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Given a set of data point { }1 2, , , N
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From Prop 1, we have , then we can re-write (Eq. 2) to be a symmetric form. ˆmv R∈
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We develop a band-limited interpolant from (Eq. 3) which takes the form 

(Eq. 4) ( ) 1 ˆ
2

m
ikx

k
k m

p x e v
π =−

= Ρ ∑   for [ ]0,2x π∈  

It is clear that ( )jv p x= j . Moreover From Prop 1, we show trigonometric combination of , 
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Definition 1: band-limit interpolant of δ  is periodic sinc function ( )NS x , defined by 
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Figure 1: left panel is sinc function with 10N =  and right panel is 20N = . It is clear that support 

becomes narrower when  inceases. N

 

Remark 3: in the classical theory of Fourier series, Dirichlet kernel is define , 

we have 
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Figure 2: ( ) ( )m ND x S x−  for m , in fact wiggle 

occurs. 

10=

 

Table 1: measure ( ) (m N )D x S x−  with 2L norm−  and L norm∞ −  

 10m =  20m =  40m =  80m =  
2L error−  3.368E-2 1.727E-2 8.723E-3 4.399E-3 

L error∞ −  5.06E-2 2.589E-2 1.31E-2 6.492E-3 

From (Eq. 6), we can estimate  of L norm∞ − ( ) ( )m ND x S x−  
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These two estimates provide first order convergence as you see in Table 1. 
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Prop 2: direct compute directive of ( ) ( )
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<proof> for , then 0x ≠ ( ) 21 cot cos sin sin
2 2 4 2N

x h xS x x x
h h
π π

π
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. 

Using Taylor expansion to show ( ) ( )21NS x O x= + , hence ( )0 0NS′ = . 

 

For simplicity we write ( ) ( )( )j jkw D v= k  where ( )jk N j kD S x x′= − , for example,  

( )( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5 5 5 5

5 5 5

5 5 5 5 5 5
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Since , formally we write  ( ) (N j N N jS x S x±′ ′=

( )( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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′ ′ ′ ′ −⎢ ⎥

⎢ ⎥′ ′ ′ ′⎣ ⎦

3
2  

We can use built-in function “toeplitz” to built toeplitz matrix 
Let ( ) ( ) ( ) ( )5 5 5 50 2 3 4column S h S h S h S h′ ′ ′ ′⎡ ⎤= ⎣ ⎦  and  

( ) ( ) ( ) ( ) ( )5 5 5 50 4 3 2 1, : 1:row S h S h S h S h column N′ ′ ′ ′⎡ ⎤= =⎣ ⎦ 2⎡ ⎤−⎣ ⎦ , then  
toeplitz( column, row ) ) ; 

Figure 3: condition number of  for ND
10 :155N =  

 

But , 162 : 200N = ( ) 1Ncond D =  and ( )160 1.1580e+015cond , why? D =
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Prop 3: direct compute 2nd directive of ( ) ( )
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 in Prop 1, 

then using Taylor expansion,  
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then divide 3x  on denominator and nominator, and take limit . 0x →
Second, directly compute second derivative for 0x ≠  
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Prop 4: direct compute 3rd directive of ( ) ( )
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sin /
2 / tan / 2N

x h
S x

h x
π

π
=  on [ ]0,2π  

(Eq. 13) 
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⎢ ⎥⎣ ⎦⎩
)  

<proof> we use symbolic toolbox in Matlab to obtain 
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π πξ ξ ξ π
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where ( )21 sec / 2
2

xξ =  

 6



 

 

Figure 4: top-left: , top-right: ; bottom-left: , bottom-right: 15S 15S ′ ''
15S ( )3

15S  

 
Example 1: we try two function, one is rough hat function 

( )

( )

0,    otherwise
1 1max 1, ,   2
2 2

1 ,   2
2

hatV x x

x x

xπ π π

π π π

⎧
⎪
⎪−⎪⎛ ⎞= − = − − <⎨⎜ ⎟

⎝ ⎠ ⎪
⎪ − < < +⎪⎩

π< ,  with 

0,      0 2, 2 2
1,   2

2
1 ,     2
2

hat

x x

V x

x

π π π

π π

π π

⎧
⎪ < < − + < <
⎪−⎪′ = − < <⎨
⎪
⎪ < < +⎪⎩

. The other one is smooth function . ( )exp sinV x=
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Figure 5: spectral differentiation of a rough function and a smooth one. The smooth function gives 

12-digit accuracy. 

 
If we use FFT to find jv′ , then we have very close result (see Figure 6) same as Figure 5, 

expect that when ( )p sinV x=  in Figure 5, we have error 139.6878 10ex −×  but in Figure

error is 9.5679 1× 141.2 10

 6, 

0− , differ by 13 −× . In fact we can plot Conv FFTv v′ ′− , see Figure 7, and 
140Convv v 2.94 1FFT
−

∞
′′ − = ×

Question 1: why different?

g error, since theoretically speaking, both methods produce the 

 method  

(Eq. 14)  

.  

 

<ans> This is due to roundin
same results. 
Case 1: kernel

( )
( )

( )

( )

1

1

1

1

1
j k

1 1ˆ ˆ ˆ ˆ
2 2 4

1 ˆ          
2

j j j j

j

m m
ikx ikx imx imx

k m m
k m k m

m
ikx

k
k m

p x′ = Ρ ike v ike v ime v ime v

ike v

π π π

π

−
−

−
=− =− −

−

=− −

= + −

=

∑ ∑

∑
 

Since ( ) ( ) ( )1 1ˆ ˆ ˆ ˆsin sin 0
4 2 2

j jimx imx
m m m mime v ime v v mhj v jπ1

π π π
−

−− = = . =

: FFT method Case 2

1 1

2ˆ
N

ikx
k jv h e−= ∑ j j

N
ikx

j
j j

v e v
N
π −

= =

= ∑   for m1, ,k m= − + "  (Eq. 15) 

(Eq. 16) 
1

1 ˆ
2

j
m

ikx
j k

k m
w ik

π =− +
∑� e v  with ˆ 0mv =  

It is clear that (Eq. 14) is the same as (Eq. 16).  
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Figure 6: use FFT to find  jv′
 

Conv FFTv v′ ′− . Figure 7: error 

 

Conv FFTv v
∞

′ ′−  Table 2: we use Matlab to show is up to machine zero 

8 10 20 30 n  

Co′ nv FFTv v
∞

′−  8E-16 E-15 E-15 E-14 8.8 2.33 6.21 2.45

 
xample 2: consider variable coefficient wave equation E

(Eq. 17) ( ) 0t xu c x u+ = , ( ) ( )20.2 sin 1c x x= + −   for [ ]0,2 , 0x tπ∈ >  

with initia ,  l condition 0 exp 100 1u x x= − −

og scheme for temporal discretization,  

( ) ( )( )2

Here we adopt leap-fr

(Eq. 18) 
( ) ( )

( ) ( )( )
1 1n n

j j nu u
c x Du

+ −−
= −   for 1, 2, ,j N

2 j jt∆
= "   

and extrapolate another initial condition, ( ) ( )( )2,0 exp 100 0.2 1u x x t= − − ∆ − , which is wave 

e result of spectral method is shown in Figure 8, note 

x  has compact support, we may regard it as periodic function before wave touch the 
dary. 

backward with constant speed of 0.2 . Th
that  
(1) ( )u ,0
boun
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(2) From Figure 8, wave move faster at ( )2, 4x∈  and slower at ( )4,5x∈ , this is reasonable 

since  is maxima and ( ) ( )1 / 2 2.57 1.2c cπ+ = = ( ) ( )1 4.14c cπ+ = = 0.2  is minima. 

Figure 8: solution of wave equation under spectral method. 

 
Second we use finite difference leap frog scheme 

(Eq. 19) 
( ) ( )

( )
( ) ( )1 1

1

2 2

n n n
j j j

j

u u u u
c x

t x

+ −
+− −

= −
∆ ∆

1
n

j−   for 1, 2, ,j N= "    

with Dirichlet boundary data.  
 
Since our data set is 1 2, , , 2Nx x x π=" , we set  

(Eq. 20) 
( )

( )

( ) ( )( )
2

1 1

,          1
1 ,    1

2
0,      

n

n n
h j j j

u j

D u u u j N
x

j N
+ −

⎧ =
⎪⎪= − <⎨∆ ⎪

=⎪⎩

<  

This setting guarantees that ( ) ( )2 , 2 ,0u t uπ π= . 
The result of (Eq. 19) is shown in Figure 9, spurious wave occurs. 

Figure 9: solution of standard finite difference leap frog scheme, (Eq. 19) 
 

In fact, ( ) ( ) ( ) ( )
2 3 4 5

1 1 6
3 52 6 120

j j
j j

u udu h d u h d u
jx x x

dx x dx dx
+ − O h
−

= − − +
∆

, we can correct high order 
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derivative to improve finite difference (this may interpret artificial dispersion) 

(Eq. 21) 
( ) ( )

( )
( ) ( ) ( )

( )
1 1 2 3

1 1
32 2 6

n n n n n
j j j j

j j

u u u u h d uc x x
t x d

+ −
+ −

⎡ ⎤− −
= − −⎢ ⎥

∆ ∆⎢ ⎥⎣ ⎦x
  for 1, 2, ,j N= "    

Here we can use spectral method to find 
( )

( )
3

3

n

j
d u x
dx

. However this does not work, the solution 

blows up. We correct one more term 

(Eq. 22) 
( ) ( )

( )
( ) ( ) ( )

( )
( )

( )
1 1 2 3 4 5

1 1
3 52 2 6 120

n n n n n n
j j j j

j j

u u u u h d u h d uc x x x
t x dx dx

+ −
+ −

⎡ ⎤− −
= − − −⎢ ⎥

∆ ∆⎢ ⎥⎣ ⎦
j    

The result is shown in Figure 10, but one leading-edge curve (maybe dispersion) occurs, why? 
(source code: F:\course\2008spring\spectral_method\matlab\p6_3.m ) 

Figure 10: leap frog with high order correction in 

spatial derivative, (Eq. 22). As you see, there are 

two extra curve (maybe dispersion), one is 

leading to main stream, one is behind. 

 
 
Example 3: we use spectral method to compute  and then we have xD u

(Eq. 23) ( ) ( )j j
d u diag c Du
dt

= − j   where ( )j jc c x=   

This is O.D.E, we use Matlab command expm to compute fundamental solution ( )exp At  

where ( )jA diag c D= − . Then modify (Eq. 23) as 

(Eq. 24) ( ) ( ) ( )1 expn nu A t+ = ∆ u

)

 

We compute (exp A t∆  only once since ( )jc x  is independent of time.  

Table 3: compare leap-frog scheme (Eq. 18) and expm scheme (Eq. 24). Time unit: second 

N 128 256 512 1024 
Time of leap frog 0.2960 0.1570 0.4530 1.9680 
Timing of expm 0.4540 1.9840 13.9220 164.3590 

As we expect, ( )exp A t∆  will consume large amount of time, though it is analytic formula in 

ODE. 
 
Example 4: claim solution of ( ) 0t xu c x u+ =

),0

 with periodic condition is periodic in time: for 

certain ,  for all 13T ≈ ( ) (,u x T u x= ( )0,2x π∈ .  
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<sol> First due to periodic of ( )c x , we have 

(Eq. 25) ( ) ( ) ( ) ( ) ( ) ( ), 2 2 , 2 , 2 , 2t x tu t x c x u t x u t x c x u t xxπ π π π+ + + + = + + + π

)
 

If initial condition ( ) (0, 0, 2u x u x π= + , then  

( )
( ) ( )

0

,0
t xu c x u

u x g x

⎧ + =⎪
⎨

=⎪⎩
  and  have the same solution. 

( )
( ) (

2 0

2 ,0
tu c x u

u x g x

π

π

⎧ + + =⎪
⎨

+ =⎪⎩ )
x

Second consider characteristic curve ( ),x t s  of ( ) 0t xu c x u+ = , starting from position 

(0,2s )π∈ , satisfying ( ) ( ), 0dx c x x s
dt

= =  (from ( )( ),u t x t const= , then 0t x
dxu u
dt

+ = ), 

since ( ) ( )21 1sin 1
5 5

c x x= + − > , we know ( ),x t s  is monotone increasing, so 
( )
1dt

dx c x
= , 

after ( ) 2x T s π= + , we have ( )( ) ( ) (( )21, sin 2 1 0
5

c x T s s c x sπ= + + − = ), . 

( )
2 2 1s s

s s

dtT dx
dx c x

π π+ +
= =∫ ∫ dx  is independent of  (this is due to s 2 periodπ −  of ( )c x  ). 

We choose  and use Symbolic integration in Matlab to solve  0s =

(Eq. 26) 
( )

2

20

1 5 6 12.8255
1/ 5 sin 1 3

T dx
x

π π
= =

+ −∫ ≈

)

. 

Table 4: compare  and u x  ( ,u x T ( ),0
(source code: F:\course\2008spring\spectral_method\matlab\p6_5.m ) 
n 32 64 128 256 512 1024 

( ) ( ), , 0u x T u x
∞

−  3.86E-1 7.52E-2 9.16E-3 2.36E-2 1.12E-2 1.56E-4 

 

Figure 11: left panel is waterfall graph and right panel is ( ) ( ), ,u x T u x− 0  
 

 
Question 2: When ( )jv f x= j  for some smooth periodic function ( ) ( 2f x f x )π= + , what is 

difference between  and , that is f p ?f p− <  in what norm sense (here we are interested 

in 
,

  
I ∞

⋅ and 2,
  

I l
⋅  ). Second, can we expect that ( )jp x′  is a good approximation to 

( )jf x′ , what is 
I

f p′ ′− ?  
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<Ans> From ( ) ( )lim 0m N Lm
D x S x ∞

→∞
− =

0

, we have  

( ) ( )0NS x f x→  if and only if ( ) ( )0 0,mD f f x f x∗ →  

____________________________________________________________________ 
 
In order to estimate accuracy of spectral method, we consider infinite modes. Assume V C∞∈  
is real-valued function, periodic with period 2π , then  

(Eq. 27) ( ) 1 ˆ
2

ikx
k

k

V x e V
π

∞

=−∞

= ∑   with 2

22 1 ˆ
2 kL

k

V V
π

∞

=−∞

= ∑  

(Eq. 28)  ( )
2

0
ˆ ikx
kV V x e

π −= ∫ dx

Because  is real, we have V ˆ ˆ
k kV V ∗

− =  and  

(Eq. 29) ( ) ( ) ( ) ( )( )0 0
1 1

1 1 1 1ˆ ˆ ˆ ˆRe cos Re sin Im
2 2

ikx
k k

k k

V x V e V V kx V kx V
π π π π

∞ ∞

= =

= + = + −∑ ∑ k̂  

If we sample  points N ( )jv V x= j , with 2h
N
π

= , then (Eq. 1)  is 

nothing but a numerical integration to approximate . 

1

ˆ ˆ j
N

ikx
k k

j
V v h e v−

=

≈ = ∑ j

dx( )
2

0
ˆ ikx
kV V x e

π −= ∫

However under such { }jv , we have interpolant ( ) ( )
1

1 ˆ
2

m N
ikx

v k k N
k m k

p x e v v S x x
π =− =

= Ρ = −∑ ∑ k  

The different between  and ( )V x ( )vp x  would be  

( ) ( ) ( ) ( )1 1 1ˆ ˆ ˆ
k̂ˆ

2 4 2

m
ikx imx imx ikx

v k k m m
k m k m

V x p x e V v e V e V e V
π π π

∞
−

−
=− >

− = Ρ − + + +∑ ∑ {  for }jx x∈  

and . ( ) ( ) 0j v jV x p x− =

(Eq. 30) 2

2 2
2 22 ˆ ˆ1 1 1 1ˆ ˆ ˆˆ

2 2 2 2 2 2
m m

v k k m mL
k m k m

v vV p V v V V V
π π π π

∞
−

−
< >

− = − + − + − +∑ ∑ k̂  

We have assume V C∞∈ , then we expect that  

(Eq. 31) ( ) 1 ˆ
2

ikx
k

k
V x ike V

π

∞

=−∞

′ = ∑    

( ) ( )
1

1 ˆ
2

m N
ikx

k k N
k m k

p x ike v v S x x
π =− =

′ ′= Ρ = −∑ ∑ k  

( ) ( ) ( ) ( )1 1 1ˆ ˆ ˆˆ
2 4 2

m
ikx imx imx ikx

v k k m m
k m k m

V x p x ike V v ime V ime V ike V
π π π

∞
−

−
=− >

′ ′− = Ρ − + − +∑ ∑ k̂  

2

2 22 22 22 2 2ˆ ˆ1 1ˆ ˆ ˆˆ
2 2 2 2 2 2

m m
v k k m mL

k m k m

v vm mV p k V v V V k V
π π π π

∞
−

−
< >

′ ′− = − + − + − +∑ ∑ k̂  

 
Lemma 1: If  is periodic with period V 2π  and absolutely continuous, then  
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(Eq. 32) ( ) ( )2 2 1

0 0

1ˆ ikx ikx
kV V x e dx V e dx

ik
π π− −= =∫ ∫  

means that ( )
1

11
k̂ L

V V
k

≤  

<proof> ( ) ( ) ( ) ( )2 2 1 12
00 0

1 1 1ˆ |ikx ikx ikx ikx
kV V x e dx V x e V e dx V e dx

ik ik ik
π ππ− − −−

= = + =∫ ∫
2

0

π −∫  

Another derivation 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 21 1

0 0 0 0 0

2 2 2 21 1

0 0 0

ˆ 0

1 1   1

x xikx ikx ikx
k

ikx ikt ikt

t

V V x e dx V V t dt e dx V t dt e dx

V t e dx dt V t e dt V t e dt
ik ik

π π π

π π π π

− −

− −

⎡ ⎤ ⎡= = + =⎢ ⎥ ⎢⎣ ⎦ ⎣
−⎡ ⎤ ⎡ ⎤= = − =⎣ ⎦⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ 1

−

−

⎤
⎥⎦  

Remark 4: above formula is result of Riemann-Lebesque theorem 

( ) ( )( )
( )

( )2 2 / 2/

0 / 0
ˆ k ik x kikx ikx
k k

f f x e dx f x e dx f x e dx
k k

π π π ππ

π

π π− − +− −

−

⎛ ⎞ ⎛ ⎞= = + = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ ∫  

So ( ) ( ) ( ) ( )( )2 2 1

0 0

1ˆ /
2 2

ikx ikx
kf f x f x k e dx f c x e dx

k
π πππ − −⎡ ⎤= − + =⎣ ⎦∫ ∫  

Question 3: Can we have other representation for  except (Eq. 32)? k̂V

 

Corollary 1: If ( )kV  is periodic with period 2π  for 0,1, 2, ,k m= " , then  

(Eq. 33) ( )
( )

( )2 2

0 0

1ˆ mikx ikx
k mV V x e dx V e dx

ik

π π− −= =∫ ∫  

<proof> Apply Lemma 1  times m
 

Corollary 2:if  is not continuous at V 0x x=  (i.e. ( ) ( )0V x V x0
+ −≠ ), then  

(Eq. 34) [ ] [ ] ( )
0

0

2 1
0 0

1 1ˆ
ikx

ikx
k x

eV V V V e
ik ik ik

π−
−= + + ∫ dx    for 0k ≠  

where [ ] ( ) ( )
0

0x
V V x V x+= − 0

−  is jump at 0x x= , and 

[ ] ( ) ( ) ( ) ( )0
0 0 0 2V V V V V π+ − += − = − − . If  is periodic, then  V

(Eq. 35) [ ] ( )
0

0

2 1

0

1ˆ
ikx

ikx
k x

eV V V e
ik ik

π−
−= + ∫ dx     for 0k ≠  

<proof> decompose  and do integration by 

parts twice for two integral. 

( ) ( ) ( )0

0

2

0 0

xikx ikx ikx

x
V x e dx V x e dx V x e dx

π − −= +∫ ∫ ∫
2π −

 

Example 5: consider Heaviside function ( )
1   2
0   0

x
H x

x
π π

π
< <⎧

= ⎨ < <⎩
 with periodic extension has 

two discontinuous point 0,x π= , then  
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[ ] [ ] ( )0

1 1ˆ 1 1
ik

k
k x

eH H H
ik ik ik

π

π

−

=
⎡ ⎤= + = −⎣ ⎦−  since  

(1)  for ( ) 0H x′ = 0,x π≠  

(2) [ ] ( ) ( )0
0 2 0 1H H H π+ −= − = − = 1−  and [ ] ( ) ( ) 1

x
H H H

π
π π+ −

=
= − =  

From (Eq. 29), we have ( ) ( )( ) ( )
1

1 1 1 1 1 sin
2

k

k

V x kx
kπ

∞

=

= + − −∑  

 

Question 4: What is geometrical interpretation of (Eq. 35)? 

<ans> In Figure 11, we compute , since  is discontinuous at , as you 

see in left panel of Figure 11,  and 

( )sinV kx d
π

π−∫ x V 0x =

( )[ ,0] 0V δ− < ( )[0, ] 0V , after multiply , then 

 and V k  in right panel of Figure 11, when we do integration, 

area of blue triangle  cannot cancel area of red triangle 

δ >

x δ >

( )sin kx

( ) [ ],0sin | 0V kx δ− > ( ) [ ]0,sin | 0

( )0hV +∼ ( )0h V −∼ , hence 

 has at least ( )sinV kx d
π

π−∫ x [ ] ( ) ( )0
0 0h V hV h V+ −= + .  

( )sin kx

( )V x

( ) ( )sinV x kx
( )V x

(1) (2)

Figure 12: compute  where V  is discontinuous at x  ( )ˆIm sinkV V kx
π

π−
∝ ∫ dx = 0

 

Remark 5: graph in Figure 11 is spirit of Riemann-Lebesque theorem 

( ) ( )( )
( )

( )2 2 / 2/

0 / 0
ˆ k ik x kikx ikx
k k

f f x e dx f x e dx f x e dx
k k

π π π ππ

π

π π− − +− −

−

⎛ ⎞ ⎛ ⎞= = + = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ ∫  

So ( ) ( )
2

0

1ˆ /
2

ikx
kf f x f x k e dx

π
π −⎡ ⎤= − +⎣ ⎦∫  

 
Example 6: Consider sinV x=  on [ ],π π−  and periodic extension, then  is continuous 

but does not differentiable at , in fact 

V

0x =
cos          0

cos     0
x x

V
x x

π
π
< <⎧′ = ⎨− − < <⎩

,  is piece-wise 

smooth but does not continuous at 

1V L′∈

0,x π= . 
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(1) From (Eq. 35), we have ( ) ( )2 21 1

0 0

1 1ˆ ikx ikx
kV V e dx V e dx

ik ik
π π− −= =∫ ∫  

(2) Again from (Eq. 34) for ( )11 V
ik

, we have  

( )

( )( ) ( )

2 2(1) (1)

0
0

2 2
2 2 0

1 1 1 1 1ˆ

2 1   1 1

ik
ikx

k

k ikx

eV V V V e
ik ik ik ik ik ik

V e dx
k k

π π

π

π

−
−

−

⎡ ⎤ ⎡ ⎤= + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= − − −

∫

∫

dx
 

where ( )2 sin      0
sin     0

x x
V

x x
π

π
− <⎧

= ⎨
<

− < <⎩
 

__________________________________________________________________________ 
 
Assume given smooth periodic function , then from Fourier theory we have V

( ) 1 ˆ
2

ikx
k

k

V x e V
π

∞

=−∞

= ∑ , now if we sample  point value N ( ) 2: ,j j jv V x x hj h
N
π⎧ ⎫= = =⎨ ⎬

⎩ ⎭
 over 

[ ]0,2π , then we obtain  and band-limited interpolant  
1

ˆ j
N

ikx
k

j
v h e v−

=

= ∑ j

( ) ( )
1

1 ˆ
2

m N
ikx

v k k N
k m k

p x e v v S x x
π =− =

= Ρ = −∑ ∑ k

k

 

First question is ”how large  is? ˆˆkv V−

Note from linearity of summation , we have  
1

N

j=
∑

(Eq. 36) 
1

1 ˆˆ
2

j j
N

ikx imx
k m

j m
v h e e V

π

∞
−

= =−∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑  

Here we assume summation can be interchanged (for example, Dini’s test), then  

(Eq. 37) 
1

1ˆˆ j j
N

ikx imx
k m

m j
v V e e

N

∞
−

=−∞ =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑  

Prop 5: 
1

1    if    for some integer 1
0    otherwise

j
N

imx

j

m Np p
e

N =

=⎧
= ⎨
⎩

∑  

<proof> Case 1: m Np=  for some integer p , then 2mh pπ=  

2

1 1

j
N N

imx i pj

j j
e e π

= =

= =∑ ∑ N  

Case 2:  for any integer m Np≠ p  

1 1

1 0
1

j

NN N
imx j

j j

ze z z
z= =

−
= = =

−∑ ∑  where 1imhz e= ≠  and z e 2 1N imhN i me π= = =  
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We take 0
1

1ˆˆ j
N

imx
m

m j
v V e

N

∞

=−∞ =

⎛ ⎞
= ⎜

⎝ ⎠
∑ ∑ ⎟

)

 for example, from Prop 5 

, in other words, ( ) (0 0 0
1 1

ˆ ˆ ˆ ˆ ˆ ˆˆ 2 ReNp Np Np Np
p p p

v V V V V V V
∞ ∞ ∞

−
=−∞ = =

= = + + = +∑ ∑ ∑

( )0 0
1 1

ˆ ˆˆ 2 Re 2Np Np
p p

v V V V
∞ ∞

= =

− ≤ ≤∑ ∑ ˆ . The largest dominant error is .  N̂V

Similarly we can apply the same argument to all , then we have Lemma 2 ˆkv
 

Lemma 2: 
1

ˆ ˆˆ 2k k k Np
p

v V V
∞

+
=

− ≤ ∑  for 0,1, 2, , 1k N= −"  

<proof> ( ) ( )
1 1

1ˆ ˆ ˆ ˆ ˆˆ j
N

i m k x
k m m m k Np k Np k k Np k Np

m j m p p
v V e V V V V V

N
δ

∞ ∞ ∞ ∞
−

− = + + −
=−∞ = =−∞ =−∞ =

⎛ ⎞
= = = = +⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ ∑ ˆ+  

Corollary 3: when If ( )kV  is periodic with period 2π  for 0,1, 2, ,k m= " , then Trapezoid 

integration of  with uniform grid is sprectral accuracy. ( )
2

0
V x dx

π

∫

<proof> ( )
1

0
1 1

ˆ
2 2

N N

j N j
j j

h hTrapezoid V v h v v h v v
−

= =

= + + = =∑ ∑ 0 , second equality comes from 

periodicity of , i.e. V ( ) ( )0 2V V π= . Then ( )
2

0 00
ˆˆTrapezoid V Vdx v V

π
− = −∫ . 

 

Table 5: Dominant error of ˆˆk kv V− , leading term k̂ NV ±  

k 0  1 2 3 1m−  m  
ˆˆk kv V−  N̂V  1N̂V + , 

 1 1
ˆ ˆ

N NV V ∗
− −=

2N̂V + , 

2 2
ˆ ˆ

N NV V ∗
− −=

3N̂V + , 

3 3
ˆ ˆ

N NV V ∗
− −=

1N̂ mV + − ,  

 
N̂ mV + ,  

m̂V ∗  1m̂V ∗
+

From above table, we know error of ˆˆk kv V−  increases with respect with . k
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Appendix A  Fourier series 
 
Definition 2: for [ ]1 ,f L π π∈ − , then  

(1) ( )1ˆ ,
2

inx inx
nf e f f x e d

π

π
x

π
−

−
= = ∫  

(2) ˆ inx
n

n

f f e
∞

=−∞
∑∼  is called Fourier series of  f

(3)  is called n-th partial sum of Fourier series of  ( ) ˆ,
n

ikx
n

k n
S f x f e

=−

= ∑ k f

(4)  is called n-th Dirichlet kernel ( )
n

ikx
n

k n

D x e
=−

= ∑

(5) [ ]1,f g L ,π π∈ − , periodic in 2π , ( ) ( ) ( ) ( )1
2

f g x f y g x y dy g f x
π

ππ −
∗ = − = ∗∫ , say 

convolution of  ,f g
 

Prop 6: properties for Dirichlet kernel ( )
n

ikx
n

k n

D x e
=−

= ∑  

(1) ( ) 2
n

ikx
n

k n
D x e n

=−

≤ ≤∑ 1+  and ( )0 2n 1D n= +  

(2) ( )11
2 nD x dx

π

ππ −
= ∫  

(3) ( ) 2 2 1n L
D x m= +  

(4) ( )
( )
( )

sin 1/ 2
sin / 2n

n x
D x

x
⎡ ⎤+⎣ ⎦=  for 0 x π< <  and ( ) ( )

0
lim 0 2 1n nx

D x D n
→

= = +  

 
Prop 7: (1) ˆinx inx

nf e e f∗ =  (2) ( ) ( ),n nf D x S f x∗ =  
 
Theorem 1(Dini’s test): [ ]1 ,f L π π∈ − , ( ) ( )0,nS f x f x→

�
0  for some constant ( )0f x

�
 if  

( )
0

0

x x
dx

x
δ φ

< ∞∫  for some 0 δ π< <  where ( ) ( ) ( ) (
0 0 0 2x t f x t f x t f xφ = + + − −

�
)0  

 

Corollary 4: 1f C∈ , then ( ) ( )0 0f x t f x f t
∞
′+ − ≤ . Hence ( ) (0 0,nS f x f x→ )  

Corollary 5:  is piece-wise smooth with finite jump discontinuities. If  has jump at f f 0x , 

then set ( ) ( ) ( )( )0 0
1
2 0f x f x f x+= +

�
− , then ( ) ( ) ( )

0 1 2x t f x t f xφ ′ ′= − t  for ( )1 0 0,x x x t∈ + , 

( )2 0 0,x x t x∈ − , then ( ) ( )0 0,nS f x f x→
�

. 

Corollary 6(localization principle): 0f =  on ( )0 0,x xδ δ− + , then  ( )0, 0nS f x →
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