 : , 2 : 1ND N N +
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Finally we have  

(Eq. 25) ( )
1: 1 1: 1 

1,2 : 1 0
N N

N N

L u u
D N N u

λ− −⎡ ⎤ ⎛ ⎞ ⎛ ⎞
=⎢ ⎥ ⎜ ⎟ ⎜ ⎟+ + ⎝ ⎠⎝ ⎠⎣ ⎦

 where 
2

0
2
wλ ⎛ ⎞= >⎜ ⎟

⎝ ⎠
.  

Last equation comes from constraint ( )1 0xu − = , and we can express in terms of Nu  1: 1Nu − , say 

( ) ( )
1 1

1 1

1 2 :
1, 1N N

N
N N

u u
u D N

D N N
u u− −

⎡ ⎤ ⎡ ⎤
− ⎢ ⎥ ⎢ ⎥= ≡⎢ ⎥ ⎢ ⎥+ +

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

G , then we can remove constraint in (Eq. 25)  

(Eq. 26) 
1 1

1

1
1 1

N

N
N N

u uI
L G λ−

×
− −

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥=⎢ ⎥( )

)
1

1
N N

u u
− ×

−(
⎢ ⎥⎢⎣

  

Table 10: zeros of J x  from http://mysite.du.edu/~jcalvert/math/bessels.htm

⎢ ⎥⎥⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

( )n   

s N=0 N=1 N=2 N=3 N=4 N=5 
1 2.405 3.832 5.135 6.379 7.586 8.780 
2 5.520 7.016 8.147 9.760 11.064 12.339 
3 8.654 10.173 11.620 13.017 14.373 15.700 
4 11.792 13.323 14.796 16.224 17.616 18.982 
5 14.931 16.470 17.960 19.410 20.827 22.220 
6 18.071 19.616 21.117 22.583 24.018 25.431 
7 21.212 22.760 .224 70 25.749 27.200 28.628 
8 24.353 25.903 27.421 28.909 30.371 31.813 
9 27.494 29.047 30.571 32.050 33.512 34.983 

Figure 19: 
( )

2m u21x +
 we fill zero f on interior point, note that or last variable v  N

1v

2v

Nv
1Nv −

=( ) 1 12 |
1 Nx xu

x −+

1
( )2

+

1

1 1x

( )2
1

1
1Nx − +

0
0

0

Nv
1Nv

1v

2v

−

( )1,2 : N( )0 1u= − =
igure 20: constraint (xu

expr of 1 1Nu u −  
( )1ND N + +x

F − = , we can 

ess in terms 

)1 0

Nu  



Table 11: compute first 6 eigenvalues 1 6w w∼  by 2k kw λ=  where kλ  is eigenvalue of (Eq. 

26), we list eigenvalue for different grid points 5,10,15, 20N =  
0m =  N = 5 N = 10 N = 15  N= 20 

1w  2.4048 2.4048 2.4048 2.4048 

2w  5.4961 5.5201 5.5201 5.5201 

3w  9.1697 8.6537 8.6537 8.6537 

4w  12.2953 11.7931 11.7915 11.7915 

5w  14.8901 14.9309  14.9309 

6w   18.4337 18.0711 18.0711 
 

1m =  N = 5 N = 10 N = 15  N= 20 

1w  3.8283 3.8312 3.8317 3.8317 

2w  6.8948 7.0148 7.0153 7.0155 

3w  11.9241 10.1703 10 31 .17 10.1733 

4w  13.7284 13.3299 13.3227 13.3235 

5w   16.3106 16.4696 16.4702 

6w   20.4061 19.6132 19.6154 
 

( )
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Question 12: We know 1dx
0 0d J ≠ , but our eigenvalue of 1m =  is so close to root of ? 

 
Question 13 (exercise 6): continue exercise 5, we 
dependent physical properties such that these 

1J

want to design a membrane with radius 
2 12w w=  (or say 2 14λ λ= ). Consider the modified 

boundary value problem 

( )( )
2

2
2

1
r r

mp r ru u w u
r r

− + = , ( ) ( )1 0ru u0 =(Eq. 27) =  

where ( ) ( )21 sinp r rα π= + >1 on ( )0,1r∈ .  

 as We rewrite (Eq. 27) ( ) ( ) 2
2

2rr r

q r mp r u u u w u
r r

− + =  where ( )− ( )dq r rp
dr

= = p rp′+ , 

( )sin 2p rπα π′ = gain se − +  . A t x = 1 2r ( )1 1
2

x( r = +   

q. 28) 

), then

(E ( ) ( )
( )

22

21 21

q r
xx x

m wp r u − u u u
x

−
x

+
+

⎛ ⎞= ⎜ ⎟+
 

st, we plot nvalu

⎝ ⎠
 

Fir first eige e ( )1w α  and 1/2 ti nvalu second mes eige e ( )1 w22
α  as function of 

α 0 : 0.01:1 0.77α = α ≈, (here we choose ) and fi ectiond inters n point , see Figure rce 
de: F:\course\2008spring\spectral_meth b\cha ) 

 21. (sou
co od\matla p9_ex6.m
 



α  
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cond we us on me determ cal vaSe e Bisecti thod to ine criti lue of up ts, the to 6 digi n 
0.7695318α =

urce code: d\ma 9_ex6
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Appendix A perturbation 
 
Theorem 2 (Hellmann-Feynman): let ( )H λ  be a Hermitian operator which depends on a real 

parameter λ , let ( )

 24

ψ λ  be the normalized eigenket of ( )H λ  with ( )E λ : 

( ) ( ) ( ) ( )H Eλ ψ λ λ ψ λ=   under ( ) ( ) 1ψ λ ψ λ =  (Eq. 29) 

( ) ( ) ( ) ( )d dE H
d d

λ ψ λ λ ψ λ
λ λ

=  Then 

<proof>  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

   

   

d dE H
d d

d dH H H
d d

d dE H E
d d

λ ψ λ λ ψ λ
λ λ

d
d
d

d

ψ λ λ ψ λ ψ λ λ ψ λ ψ λ λ ψ λ
λ λ λ

λ ψ λ ψ λ ψ λ λ ψ λ λ ψ λ ψ λ
λ λ

=

= + +

= + +

 

λ

( ) ( ) 1ψ λ ψ λ =  implies ( ) ( ) ( ) ( ) ( ) ( )0 d d
d d d

dψ λ ψ λ ψ λ ψ λ ψ λ ψ λ
λ λ

= = +  
λ

 
Theorem 3 (time-independent perturbation theorem, non-degenerate case): consider ( )0n  

is eigenket of ( ) ( ) ( )0 0 0
0 nH n E n=  with eigenvalue ( )0

nE  and assume ( )0n  is complete, say 
( ) ( )0 0I n n= . Assume spectrum of onsider perturbed problem 

(Eq. 30) 

0H  is non-degenerate, then c

( ) ( )
0 nH V n E nλ

λ λ
λ+ =  

n
λ

 and ( )
nE λ  are analytic over λ  We assume under following sense 

(Eq. 31) ( ) ( ) ( )0 1 22n n n n
λ

λ λ= + + +  
( ) ( ) ( )0 1 22

n n n n nE E λ λ∆ = − = ∆ + ∆ +  (Eq. 32) 
Then we have correction  

(Eq. 33) ( )1
n nV∆ = n  and ( )

( ) ( )

2
2

0 0
nk

n
k n n k

V
E E≠

∆ =
−

∑  

( ) ( )
( ) ( )

1 0
0 0

kn

k n n k

Vn k
E E≠

=
−

∑(Eq. 34)  and 

(Eq. 35) ( ) ( )
( ) ( )( ) ( ) ( )( )

( )
( ) ( )( )

2 0 0ln
20 0 0 0 0 0

kl nn kn

k n l n k nn k n l n k

V V V Vn k k
E E E E E E≠ ≠ ≠

= −
− − −

∑∑ ∑  

 
 


