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Preliminary: Chebyshev node and diff. matrix   [1]
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Preliminary: Chebyshev node and diff. matrix   [2]
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Preliminary: Chebyshev node and diff. matrix   [3]

Let  ( )p x be the unique polynomial of degree   with   N≤ ( )1 0p ± = and  ( )j jp x v=

define    0 j N≤ ≤( )j jw p x′′= and  ( )j jz p x′= for  

, then impose B.C.   We abbreviate    2
Nw D v= ⋅ ( )1 0p ± = ,that is,   0 0Nv v= =
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Asymptotic behavior of spectrum of Chebyshev diff. matrix

2
NDIn chapter 10, we have showed that spectrum of Chebyshev differential matrix 

(second order) approximates 

with  eigenmode
2

2

4k kπλ = −( ),   1 1,   B.C. 1 0xxu u x uλ= − < < ± =

Eigenvalue of 2
ND is negative (real number) and 4
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2

2
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ND2

Since ppw is too small such that 

resolution is not enough

Mode N is spurious and localized near 
boundaries 1x = ±



Preliminary: DFT        [1] 

Given a set of data point  { }1 2, , , N
Nv v v R∈ with   2N m= is even,  

2h
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Preliminary: DFT        [2] 

Direct computation of derivative of   ( ) ( )
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Preliminary: DFT        [3] 

( ) ( )
( )

( )
( ) ( )

2

2
2

2

1            0 mod    
6 3

1
,   0 mod

2sin / 2

jN j

j N
h

S x
j N

jh

π⎧
− − =⎪
⎪= ⎨ −⎪− ≠⎪⎩

For second derivative operation    ( ) ( ) ( ) ( )2 2

1 1
,

N N

j j k N j k N k
k k

w p x v S x x D j k v
= =

′′= = − ≡∑ ∑

second diff. matrix is explicitly defined by using Toeplitz matrix (command in MATLAB) 
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Preliminary: DFT        [4] 

corresponding to eigenvector     Eigenvalue of Fourier differentiation matrix     ND is     k ikλ =
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How to deal with boundary conditions

• Method I: Restrict attention to interpolants that satisfy the boundary 
conditions.

Example: chapter 7. Boundary value problems 

( )4 ,    1 1,   1 0x
xxu e x u= − < < ± =Linear ODE: 

( ),    1 1,   1 0u
xxu e x u= − < < ± =Nonlinear ODE: 

( ),    1 1,   1 0xxu u x uλ= − < < ± =Eigenvalue problem: 

( )( )10sin 8 1 ,    1 , 1,   0  on boundaryxx yyu u x y x y u+ = − − < < =Poisson equation: 

( )2 , ,    1 , 1,   0  on boundaryxx yyu u k u f x y x y u+ + = − < < =Helmholtz equation: 

• Method II: Do not restrict the interpolants, but add additional 
equations to enforce the boundary condition.



Recall linear ODE in chapter 7

( )4 ,   1 1,   1 0x
xxu e x u= − < < ± = ( ) ( )( )41 sinh 4 cosh 4

16
xu e x= − −with exact solution

0 1x =1x2x03x4x51 x− =
xChebyshev nodes:

( )j jp x u=( )p x be unique polynomial of degree N≤ ( )1 0p ± =with andLet 1

for 1 1j N≤ ≤ − Method I

( )j jw p x′′= forSet 1 1j N≤ ≤ −2
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Inhomogeneous boundary data     [1]

( ) ( )4 ,    1 1,   1 0,   1 1x
xxu e x u u= − < < − = =

Method I

( )p x be unique polynomial of degree N≤ ( ) ( )1 0,  1 1p p− = = andwithLet 

( )j jp x u= 1 1j N≤ ≤ −

1

for

( )j jw p x′′=Set for 1 1j N≤ ≤ −2
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Inhomogeneous boundary data   [2]

( ) ( )4 ,    1 1,   1 0,   1 1x
xxu e x u u= − < < − = =

Method of homogenization
1

2S
xu +

= ( ) ( )1 0,   1S Su u 1 H Su u u= +satisfies − = = , decompose , then
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2

4
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H H
d u e x u
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Solution under N = 16

1 :u

2 :u method of homogenization 

method I directly 

2 1 7.5336 15u u E− = −

method I is good even for 
inhomogeneous boundary data 

( ) ( )( )41 1sinh 4 cosh 4
16 2

x xu e x +
= − − +exact solution



Mixed type B.C.     [1]

( ) ( )4 ,    1 1,   1 0,   1 0x
xx xu e x u u= − < < − = =

Method I

( )p x be unique polynomial of degree N≤ ( ) ( )1 0,    1 0xp p− = = andwithLet 

( )j jp x u= 1 1j N≤ ≤ −

1

for How to do?

2 ( )Set j jw p x′′= 1 1j N≤ ≤ −for

Method II
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2
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Mixed type B.C.     [2]

Set ( )j jz p x′=3 , we add one more constraint (equation) ( )1 0Nz p′= − =
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from interior point

from Neumann condition

N since the method works for  5N =byIn general, replace 5



Mixed type B.C.     [3]

( ) ( )4 ,    1 1,   1 0,   1 1x
xx xu e x u u= − < < − = =

( )( )4 4 41 4 1
16

xu e e x e−= − − −exact solution

Solution under N = 16



Allen-Cahn (bistable equation)     [1]
3,    1 1t xxu u u u xε= ⋅ + − − < <Nonlinear reaction-diffusion equation:

ε is a parameterwhere

1 This equation has three constant steady state, 0,  1,  1u u u= = − =
3

tu u u( consider ODE = − 3 0u u, equilibrium occurs at zero forcing )− =

1u = ±is unstable and is attractor.0u =2

( )2 2 22 1d u u u
dt

= −( )2 21tuu u u= −3
tu u u= −

( )
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0 0

dx x x
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x

⎧ = −⎪
⎨
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2:x u= is Logistic equation.
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2

2

0
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1 1 0

t

t

xcex t c
ce x

= =
+ −

( )0 0x >( )lim 1
t

x t
→∞

= for

0dx
dt

> ( ) 1x t( )1 0 0x> > ⇒ ⇒
0 : unstablex ≡

0dx
dt

< ( ) 1x t( )1 0x< ⇒ ⇒



Allen-Cahn (bistable equation)     [2]

( )21tu u u= −

( )1 0 0u> > ⇒ 0du
dt

> ⇒ ( ) 1u t

( )1 0u< ⇒ 0du
dt

< ⇒ ( ) 1u t
0 : unstableu ≡

( )0 0 1u> > − ⇒ 0du
dt

< ⇒ ( ) 1u t −

( )1 0u− > ⇒ 0du
dt

> ⇒ ( ) 1u t −

for

3 Solution tends to exhibit flat areas close to 1u = ± , separated by interfaces 

That may coalesce or vanish on a long time scale, called metastability.

interface

( ), 1 1u t x = ± = ±boundary value:



Allen-Cahn : example 1       [1]

( ) ( )3,    1 1,   1 1,   1 1t xxu u u u x u uε= ⋅ + − − < < − = − =

0.01ε = ( ) 30 0.53 0.47sin
2

u t x xπ⎛ ⎞= = + −⎜ ⎟
⎝ ⎠

with parameter and initial condition

Method I

( )p x be unique polynomial of degree N≤ ( ) ( )1 1,    1p p 1 andwith − = − =Let 

( )j jp x u= 1 1j N≤ ≤ −

1

for

2 Set ( )j jw p x′′= 1 1j N≤ ≤ −for
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4w

= ( )2 1: 4,1: 4ND
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4u

+ ( )2 1: 4,0ND − ( )2 1: 4,5NDor say 



Allen-Cahn : example 1       [2]

Temporal discretization: forward Euler with CFL condition ( )4min 0.01,  50 /dt N ε−=

2
ND 4

max 0.048Nλ ≈ − )( eigenvalue of is negative (real number) and
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4u
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3
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0 1u =

5 1u = −
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−
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One can simplify above equation by using equilibrium of 1u = ± at boundary point.
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1
dt − + −=



Allen-Cahn : example 1       [3]

( ) ( )3,    1 1,   1 1,   1 1t xxu u u u x u uε= ⋅ + − − < < − = − =

0.01ε = ( ) 30 0.53 0.47sin
2

u t x xπ⎛ ⎞= = + −⎜ ⎟
⎝ ⎠

with parameter and initial condition

Solution under N = 20

interface

( ), 1 1u t x = ± = ±boundary value:

followed by   Metastability up to  45t ≈

rapid transition to a solution with     

just one interface.     



Allen-Cahn : example 2       [1]

( ) ( ) ( )3 2,    1 1,   1, 1,   1, 1 sin / 5t xxu u u u x u t u t tε= ⋅ + − − < < − = − = +

0.01ε = ( ) 30 0.53 0.47sin
2

u t x xπ⎛ ⎞= = + −⎜ ⎟
⎝ ⎠

with parameter and initial condition

Method I

( ) ( ) ( )21 1,    1 1 sin / 5p p t− = − = +( )p x be unique polynomial of degree N≤ withLet 

and ( )j jp x u= 1 1j N≤ ≤ −

1

for

2 Set ( )j jw p x′′= 1 1j N≤ ≤ −

1u

2u

3u

4u

for

( )1k +

= ( )2 1: 4,0 : 5NDε ⋅

1u

2u

3u

4u

( )2
0 1 sin / 5ku t= +

5 1u = −

( )k
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+
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−
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4u

( )k
3
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4u
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−

dt

( ) ( )1 2
0 11 sin / 5k

ku t+
+= +Second, set 



Allen-Cahn : example 2       [2]

However we cannot simplify as following form  

1
dt

1u
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4u

0u

5u

( )1k +
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( )k
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0
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0
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⎜ ⎟⋅⎜ ⎟
⎜ ⎟
⎝ ⎠
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5u

( )k
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3u

4u

0u

5u

( )k
3

−+

since  ( ) ( )21, 1 sin / 5u t t= + is NOT an equilibrium.  

Method II

( )j jp x u=( )p x be unique polynomial of degree N≤ forwithLet 0 j N≤ ≤1

Set ( )j jw p x′′=2 for 0 j N≤ ≤

( )2
0 1 sin / 5 ,  1Nu t u= + = −3 Neglect  0 ,  Nu u 2 , and resetcomputed from 



1
dt
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4u
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5u

( )1k +
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NDε ⋅
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( )k
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Allen-Cahn : example 2       [3]

Step 1:  

( ) ( ) ( )1 12
0 11 sin / 5 ,  1k k

k Nu t u+ +
+= + = −Step 2:  

Solution under N = 20, method II

Final interface is moved from 

and  0x = to  0.4x ≈ −

30t

transients vanish earlier at 

≈ instead of  45t ≈

0.01dt = and  2tplot =



Allen-Cahn : example 2       [4]

graph concave up  0xxu⇒ >

0 1u> > − ⇒ ( )21 0u u u− < − <

( )21 0t xxu u u uε= ⋅ + − >

Threshold is  

? 

0xxu uε ⋅ − ≥

0.2x =In fact we can estimate trend of transient at point 

( ) ( )0.5 0.5
0.2 5

0.2xu x + − −
= ≈ = and  ( ) ( )0.2 0.2 5x xu x u x− += ≈ − = = −

( ) ( ) ( )0.2 0.2
0.2 50

0.2
x x

xx

u u
u

+ −−
≈ = , then  ( )0.2 0.5xxuε ⋅ ≈ but  ( )2

0.21 | 0.375xu u =− ≈ −



Laplace equation        [1]

0,   1 , 1xx yyu u x y+ = − < < ( )subject to B.C.

( )

( )

4sin       1    1 0
1, sin 3    1
5
0,                  otherwise  

x y and x

u x y y x

π

π

⎧ = − < <
⎪
⎪= =⎨
⎪
⎪⎩

x

y
01 y=

1y

2y

3y

4y

51 y− =
5x 4x 3x 2x 1x 0x

1− 1

( )4sin xπ

( )1 sin 3
5

yπ

0

boundary data 
is continuous 

( ) ( ) (
1

,
, 1

,
N

i j i j
i j

)P x y u p x p y
−

=

= ∑
and

Let be unique polynomial, ( ) ,,i j i jP x y u=

1 , 1i j N≤ ≤ −

1

2

for

Method I

Set ( ), ,i j i jw P x y= ∆ 1 , 1i j N≤ ≤ −

(interior point) ( ), .i jP x y B C= 0,   0,i N or j N. for = =

for

Briefly speaking, method I take active variables as

However method 1 is not intuitive to write down linear system if we choose Kronecker-product  



Laplace equation        [2]

Method II

( ) ( ) ( )
1

,
, 1

,
N

i j i j
i j

P x y u p x p y
−

=

= ∑ ( ) ,,i j i jP x y u= forbe unique polynomial,1 Let 

(all points) 0 ,i j N≤ ≤

x

y

01 y=

1y

2y

3y

4y

51 y− =
5x 4x 3x 2x 1x 0x

1− 1

Set 1 , 1i j N≤ ≤ −for( ), ,i j i jw P x y= ∆ (interior points) 2

Additional constraints (equations) for boundary condition. 3

, . .i ju B C= for 0,   0,i N or j N= =

method II take active variables as

Technical problem: 
1. How to order the active variables 

2. How to build up linear system (matrix) 
(including second derivative and additional 
equation) 

3. How to write down right hand side vector 



Laplace equation : order active variable       [3]

MATLAB use column-major, so we index active variable by column-major 

x

y

01 y=

1y

2y

3y

4y

51 y− =
5x 4x 3x 2x 1x 0x

1− 1

x

y

01 y=

1y

2y

3y

4y

51 y− =
5x 4x 3x 2x 1x 0x

1− 1

6
5

4

3

2

1

12

11

10

9

8
7

18

17

16

15

14
13

24

23

22

21

20
19

30

29

28

27

26
25

36

35

34

33

32
31

( ) ( )0 1 2 3 4 5| | | | | 1| 0.809 | 0.309 | 0.309 | 0.809 | 1T Tx x x x x x x= = − − − y xand =

column-major 



Laplace equation : order active variable    [4]



Laplace equation : find boundary point       [5]



Laplace equation : find boundary point       [6]

b is index set of boundary points, if we write down 
equations according to index of active variables, then we 
can use index set b to modify the linear system.

0x
0x
1x
2x
3x
4x
5x

1x 2x 3x 4x 5x

Chebyshev differentiation matrix:

(second order) 



Laplace equation : construct matrix       [7]

( )6 , 2kron I D ( )62,kron D I

Definition: Kronecker product is defined by

11 12 1

12 22 2

1 2

n

n

m m mn

a B a B a B
a B a B a B

A B

a B a B a B

⎛ ⎞
⎜ ⎟
⎜ ⎟⊕ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

⇒ ( ) ( )6 6, 2 2,w kron I D kron D I u Lu⎡ ⎤= + ≡⎣ ⎦

Set 1 , 1i j N≤ ≤ −for2 ( ), ,i j i jw P x y= ∆ (interior points) 

( ), ,i j i jw P x y= ∆



Laplace equation : construct matrix       [8]

Additional constraints (equations) for boundary condition. 3

, . .i ju B C= for 0,   0,i N or j N= =

w Lu= on boundary points by   , . .i ju B C=We need to replace equation of 

Index of boundary points

( ),: T
kL k e→ for   k b∈

such that    ( )( ) ( ),: T
k kLu k L k u e u u= = = (boundary point)   

where    ( ) ( )4 1 4 4size b N N= − + =

four corner points   

each edge has N-1 points   



Laplace equation : right hand side vector       [9]

( )Boundary data:

( )

( )

4sin       1    1 0
1, sin 3    1
5
0,                  otherwise  

x y and x

u x y y x

π

π

⎧ = − < <
⎪
⎪= =⎨
⎪
⎪⎩

1    1 0y and x= − < <

x

y

01 y=

1y

2y

3y

4y

51 y− =
5x 4x 3x 2x 1x 0x

1− 1

6
5

4

3

2

1

12

11

10

9

8
7

18

17

16

15

14
13

24

23

22

21

20
19

30

29

28

27

26
25

36

35

34

33

32
31

identify 



Laplace equation : right hand side vector       [10]

( )Boundary data:

( )

( )

4sin       1    1 0
1, sin 3    1
5
0,                  otherwise  

x y and x

u x y y x

π

π

⎧ = − < <
⎪
⎪= =⎨
⎪
⎪⎩

1x =identify 

x

y

01 y=

1y

2y

3y

4y

51 y− =
5x 4x 3x 2x 1x 0x

1− 1

6
5

4

3

2

1

12

11

10

9

8
7

18

17

16

15

14
13

24

23

22

21

20
19

30

29

28

27

26
25

36

35

34

33

32
31



Laplace equation : results       [11]

Solution under N = 5, method II

Solution under N = 24, method II ( )

( )

( )

4sin       1    1 0
1, sin 3    1
5
0,                  otherwise  

x y and x

u x y y x

π

π

⎧ = − < <
⎪
⎪= =⎨
⎪
⎪⎩



Wave equation        [1]

,   3 3,   1 1tt xx yyu u u x y= + − < < − < <
( )
( ) ( )

, 1, 0             Neumann in 

3, , 3, ,   Periodic in 
yu x t y

u y t u y t x

⎧ ± =⎪
⎨

− =⎪⎩
subject to B.C.

Separation of variables leads to 

Fourier discretization in xPeriodic B.C. in x-coordinate  1 ⇒

2 Chebyshev discretization in y, we must deal with Neumann B.C.

3 Leap-frog formula in time  

ttu uλ= Leap-frog ( ) ( ) ( )

( )
( )

1 1

2
2n n n

nu u u u
t

λ
+ −− +

=
∆

( ) ( )2 4,0tλ ∆ ∈ −

2
ND 4

max 0.048Nλ ≈ −eigenvalue of (chebyshev diff. matrix) is negative and

,N fD (Fourier diff. matrix) is  ,k ikλ =eigenvalue of / 2 1, , / 2 1k N N= − + −

( )2
max / 2 1Nλ = − −2

,N fDeigenvalue of (Fourier diff. matrix) is negative and

Hence stability requirement of  tt xx yyu u u= + ( ) ( )2 240.048 / 2 1 4y xN N t⎡ ⎤is + − ∆ ≤⎣ ⎦

2 2 4

9
1 5 /y x y

t
N N N

∆ ≈
+ ( author chooses  2

5

y x

t
N N

∆ =
+

)  



Wave equation        [2]

Fourier discretization in xPeriodic B.C. in x-coordinate  1 ⇒

( ) ( )1 2 3 4 5 6| | | | | 2, 1,0,1,2,3x x x x x x x= = − −

2 Chebyshev discretization in y

( ) ( )0 1 2 3 4 5| | | | | 1| 0.809 | 0.309 | 0.309 | 0.809 | 1T Ty y y y y y y= = − − −

Method II

Let ( )p y be unique polynomial of degree N≤ ( )j jp y u= 0 yj N≤ ≤forwith1

Set ( )j jw p y′′= 0 yj N≤ ≤for2

3 replace  ( ) ( )0, ,  ,
yNu x y u x y 2computed from by  Neumann B.C. 

( ) ( )
0

,: ,: 0
y y

y
N N N

D u x D u x⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

yND =Chebyshev diff. matrix 



Wave equation: order active variable        [3]

x
0x 1x 2x 3x 4x 5x 6x

01 y=

1y

2y

3y

4y

51 y− =

y

x

0x 1x 2x 3x 4x 5x 6x
3− 3

01 y=

1y

2y

3y

4y

51 y− =

21

y

1−

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

2− 03− 3211−2− 0

column-major 

( ),i ju x y as vector ( )vec uIn this example, we don’t arrange but keep in 2-dimensional form 

( ), ,i j i ju u x y= , the same arrangement of xx and yy generated by meshgrid(x,y) say 



Wave equation: action of Chebyshev operator         [4]

2
yND =Chebyshev 2nd diff. matrix 

0y
0y

1y

1y 2y

2y

3y

3y

4y

4y

5y

5y

x

0x 1x 2x 3x 4x 5x 6x
3− 3

0y
1y

2y

3y

4y

5y

21

y

1−

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

2− 0

1,0 2,0 3,0 4,0 5,0 6,0

1,1 2,1 3,1 4,1 5,1 6,1

1,2 2,2 3,2 4,2 5,2 6,22

1,3 2,3 3,3 4,3 5,3 6,3

1,4 2,4 3,4 4,4 5,4 6,4

1,5 2,5 3,5 4,5 5,5 6,5

yN

u u u u u u
u u u u u u
u u u u u u

D
u u u u u u
u u u u u u
u u u u u u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⋅⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

2
yND ⋅

( ), ,i j i ju u x y= index ( i,j ) is logical index according to index of ordinates x, y



Wave equation: action of Fourier operator         [5]

2
xND =Fourier 2nd diff. matrix 

1x 2x 3x 4x 5x 6x
1x

2x
3x

4x
5x

6x

x

0x

1x

2x

3x

4x

5x

6x

0y1y2y3y4y5y

y

123456

789101112

131415161718

192021222324

252627282930

313233343536

2
xND ⋅

1,0 2,0 3,0 4,0 5,0 6,0

1,1 2,1 3,1 4,1 5,1 6,1

1,2 2,2 3,2 4,2 5,2 6,22

1,3 2,3 3,3 4,3 5,3 6,3

1,4 2,4 3,4 4,4 5,4 6,4

1,5 2,5 3,5 4,5 5,5 6,5

x

T

N

u u u u u u
u u u u u u
u u u u u u

D
u u u u u u
u u u u u u
u u u u u u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⋅⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

( )2
x

T

ND⋅Take transpose 



Wave equation: action of operator         [6]

1,0 2,0 3,0 4,0 5,0 6,0

1,1 2,1 3,1 4,1 5,1 6,1

1,2 2,2 3,2 4,2 5,2 6,2

1,3 2,3 3,3 4,3 5,3 6,3

1,4 2,4 3,4 4,4 5,4 6,4

1,5 2,5 3,5 4,5 5,5 6,5

u u u u u u
u u u u u u
u u u u u u

U
u u u u u u
u u u u u u
u u u u u u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Let active variable be , then operator for Laplacian is

( )2 2
x x

T

N ND D=xx yyu u+ 2 2
x yN NLU U D D U≡ ⋅ + ⋅

Combine with Leap-frog formula in time 

( ) ( ) ( )

( )
( )

1 1

2
2k k k

kU U U LU
t

+ −− +
=

∆
tt xx yyu u u= +

where initial condition is Gaussian pilse traveling rightward at speed 1 

( ) ( ) ( )( )20 2, ,0 exp 8 1.5U u x y x y⎡ ⎤= = − + +⎢ ⎥⎣ ⎦
( ) ( ) ( )( )21 2, , exp 8 1.5U u x y t x t y− ⎡ ⎤= −∆ = − + ∆ +⎢ ⎥⎣ ⎦

( ), 1, 0yu x t± =Question: how to match Neumann boundary condition



Wave equation: Neumann B.C. in y-coordinate         [7]

3 replace  ( ) ( )0, ,  ,
yNu x y u x y computed from 2

( )

by  Neumann B.C. 

( )
0

,: ,: 0
y y

y
N N N

D u x D u x⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

( ):,
yND U x=

We require ( ) ( )
0

:, :, 0
y y

y
N N N

D U x D U x⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

,0

,1

,2

,3

,4

,5

8.5 10.4721 2.8944 1.5279 1.1056 0.5 0
0.5 1.1056 1.5279 2.8944 10.4721 8.5 0

i

i

i

i

i

i

U
U
U
U
U
U

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− − −⎛ ⎞ ⎛ ⎞

=⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

or say for 1 6i≤ ≤



Wave equation: Neumann B.C. in y-coordinate         [8]

,1

,0 ,2

,5 ,3

,4

8.5 0.5 10.4721 2.8944 1.5279 1.1056
0.5 8.5 1.1056 1.5279 2.8944 10.4721

i

i i

i i

i

U
U U
U U

U

⎛ ⎞
⎜ ⎟− − −⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎜ ⎟⎜ ⎟
⎝ ⎠

,1

,0 ,2

,5 ,3

,4

i

i i
BC

i i

i

U
U U

M
U U

U

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟
⎝ ⎠

18.5 0.5 10.4721 2.8944 1.5279 1.1056
0.5 8.5 1.1056 1.5279 2.8944 10.4721BCM

−− − −⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

or say 

where written as

Procedure of wave equation simulation

( ) ( )0 1,U U −Given 
( ) ( ) ( )

( )
( )

1 1

2
2k k k

kU U U LU
t

+ −− +
=

∆
Step 1: time evolution by Leap-frog

( ) ( ) ( ) ( )1 11, 1 ,  :  2 : ,  :  k k
y BC yU N M U N+ +⎡ ⎤+ =⎣ ⎦Step 2: correct boundary data

( ) ( )1
1, 1 , 1, 1 1, 1 ,2 :

y yBC N y y N y yM D N N D N N
−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦where 



Wave equation: result         [9]

Solution under   50,   15x yN N= = , method II

( )24

3 0.0547
0.048 / 2 1y x

t
N N

∆ = =
+ −

2

5 0.0182
x y

t
N N

∆ = =
+

( )24

2 0.0365
0.048 / 2 1y x

t
N N

∆ = =
+ −

Theoretical optimal value is   (see exercise 13.4)   



Exercise 13.2       [1]

The lifetime   ( )T ε of metastable state depends strongly on the diffusion constant   ε

( )T ε = ( ),u x tThe value of t at which first becomes monotonic in x.  

( ) ( )3,    1 1,   1 1,   1 1t xxu u u u x u uε= ⋅ + − − < < − = − =

0.01 ( ) 30 0.53 0.47sin
2

u t x xπ⎛ ⎞= = + −⎜ ⎟
⎝ ⎠

with parameter and initial conditionε =

( )0.01 47.36T =

( ) 30 0.53 0.47sin
2

u t x xπ⎛ ⎞= = + −⎜ ⎟
⎝ ⎠

1 what is graph of ( )T ε

2 Asymptotic behavior of ( )T ε

as 0ε →



Exercise 13.2       [2]

( )min 0.1927T ε =

( )max 47.36T ε =

(1) Resolution is adaptive and

(2) Monotone under tolerance     1. 7E −


