Chapter 3

Given a set of data point {Vv;,v,,---,v,} € R" with N=2m is even, h:%, then the DFT

formula for {vj} is

(Eg.1) v —hz e v =W e‘"‘x"vj for k=—m+1---,m
j=1
(Eg. 2) VJ-=— Z e, for j=1,2,---,N
7T k=—m1
Remark 1: In fact we can write v, —Z—Ze W, since {g (x)=€*:k=12,--,N} is
ar=

orthogonal basis. However it is easy to show that

N+K)x; jkx

(ﬂmk( ) e =gl = ¢ ‘—gok( )thlsmeansthat (pmk( ) (pk( )forall

j=1,2,---,N. Inother words, in discrete set | ={1,2,---,N}, @, (1)=¢(1). We can use
another index set k=-m+1,---,m by k—>k—-N for k=N,N-1,---,m+1.
Prop 1: (1), (1) forms orthogonal basis (¢,,¢ ) = N&,,

(2 V, =V and ¥, =V, for {v;}eR" andthen ¥, eR

1 /. i~ 1 A . A
3) v, :E(VO+(—1) vm)+;kz_;(cos(kxj)Revk—sm(kx].)lmvk)
<proof> (g, ,) =ZN:e"‘X" (e"‘x" ) :ZN:1= N
i1 j=1
N ke (i N A i(k-1)h
(pom)=> e ‘(e ’) Ze' —z =z =0 where z=€*"" and Z" =1
= = 1 z-1

-h3e" [hze J

=1

Unax =V comes from ¢ (1)=g¢(1).
N . N .
V,=h>e™v, =hY (-1)'v, eR
j=1 j=1
Infact ¥, eR dueto g, (1)=(-1[1]-1[1]---1]1)

1 i ikx: ~ l imx; ~ 1 ot ikx: ~ kX: ~
vV, =— ey, = U +€™0 )+ == (€, re g
k — 272_ k k

- 27 2ria
; m-1
Zlﬂ(v +(-1)’ \7m)+%k2;(cos(kxj)Reﬁk—sin(kxj)lmvk)
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From Prop 1, we have V€ R, then we can re-write (Eq. 2) to be a symmetric form.

Consider v, = z e, =— z ey, +—€e™\,,, if we define ¥ =¥ =V, ., then
27 S 27
imx A i A il . . imx; A imx ~
™, =(-1)' ¥, =(-1)’ E(Vm +V,,)=€"V, +e ™V . Hence
1 ik A 1 T i 11 i~ 11 -
(Eq.3) v,=——PY =" > €+ —=™V +—-e™7,
2r 27 o) 27 2 27 2

m
Where P z g v, borrow the name of principal value, means symmetry operation.

k=—m
Remark 2: ¥, eR and €™ =(-1)' eR implies €™V, = Re(é”‘xjvm):cos(mxj)f/m but

d

g (e v, )Ix, —imé™V = im(—l)j v, ¢ R, this is because we ask band-limit interpolant must
X ]

be real-valued function, then di%(e”““ +e"™7 )_ —sin(mx)V¥,, € R. An alternative is to
X

m

take real part of d ( e™v )|X . However if we do so, then Rei( ™G )| =0 holds for
dx J dx

any data set v since vV, e R, thisisequivalenttoset v =0. Later we will discuss an
alternative method to find out V' by using FFT, at this time, we set v =0.

We develop a band-limited interpolant from (Eq. 3) which takes the form

(Eq. 4) p(x):%sz:e“‘x\?k for xe[0,27]
k=—m

Itis clear that v, = p(xi ) Moreover From Prop 1, we show trigonometric combination of v, ,

written as v, :ZL(OO +(-1)’ \A/m)+£§‘i(cos(kxj)Re\7k —sin(kxj)ImOk) If we write
T T k=1

(-1’ :cos(mxj), then v; e sp{1,cos(mx)} U sp{cos(kx),sin(kx):k=1,2,---,m-1} .

o _ 1, j=0(modN) -
Define discrete delta function o, = _ , then from (Eqg. 1), (5J) =h and
0, j=0(modN) k
green function G(x) correspondingto &, is definedas G(x :2i > € (Sj )k , then
T k=—m



-2 -2l e o]

2r k=-—m

m-1
= L{cos mx+1+ ZZcos kxj
2r k=1

m-1 m-1 m-1 m-1 -1 .
Zcoskx:ReZe"‘X:ReZZK=Re(zz j where z=¢€"
k=1 k=1 kel z-1

_Re[ ( 1)(e'x’2 e /2 } m[sin(m—lm)x—sin(x/z)]

h sin(mx)  sin(zx/h)

f 0.
Zﬂtan(x/Z) (Zﬂ/h)tan(xlz) or x#

Hence G(x)=

Of course, IimG(x)=G(O)=—PZ e, =1.
x—0 27[ Ke—m

Definition 1: band-limit interpolant of & is periodic sinc function S (x), defined by

sin(zx/h) 1 sin(mx) (sN(x)zziPieikx)
T k=—m

(2z/h)tan(x/2) 2mtan(x/2)

(Eq.5) Sy(x)=

sinc function 510 sinc function 520

| P i L i i 04 i L P I
D.4_4 - - - 7 - .

Figure 1: left panel is sinc function with N =10 and right panelis N = 20 . It is clear that support

becomes narrower when N inceases.

Remark 3: in the classical theory of Fourier series, Dirichlet kernel is define D, (x) = > €,

k=—m

we have

D, ()= 1 sin[(.m+1/2)x].
2m+1 2m+1  sin(x/2)

1 1
(Eq.6) D, (x)-Sy(x)= Dm(x)(2m+l——2m)+ 2erlcos.(mx)
dueto D, (X)=— (smmxcos +Cc0osMXsin Xj SINMX_ . cosmx
sm(x/2) 2 2 tan(x/2)



error = D10 - 520
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Figure 2: D, (x)-S,(x) for m=10, in fact wiggle

occurs.
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Table 1: measure D, (Xx)—S,(x) with L*~norm and L*-norm

m=10 m=20 m=40 m=380
L% —error 3.368E-2 1.727E-2 8.723E-3 4.399E-3
L” —error 5.06E-2 2.589E-2 1.31E-2 6.492E-3

From (Eq. 6), we can estimate L, —norm of D, (x)—S,(X)

L |Du(x)
g 2mH2m+1\

1L 1
2m+1 m

(Eq-7)  |Dw(x)-Su (¥, <

If we define inner product (g, f)zzij'” g"(x) f (x)dx, then
YT

D, (%) ,
2m+1

1
< -
L 2m

These two estimates provide first order convergence as you see in Table 1.

Jeos(ml, <7

(Eq-8) [D,(x)-Sy(%)

2m+1

N
If we write v, =) v, .5,_,=5*V, then

m=1
1 m on N
(Eq.9) p(x)=——P> €V => VS (x-x) and
2r k=1
the derivative is according to
(Eq. 10) w, =p'(x )= kaSN(x -%)

sin(zx/h)

(27 /h)tan(x/2) on [0,27]

Prop 2: direct compute directive of S ( )

0, j=0(modN)

(Eg. 11) S ()= %(_1)1 Cot(%j, j#0(modN)




<proof>for x=0, then S;(x):%cot(zjcos( j——sm (gj ( )

Using Taylor expansion to show S, (x)=1+0(x?), hence S (0

For simplicity we write (w;)

D; =(S§(Xj -

S
S
S

since S|, (X, ) =Sk (

DS:(SS'(xj—xk))=

0
s (n)
(2
S (3h)
5 (an)

)

(Dj)(v) where D, =S (x;—x,), for example,

x; ), formally we write

S(N-h) S(N-2h) S(N-3n) §(N-4h)]

0 S(N-h) S(N-2n) S(N-3)
s 0 S(N-n) S(N-2n)
$(zn) s 0 S(N-h)
S@0)  s@)  sh) o

We can use built-in function “toeplitz” to built toeplitz matrix
Let column=[0 §(h) S(2h) S(3n) S (4h)] and
row=[0 S (4h) §(3h) §(2h) S (h)]=column[1,(N:-1:2)], then

toeplitz( column, row ) ) ;

cond{D)
8 T

7ar

7t

6.5

13

66+

gl

45L

s

35+

3

Figure 3: condition number of D, for
N =10:155
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But N =162:200, cond(D,

L L
120 140 160

)=1 and cond (D, )=1.1580e+015, why?




sin(zx/h)

Prop 3: direct compute 2nd directive of S (x)= 2ein)an(x/2) on [0,27]
1 7 .
_E_SW, J—O(mOd N)

Ba.12) Si(x)=) Ly
——————, j=0(modN)
2sin?(jh/2)
<proof> we have shown 2—”8;, (x) :;{lsin xcos(zxj—isin(z xﬂ in Prop 1,
h sin?(x/2)| 2h h™) 27 {h
then using Taylor expansion,

1 h/(2x) r 1(7IJ3 3 5

= S (X)-§(0) |= —— | = +0O( x
X[S\l( )=Sil )] xsinz(xlz){{ 12h 6\ h ( )
then divide x* on denominator and nominator, and take limit x — 0.
Second, directly compute second derivative for x=0

S;,(x):—iw—lcot(xlz)sin(EXJ+LMSin(1xj
2 sin’(x/2) 2h h 47 sin®(x/2) h

Prop 4: direct compute 3rd directive of S (x)= E S;r;]()f;/(i)/z) on [0,27]
T

0, j=0(modN)

SN(3)(X'>_ i| 7’ 1 3 1 . .
Eqg. 13 ! 1) = il 2
(Eq. 13) (-1) 2 tan(hy/ )+ sin(j)COt (hj/2)|, j#0(modN)

<proof> we use symbolic toolbox in Matlab to obtain

S0 (x)= - z? cos(zx/h) 3z& sin(zx/h) L3z cos(zx/h) 3¢ cos(zx/h)
~2n tan(x/2)  2h tan®(x/2) tan®(x/2) 2 tan(x/2)

_ 3h&® sin(zx/h) . 5h&? sin(zx/h)  hE

——=2gj /h
7 tan*(x/2) 2z tan*(x/2) Zﬂsm(;zx )

where &= %sec2 (x/2)



1415 sin(1542 w)tan(1/2 x)

1/2 cos(15/2 ®)ftan(1/2 x)-1/15 sin(1542 x)Aan(1/2 x)2 (1/2+142 tan(1/2 x)zj

Figure 4: top-left: S, top-right: S ; bottom-left: S_"S,bottom-right: Sl(sa)

Example 1: we try two function, one is rough hat function

0, otherwise

Vhat:max(l,%|x—ﬂ|j: ;(X—ﬂ'), T—2<X<m, With

E(X—ﬂ'), TL<X<T+2

0, O<X<7m-2,m+2<x<27m
Vi, = _?l T-2<X<7®m . The other one is smooth function V =exp(sinx).
%, T<XL<T+2



function spectral derivative

Figure 5: spectral differentiation of a rough function and a smooth one. The smooth function gives

12-digit accuracy.

If we use FFT to find vj, then we have very close result (see Figure 6) same as Figure 5,
expect that when V = exp(sin x) in Figure 5, we have error 9.6878x10"* but in Figure 6,
error is 9.5679x107**, differ by 1.2x107**. In fact we can plot |V,
Voo = Vier | =2.94x107.

Vier |, see Figure 7, and

onv

Question 1: why different?

<ans> This is due to rounding error, since theoretically speaking, both methods produce the

same results.

Case 1: kernel method
m-1
(.):—sze'kx’\“/k L > ke vk+i(|me'mxl\7 —ime” vm)
ﬂk-(m-l) A7
(Eq. 14) L m
= z ke,
27 v
. 1., i ~ ~ 1 . . ~ 1 . .
Since —(ime ™ —ime ™I V. —sin(mhj)=Vv_—sin =
47r( ) " or ( J) " or (7”)
Case 2: FFT method
N
(Eq. 15) vk—hz Sl ZW” e"™v.  for k=-m+1,---,m

J
j=1 j=1

(Eq. 16) w, =~ o Z ikeg, with §_=0
k=—m+1

It is clear that (Eq. 14) is the same as (Eq. 16).



function spectral derivative

!

Figure 6: use FFT to find V;

. . ! !
Figure 7:error Vg — Veer| -

! !

Cov — VT |oo IS up to machine zero

Table 2: we use Matlab to show |V,

n 8 10 20 30

! !
|VConv —Veer |OO

8.88E-16 2.33E-15 6.21E-15 2.45E-14

Example 2: consider variable coefficient wave equation
(Eq.17) u +c(X)u, =0, c(x)=0.2+sin*(x-1) for xe[0,27],t>0

with initial condition u(x,0) :exp(—lOO(x—l)z)

Here we adopt leap-frog scheme for temporal discretization,
(n+1) (n-1)

Yj i (n) i—12...
(Eq. 18) AL = C(xj )(Du ),- for j=12,---,N
and extrapolate another initial condition, u(x,0)= exp(—lOO(x—O.ZAt —1)2), which is wave
backward with constant speed of 0.2. The result of spectral method is shown in Figure 8, note
that

1) u(x,O) has compact support, we may regard it as periodic function before wave touch the

boundary.




(2) From Figure 8, wave move faster at xe(2,4) and slower at xe(4,5), this is reasonable
since ¢(1+7/2)=c(257)=1.2 ismaximaand c(1+7)=c(4.14)=0.2 is minima.

Figure 8: solution of wave equation under spectral method.

Second we use finite difference leap frog scheme
u(n+1) u(n_l) (n) u(n)

: u’ —u
Eg.19) —— 71— _¢fx )22 for i=12,---,N
(Ea. 19) 2At ( ‘) 2AX :
with Dirichlet boundary data.

Since our data setis X, X,, -+, Xy =27, we set

W, =1
oy -
(Eg. 20) Dy, _m (um—uj_l), 1<j<N
0, j=N

This setting guarantees that u(2z,t)=u(27,0).
The result of (Eq. 19) is shown in Figure 9, spurious wave occurs.

Figure 9: solution of standard finite difference leap frog scheme, (Eqg. 19)

du(xj)zum—uj_l h? d®u J) h* d°u

In fact, — 5 (X )= :
d 2AX 6 dx 120 dx

x (%, )+O(h6), we can correct high order

10



derivative to improve finite difference (this may interpret artificial dispersion)

(n+l)_ (n—l) u(n)_u(n) hz d3 (n)
41 1 u
(Eq.21) :_c(xj){ i =Y

2At 20 6 dX (Xj)] for j=12N

3,,(n)

Here we can use spectral method to find v
X

(xj ) However this does not work, the solution

blows up. We correct one more term

(n+l)_ (_n’l) u(_n) _u(_n) h2 d3u(n) h4 d5u(n)
Eq.22) —— 1 =—¢(x ) 22— X )= ————(x.
e 2y U ) M ) S )

The result is shown in Figure 10, but one leading-edge curve (maybe dispersion) occurs, why?
(source code: F:\course\2008spring\spectral _method\matlab\p6_3.m)

Figure 10: leap frog with high order correction in
spatial derivative, (Eq. 22). As you see, there are
two extra curve (maybe dispersion), one is

leading to main stream, one is behind.

Example 3: we use spectral method to compute D,u and then we have
d :
(Eq. 23) a(uj )=—diag(c;)Du; where ¢, =c(x;)
This is O.D.E, we use Matlab command expm to compute fundamental solution exp(At)
where A=—diag(c;)D . Then modify (Eq. 23) as
(Eq. 24) u™ =exp(Aat)u"

We compute exp(AAt) only once since c(xj) is independent of time.

Table 3: compare leap-frog scheme (Eq. 18) and expm scheme (Eqg. 24). Time unit: second

N 128 256 512 1024
Time of leap frog | 0.2960 0.1570 0.4530 1.9680
Timing of expm 0.4540 1.9840 13.9220 164.3590

As we expect, exp(AAt) will consume large amount of time, though it is analytic formula in

ODE.

Example 4: claim solution of u, +c(x) u, =0 with periodic condition is periodic in time: for
certain T~13, u(xT)=u(x0) forall xe(0,27).

11




<sol> First due to periodic of c(x), we have

(Eq. 25) U, (t,x+27)+c(x+27)u, (t, x+27) = U (t, X+ 27 ) +c(X)u, (t, X+ 27)

If initial condition u(0,x)=u(0,x+27), then
U, +c(x)u, =0 U +c(x+27)u, =0

{u(x,o):g(x) {u(x+27r,0)=g(x)

Second consider characteristic curve x(t,s) of u +c(x)u, =0, starting from position

have the same solution.

se(0,2r), satisfying %=c(x),x(0)=s (from u(t,x(t))=const, then ut+%ux=0),
since c(x)=é+sin2(x—1)>é,we know Xx(t,s) is monotone increasing, so %=$
after X(T)=s+2x, we have c(x(T,s)):%+sin2(s+27r—1)=c(x(0,s)).

S+27 dt J-S+27z 1

s c(x)

We choose s=0 and use Symbolic integration in Matlab to solve

27 1 57[
Eq.26) T= dx = 27 /6 ~12.8255.
(Eq. 26) Io 1/5+sin*(x-1) 3

Table 4: compare u(x,T) and u(x,0)
(source code: F:\course\2008spring\spectral method\matlab\p6 5.m)

dx isindependent of s (thisisdueto 27— period of c(x) ).

n 32 64 128 256 512 1024

HU(X,T)—U(X,O)HDO 3.86E-1 7.52E-2 9.16E-3 2.36E-2 | 1.12E-2 | 1.56E-4

) 0007 -

=

0008 oo J oo ]

L% |

4 5 0 0 1 2 3 4 5 3 7

Figure 11: left panel is waterfall graph and right panel is U (X, T)—u(x,0)

Question 2: When v, = f(x].) for some smooth periodic function f (x)= f (x+27), what is
difference between f and p,thatis ||f — p|<? inwhat norm sense (here we are interested
in | | and | - | . ) Second, can we expect that p'(x].) is a good approximation to
t'(x; ), whatis |[f'—p] 2

12




<Ans> From lim HD -S, (X)HL =0, we have

m—oo

S (%)= f(x%) ifandonlyif D, *f(f,x)— f(x)

In order to estimate accuracy of spectral method, we consider infinite modes. Assume V e C”
is real-valued function, periodic with period 27, then

1 & s . 2 1l &2
(Eq. 27) V(x):g :z_web‘vk with V| :Ekzz_mvk
(Eq. 28) V, j )& ™ dx
Because V s real, we have \7_k:\7k* and
(Eq. 29) V(x):i\70 L i (ekxv ) i(cos )ReV, —sin(kx)lm\?k)
2 T k=1 T k=1
If we sample N points v, =V (x; ), with h—% then (Eq. 1) = Ze v, s

~ 2x .
nothing but a numerical integration to approximate V, :IO V(x) e "*dx.

N
However under such {vj},we have interpolant p, (x :—PZe"‘X\A/k ZVKSN(X—Xk)
The different between V (x) and p,(x) would be

V(x)-p,(x) =—ﬂPkZm "‘X(V vk)+4—(e’“"\/ +e™y ) 2ﬂ§eikx\7k for xe{x}
and V(xj)—pv(xj)=0.

2

- 1|~ \Y; 1 & A2
Eq. - 22 = V V JR— 111 R \/
€030 IV -pfi =5 TN+ Vo] gV S
We have assume V € C”, then we expect that
(Eq. 31) V'(x)=iiike"‘x\7k
27
N
=—Pz ke'*V, = > v S\ (x-
2r (S k=1
’ ' _ m i - ~ 1. ima s . _ima s 1 &. o
V'(x)- pv(x)_EP; |kekX<Vk_vk)+E(|mem’\/m—|me ”"‘\/_m)+5§]|kekka
m? ~ 2 2
2= k2N, —\7 _Ym ﬂ\? K2\
[V k;q ‘ V + 7[ m 2 +27r N 7Z'I<Z>r;w

Lemma 1: If V is periodic with period 27 and absolutely continuous, then

13



(Eq.32) V, j 'kde——j v ey

means that M‘ <

<proof> V, j 'kxdx_—klv() +—j v 'kxdx_—j v Wekgx

Another derivation

Vo= [V (e = [V (0)+ [V (1)t e max= [)7] [V (1) e

= v U e"kxdx}dt——j v [1—e‘”“]dt:m'[oﬂv(l)(t)e“k‘dt

Remark 4: above formula is result of Riemann-Lebesque theorem

_IZ” )& dx = j s (x+£}e‘ik(x+(”’k))dx: —J'ZH f (x+£je“‘xdx
k 0 Kk

So szl T (x) = f(x+z/k)]e™dx=Z [ 0 (c(x))e " dx
L1 (0 f (e k) e e 2 10

Question 3: Can we have other representation for \7k except (Eq. 32)?

Corollary 1: If v s periodic with period 2z for k=0,12,---,m, then

(Eq. 33) V, j -'kde_ j v (Me gy

<proof>Apply Lemmal m tlmes

Corollary 2:if V' isnot continuousat x=x, (i.e. V(% )#V (X)), then

V]

where [V] = V(%)-V (%) isjumpat x=x,,and

[V], = ( ) ( ) ( ) ( ).IfV is periodic, then
1

Eg. 35 v_ V] +=[7v0eigy for k=0
(Eq. 35) |k[]XO ik Jo

(Eq.34) V, = +—[V +—.|‘ vWedx  for k=0

0

<proof> decompose '[OZEV (x)e™dx= JOXOV( 'kxdx+j e dx and do integration by

parts twice for two integral.

1 7<x<2r . L )
Example 5: consider Heaviside function H ( ) 00 with periodic extension has
<X<T

two discontinuous point x=0, 7, then

14



e—ikﬂ 1

[H I Im[(—l)k —1} since
1) H( ) for x#0,7
(2) [H],=H(0")-H (22 )=0-1=-1 and [H]_ =H(z")-H(z )=1

A 1

From (Eq. 29), we have V (X) :%+lil((—l)k —1)sin(kx)
T

Question 4: What is geometrical interpretation of (Eq. 35)?
<ans> In Figure 11, we compute f Vsin(kx)dx, since V is discontinuous at x=0, as you
see in left panel of Figure 11, V ([-5,0])<0 and V([0,6])> 0, after multiply sin(kx), then

V sin(kx) l[-59>0 and Vsin (kx) lo.sy> 0 inright panel of Figure 11, when we do integration,

area of blue triangle ~hV (0") cannot cancel area of red triangle ~ h‘V(O’ )‘ , hence

J:V sin(kx)dx has at least h[V] = hV(0+)+ h‘V(O‘)‘ .

(1) ' sin() (2)

Figure 12: compute Im\7k oc r Vsin(kx) dx where V isdiscontinuousat X=0

Remark 5: graph in Figure 11 is spirit of Riemann-Lebesque theorem

fk:.f;”f() ey = j i (x+%} g Mxit/w) :—I ( j”‘xdx

:_f”[f x+7z/k)] e ¥ dx

Example 6: Consider V :|sin x| on [—71'7[] and periodic extension, then V is continuous
. ) ) COS X O<x<rm L. .
but does not differentiable at x=0, in fact V' :{ , V'el is piece-wise
—cosx —-m<x<0

smooth but does not continuous at x=0, x .

15



(1) From (Eq. 35), we have V, :—I v We g = j —V e dx

(2) Again from (Eq. 34) for ?V(l , We have
i

V, =1Fvﬂ>} il va} +ij Ly (gl
“Tiklik |, ik Lik | ik ik
2

- P((—1)k —1) —%IOZEV(Z)ei“dx

where V@ — -sinx O<x<rx
Clsinx  —7<x<0

Assume given smooth periodic function V , then from Fourier theory we have

V(x)=i2e"°‘\7k,now if we sample N point value {vjzv(xj):xj =hj,h=2—} over

27[ k=—o0

N
[0,27], then we obtain ¥, =h> €™ v, and band-limited interpolant
=1

1 R N
pv(x)z—P eV, = ZVkSN (x—
27[ k=—m k=1

N

First question is “how large v, -V, is?

N
Note from linearity of summation Z , we have
j=1

N ) © ~
(Eq.36) ¥, =h> e™ (Zi e'”‘xlva
j=L

7T oo

Here we assume summation can be interchanged (for example, Dini’s test), then

(Eq. 37) ¥ i [ Z"kxe'”“lj

=1

1
Prop 5: NZe‘”‘Xi -

j=1

1 if m=Np for some integer p
0 otherwise

<proof>Case 1: m=Np for some integer p,then mh=2zp
N N )

Y™ =3 e =N

j=1 j=1

Case 2. m= Np for anyinteger p

ZN: ZZJ _ 7t
=

—O where z=€é™ =1 and z" =™ =€*"=1

16



o N
We take ¥, = >V, (%Ze’m’(’j for example, from Prop 5

v, = i \7,\1p =V, +Zw:(VNp+V ) v, +ZZ Re( Np) in other words,
p=—o

(Veo)

Similarly we can apply the same argument to all vV, , then we have Lemma 2

‘vo —VO‘ <

< 22‘\7,\‘,)‘ . The largest dominant error is \7N :
p=1

Lemma 2: ‘\7 V‘<22‘ k+Np‘ for k=0,1,2,---,N-1

~

1 N j(m-k)x -
<proof> ¥, = ZV (N > el ’J Z Sontrp = ZVK+NP =V, + Z( onp Vi Np)
= p—

m=—c0 m=—o p=1

Corollary 3: when If v s periodic with period 2z for k=0,12,---,m, then Trapezoid

integration of J.OMV(X) dx with uniform grid is sprectral accuracy.

<proof> Trape20|d :gv + th +— v = th =V,, second equality comes from

periodicity of V ,i.e. V(0)=V(27z).Then ‘Trapezmd j de‘ U, -V, |.

Table 5: Dominant error of ‘Vk —\7k‘, leading term \7kiN

k 0 1 2 3 m-—1 m

\7k _Vk VN N+1? N+21 N+3? N+m-11 N+m?
Vi r: -1 2-N — 1\772 Vin r: 3 Vr:Hl r:

From above table, we know error of ‘Ok -V,

increases with respect with k.
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Appendix A Fourier series

Definition 2; for f e Ll[—ﬂ',ﬂ'] _then
A . 1 T .

1 — 1 NX — —|NX

() fo=(e™ f)=o—[ f(x)e"™ax

2 f~ Z f ™ s called Fourier series of f

n

3) S,(f,x)= z e* is called n-th partial sum of Fourier series of f

(4) D,( Z is called n-th Dirichlet kernel

(6) f,gel'[-z, x], periodicin 27, f>r<g(x)=2i . f(y)g(x-y)dy=g=*f(x), say
72' /2

convolution of f,g

Prop 6: properties for Dirichlet kernel D Z

< Zn:‘e‘kx‘SZnH and D,(0)=2n+1
k=—n

) 1=%J'””Dn(x)dx
D, ()],
(4) D,(x)=

1/2
sinf (n+1/2)x] for 0<|X <z and limD,(x)=D,(0)=2n+1
sin(x/2) x50

Prop 7: (1) f+e™=&™f (2) f *D, (X)=S,(f,x)
Theorem 1(Dini’s test): f e L'[-7, 7], S,(f,%)— (%) forsome constant f(x,) if

¢ (X) -
I:@dxmo forsome 0<d& <z where ¢, (t)=f (% +t)+f(x-1)-2f(x)

Corollary 4: f eC,then |f(x,+t)— f(x,)|<|f/ t.Hence S (f,%)— f(%)
Corollary 5: f is piece-wise smooth with finite jump discontinuities. If f has jump at x,,
then set f(xﬂ):%(f(xgﬁf(xo)),then g, (t)=F'(x)t=f'(x)t for x e(x,%+t),
X, €(%—1,%), then S, (f,%)— f(x).

Corollary 6(localization principle): f=0 on (x,—J,%+d),then S (f,x)—>0
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