Chapter 13 More about Boundary conditions

Speaker: Lung-Sheng Chien

Book: Lloyd N. Trefethen, Spectral Methods in MATLAB



Preliminary: Chebyshev node and diff. matrix [1]
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Preliminary: Chebyshev node and diff. matrix [2]

Given N+1 Chebyshev nodes , X; :cos(%j and corresponding function value V;

(%)

We can construct a unique polynomial of degree  , called p(x)=).V,

M-
<
n

1 k=j . .
S — IS a basis.
(%) {o K

N N
P'(x)=>v,SY(x)=>DMv, where differential matrix D é(Di,-N) is expressed as

j=0 j=0
L e Y\ G SN -
_ == - N = , for 1=12,---,N-1
Do —6 y NN 6 i (1_ ij ) J
c (-1)" o 2 i=0,N
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C; X —X 1 otherwise

N

with identity D' =- > D/

j=0,j=#i

Second derivative matrix is D} =D, - D,




Preliminary: Chebyshev node and diff. matrix [3]
Let p(X) be the unique polynomial of degree <N with p(irl):O and p(xj):vj
define w; = p’(x;) and z = p/(x;) for 0<j<N
We abbreviate W=D; -v , thenimpose B.C. p(£1)=0 ,thatis, V,=Vy =0

In order to keep solvability, we neglect W, =W, ,thatis, [Slfl — D,fl (1; N-11:N _1)

~
Chwe ) 4 ) v, 3— zero
neglect —— 0
W Vi
W2 5 Vz
L Dy :
W1 VN1
lect W N | +— zero
neglect —{ Wy L PR b

Similarly, we also modify differential matrix as Dy = Dy, (1:N-11:N-1)



Asymptotic behavior of spectrum of Chebyshev diff. matrix

In chapter 10, we have showed that spectrum of Chebyshev differential matrix [N)IfI

(second order) approximates

2

u, =4Au, —l<x<1, B.C.u(£l)=0 with eigenmode A, =—7Z7k2

1 Eigenvalue of Ij,f, is negative (real number) and | A__ ~—0.048N"

Since ppw is too small such that

resolution is not enough

Mode N is spurious and localized near —

boundaries x=+1

gigerny alus

2

Large eigenmode of |j|§l does not approximate to A, = —% k®
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Preliminary: DFT [1]

2r
Given a set of data point  {\,V,,-+,Vy, } € R" with N =2m is even, h:W

Then DFT formula for {Vj}

:—Zv exp( lkx) for k=—m—m+1---, m-1m

Definition: band-limit interpolant of & —function, is periodic sinc function S, ()

SN(x)éLP S sin(zx/h) _1 sin(mx)
2r = (2z/h)tan(x/2) 2mtan(x/2)
N
If we write V, —Z:V5J «=0*V  then p(X ——ﬂPZe Ve =2 VS (X=%)
k=—m k=1

Also derivative is according to W, ( ) ZVkSV( )



Preliminary: DFT [2]
sin(zx/h)

Direct computation of derivative of S (x)= 22/ an(x/2) , we have
z/h)tan(x
0 j=0(modN)
S(\Il) (Xj ) =11

E(—1)j cot(%j, j#0(modN)

Example: D, :(Sél) (xj —xk)) -

is a Toeplitz matrix.

1 z°

— s j=0(modN)
Q2 6 3h
Second derivative is Sy (X,-)=< (_1)1
- , j#0(modN)
| 2sin®(jh/2)




SO (%)=

N
For second derivative operation W, = p”(xj ) = kas(f) (xj — xk) =
k=1

| 2sin?(jh/2)

Preliminary: DFT

[3]

1 :
_E_:f? j=0(modN)
j
(1) , j#0(modN)

N
k:

1

> D& (k)

second diff. matrix is explicitly defined by using Toeplitz matrix (command in MATLAB)

. —csc?(2h/2)/2

.
Symmetry property: D} :(D,fl)

(
—csc?(2h/2)/2 -

. 1
=toeplitz| ———
P 6

‘N

22 (_1)2.

3h? ’Zsinz((lz

N

~1)h/2)



Preliminary: DFT [4]

Eigenvalue of Fourier differentiation matrix D, is 4, =ik corresponding to eigenvector

o =exp(ike) for k=—N 9. N_1 and 1=0 has multiplicity 2
2 2

S{j’( )__ f ) L[ime.m(xx _irm—im(x—xj):|

7z'k -m-1 Ar
k=0
N m-1 ~ ~ ~
v S (x=x)v == ZI ke, +— me™g_<ime ™.
j=1 27
k=0
N (1) m-1
> Dywv=) S ()g—xj)vj_— > ke,
j=1 27 o

k=0

when Vfl(eiox) and V=€™ we have D,v=0



How to deal with boundary conditions

 Method I: Restrict attention to interpolants that satisfy the boundary
conditions.

Example: chapter 7. Boundary value problems

Linear ODE: U, =€, —-1<x<l1, U(il)=0

Nonlinear ODE: U, =€", -1<x<1, u(£l)=0
Eigenvalue problem: U, =AU, —-1<x<1, u(£l)=0
Poisson equation: Uy, +U,, =10sin (8x(y—1)), ~1<x,y<1 u=0 onboundary

Helmholtz equation: u, +u,, +k*u=f(xy), —1<xy<1 u=0 onboundary

 Method II: Do not restrict the interpolants, but add additional
equations to enforce the boundary condition.



Recall linear ODE in chapter 7

u :e4x

XX

1 ]
, —l<x<1, u(+1)=0 with exact solution U= E(e“ —xsinh(4)—cosh (4))

Chebyshev nodes: ] 4 | ] "
-l=x% X, x 0 % X %=1

1 Let P(X) be unique polynomial of degree <N with p(+1)=0 and p(X,-)=U,-

for 1<j<N-1 Method |

2 Set szp"(Xj) for 1< j<N-1

Cwe ) 4 N U, +— zero
neglect —— 0
W, U
W, . 5 U,
W, o DN U,
W, u,
u
neglect —»{ W | L ) U D Z€ero

D =D?(1:N-11:N-1)



Inhomogeneous boundary data [1]

u, =€”, —l<x<1, u(-1)=0, u(l)=1
Method |
1 Let P(X) be unique polynomial of degree <N with p(-1)=0, p(1)=1 and

IO(X,-)=U,- for 1<j<N-1

2 Set szp"(Xj) for 1< j<N-1

c
o

TJ
H

4 A N

neglect —»

c

N

w

EEEES

D

C| o c C

(8)]

neglect —{ —— Zero

=

or say =Dy (1:41:4) | ° |+ DZ(1:4,0)

£ & E =



Inhomogeneous boundary data [2]

u, =€, -1l<x<1 u(-1)=0, u(l)=1

Method of homogenization

_ X+l atisfies Us(-1)=0, ug(1)=1, decompose U=U, +Us , then

u
> 2

d2

FUH =e¥, -1<x<1 u,(£1)=0 which can be solved by method |
X

Solution under N = 16

max err = 1.261e-010 U, method | directly
1 I I I I I I I I I
: : : . . . . . , U, : method of homogenization

] R Ghhiy GUREEt EESCLREEERERES s Rt s

2 PO S SN N S O AR SN SN S SO Huz - UlH =7.5336E-15
DR B S A A N R B B A method | is good even for

. I S N A S S N SR N S inhomogeneous boundary data
) I T T A N TR S st R

-1 -08 L6 04 02 0 0.2 0.4 0B 0.8 1

exact solution U= %(e‘”‘ — Xsinh (4) —cosh (4)) + XTH



Mixed type B.C. [1]

u, =% —l<x<1, u,(-1)=0, u(1)=0
Method |

1 Let P(X) be unique polynomial of degree <N with p.(-1)=0,| p(1)=0 and

p(xi):uj for 1< j<N-1 How to do?

2 Set szp"(Xj) for 1< j<N-1

Method Il
1| Let p(X) be unique polynomial of degree <N with p(1)=0 and

p(Xj)=Uj for 1< <N easy to do

2 Set w=p’(x) for I<j<N-1

4 ) C RN pu— Zero
neglect—» % | | g
W, U
W2 uz
— D2
W, N Us
W4 u4
lect W, Us
neglec — s I | RS 4




Mixed type B.C. [2]

3 Set z = p’(xj) , we add one more constraint (equation) 2z, = p’(—l) =0

”zo\ [ ) (uod—zero
Z U
Z, U
23 - DN U3
Z4 u4
» u5

.
Active variable (U, |U,|U;|u,|us)  with governing equation

U f;
u f
DZ (1:4,1:5)) * ?
D _ U; | = fs
\ (5,1.5)
u, f,
U, P from Neumann condition

In general, replace 5 by N since the method works for N =5



Mixed type B.C. [3]
u, =€ -1l<x<1, u,(-1)=0, u(l)=1

XX

. 1/ ax _
exact solution U= E(e4 —4e™(x-1) —e4)

Solution under N = 16

max err = 2. 0965e-009




Allen-Cahn (bistable equation) [1]

Nonlinear reaction-diffusion equation: U, =¢-u_+u-u’, -1l<x<l1

where ¢ is a parameter

1 This equation has three constant steady state, U=0, u=-1, u=1

( consider ODE u, =u—Uu® , equilibrium occurs at zero forcing u-u’=0 )

2 u=0 isunstable and U=zl is attractor.

d
y=u-u® —— uy=u(1-U) —— au2=2u2(1—u2)
dx
X=u’ R EzZX(l—X) is Logistic equation.
x(0)>0
w(t)=—2_ - X0 . limx(t)=1 for x(0)>0
1+ce™’ 1-x(0) o
dx
1>x(0)>0 = E>0 = x(t) 1
dx X =0:unstable
1< x(0) = —<0 = x(t)\1



Allen-Cahn (bistable equation) [2]

r 1>u(0)>0 = %>0 = u(t)1 ~
1<u(0) = %<0 = u(t) 1
for u=u(l-u’) < U > U= 0:unstable
0>u(0)>-1 = E<O = u(t) -1
L 1u(0) = S0 = u() S

3 Solution tends to exhibit flat areas close to u = +1 , separated by interfaces

That may coalesce or vanish on a long time scale, called metastability.

interface

boundary value: U(t, X= il) =41




Allen-Cahn : example 1 [1]
U =c-u,+u-u’, -1l<x<l u(-1)=-1 u(l)=1
with parameter ¢=0.01 and initial condition u(t=O):0.53x+0.47sin(—37ﬂxj
Method |
1 Let P(X) be unique polynomial of degree <N with p(-1)=-1, p(1)=1 and
p(xj):uj for 1<j<N-1
2 Set w,=p'(x) for 1<j<N-1

s/

r N e N (o +—
neglect— % | | 0 1
W, Y
W. U,
2 — D2 J
W, N 3
W4 u4
neglect—{ W | | ) L by— 1
e W, N e u N
W u
or say Wj = D} (1:4,1:4) uj + D3 (1:4,0) — Dy(1:4,5)
W, u,




Allen-Cahn : example 1 [2]

Temporal discretization: forward Euler with CFL condition dt = min(0.0l, 50N~ /g)

( eigenvalue of Iﬁ,f, is negative (real number) and A, ~—0.048N*)

D 3
- (k+) (k) U, =1(k) . - o
u1 ul 4 \( ) 4 ‘( )
U U U
% _ % u u u
u u — ..D2(1- ) > 2 2
; ; ¢-Dg (1:4,0:5) T AT N
u, u,
. J . J u, u, u,
- J - J
dt U, =-1 . Y,
\_ Y,

One can simplify above equation by using equilibrium of U==%1 at boundary point.

(w0 (o Y0 e e (e )
0 0 0 0 0
ul ul O ul ul ul
u, u, u, u, u,
é o | — | u = &| Dy(L:40:5) || |+ || — N
u4 u4 O u4 u4 u4
U, U, U, U, U,




Allen-Cahn : example 1 [3]

U =¢-U,+u-u’, -1l<x<l u(-1)=-1 u(l)=1

with parameter £=0.01 and initial condition u(t=0)=0.53x+0.47sin —%ﬂx

Solution under N = 20

boundary value: u(t,x=+1)=+1

interface

Metastability up to t =45 followed by

rapid transition to a solution with

just one interface.




Allen-Cahn : example 2 [1]
U =c-uU,+u-u’, -1l<x<l u(-Lt)=-1 u(Lt)=1+sin’(t/5)

with parameter ¢=0.01 and initial condition u(t=O)=O.53x+0.47sin(—3§xj
Method |
1 Let P(X) be unique polynomial of degree <N with p(-1)=-1 p(1)=1+sin’(t/5)

and p(Xj)=U,— for 1<j<N-1
2 Set w, = p”(xj) for 1< j<N-1

g 1+sin?(t /5\ k)
ARSI Uy =1-+sin” (8, /5) Cw [ )
' 1 ul ul
u2 _ u2 4 U
u u = ¢-D?(1:4,0:5 ? | 2
u3 u3 N( ) u3 + u3 u3
4 _J _ 4 _ U4 U4 U4
g J G J
dt U5=—1 - J
\ _/

Second, set u(()k”) =1+sin’? (tk+1/5)



Allen-Cahn : example 2 [2]

However we cannot simplify as following form

N 3
\LK\HD\\(k-Fl) -~ U, ~ r U, \(k) -
\\ Y
Vh U U
T u _ u u
dt 3 3 3
Lt — u, u,
- | \
Ug Us Us 5 U | —
J g J . J . J
L. Y, \ y, g )

Method Il
1 Let P(X) be unique polynomial of degree <N with p(Xj):uj for 0<j<N

2  Set szp”(xj) for 0<j<N

3  Neglect U,, Uy, computed from 2 , and reset U, :1+sin2(t/5), u, =-1



Allen-Cahn : example 2 [3]

[ \ - ~N 3
TR SRR Cu Y0 (g ) g
ul ul u]_ ul Ul
1 U, u, ) u, u, u,
Step 1. — — — ¢-D + —
p dt u3 U3 N u3 u3 u3
u, u, u, u, u,
Us Us U U U
LY . J . . S
Step 2: W =1+sin(t.,/5), U™ =-1

Solution under N = 20, method Il
Final interface is moved from

x=0 to x~-04 and

transients vanish earlier at

t ~30 instead of t~45

dt=0.01 and tplot=2




Allen-Cahn : example 2 [4]

Allen-Cahn transient

— t= 30
= 32
15F t= 34 |4
= 3B

graph concave up = u, >0

O>u>-1 = —‘u‘<u(l—u2)<0

U =¢&-U,+u(l-u?)>0 2

Threshold is &€ -U,, —‘u‘ >0

_15 | | | 1 | | | | |
-1 a8 0B 04 02 1 0z 04 0 0.8 1

In fact we can estimate trend of transient at point X=0.2
0.5-(-0.5)

u, (x=0.2")~ ., =5 and U (x=0.2")~—u,(x=0.2")=-5

u,(0.2")-u, (0.2}
0.2

U, (0.2) = =50 ,then £-u,(02)~05 but u(1-u*)|.,,~-0.375



Laplace equation [1]

sin(zx) y=1and -1<x<0

. 1 .
U, +u, =0, —-1<xy<l subjecttoB.C. u(x,y):<gsm(37zy) x=1

0, otherwise
1=y, :
4 — sin*(zx)
y2 1
L boundary data
Ys 5S|n(3ﬂy) " is continuous
Ys y 0 )
1= y5 >
1 Let X y Zu, J p ) be unique polynomial, P(x,yj)=ui,,- for

i,j=1

Method | 1<i, J <N-1 (interior point) and P()g,yj): B.C. for 1=0,N or J =0,N

2 Set W':AP(&yj) for 1<i,j<N-1

1]

Briefly speaking, method | take active variablesas @ @ ®@ @

However method 1 is not intuitive to write down linear system if we choose Kronecker-product




Laplace equation [2]

Method Il

N-1
1 Let P(xy)=> u,p(x)p;(y) be unique polynomial, P(X.y;)=U,; for

i,j=1

0<i,j<N (all points)

2 Set w :AP()g,yj) for 1<i,j<N-1 (interior points)

3 Additional constraints (equations) for boundary condition.

u,;=BC. for i=0,Norj=0,N
method Il take active variablesas @ @ @ ® @

Technical problem:
1. How to order the active variables

2. How to build up linear system (matrix)

(including second derivative and additional
equation)

3. How to write down right hand side vector




Laplace equation : order active variable

[3]

MATLAB use column-major, so we index active variable by column-major

x=(% % |% %] %|%) =(1]0.809|0.309|-0.309|-0.809|-1)" and

column-major

0.3090
0.3090
0.3090
0.3090
0.3090

1-:: )G) |
Vi |
Y, |
Y3 |
Y, |

__]_:: ){5
X5 %
-1

. [}.{}.{,3?3?] = meshgrid(}:,y);

E MM

e =
1.0000 0.8090
1.0000 0. 8090
1.0000 0.8090
1.0000 0.8090
1.0000 08090
1.0000 0. 8090

0.3090

-0.3090
-0, 3090
-0, 3090
-0.3090
-0.3090
-0, 3090

-0.8080
-0, 8080
-0.8080
-0.8080
-0.8080
-0.8080

-1.0000

.aoon
.0oon
UMY
.aooa

-1.0000

y=Xx
Yt
|
_ 2C 10, 12 7
|
)ﬁ ' 6 0 : 4 B 0
|
|
)/2 / 1 i 5 B 3
> |
A 8 22 | 6 10
|
Y, 9 23 17 11
|
| X
_1_ 18 12 .
1= Ye Q 4-i 6 >
X X KX X X
-1 1
¥V =
1.0000 10000 1.0000 1.0000 1.0000 1.0000
0.8090 0.8090 0. 8090 0.8090 0.8090 0.8090
0.3090 0.3090 0.3090 0.3090 0.3090 0.3090
-0.3090  -0.3020  -0.3090  -0.3090  -0.3090 -0.3090
-0.8090  -0.80%0  -0.80%0  -0.8090  -0.80%90  -0.80%90
-1.0000  -1.0000  -1.0000 -1.00000  -1.0000  -1.0000




Laplace equation : order active variable

= - - - - -
1.0000 0, &8090 0,300 -0, 3090 -0, 8090 -1.0000
1.0000 0. 8090 0.3090 -0.3090 -0.8090 -1.0000
1.0000 0, &8090 0,300 -0, 3090 -0, 8090 - 10000
1.0000 0.8090 0.30890 -0.3090 -0, 8090 -1.0000
1.0000 0, &8090 "0.3090 V—U.BDQU -0, 8090 - 10000
1.0000 | yO.8090 | 0.3090 |—U.3090 -0.8090 -1.0000
¥V = - _ - _ -
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0, &090 0. &090 0.&8090 0.5090 0.&090 0, &090
01,3090 0. 3000 0. 3090 0.3090 0.3090 00,3090
-0, 3090 L0, 3080 -0, 3090 -0, 3090 0.3090 L0, 3040
-0, 8090 60'8090 w0.8000 | w-0.8000 | Y0.8000 S0, E0an
|—1.UUUU 1.0000 |—1.UUUU |—1.UUUU 1.0000 - 1.o0on
yn
1=.}"|:| |— e |
¥ i A0 | 4 @8 b
¥, T P T I | o
.},3 i i Z 0 il
h i 0 A3 [ U7 |
=y, tidn A8 D kK A

[4]

=x EN()
ang =

L0000
L0000
L0000
0000
0000
.0000

.g0an

L3080
L4080
.G0an
.G0an
040

L3090

L3090
L3090
L3090
L3090

o T D D | D i D D D e e e e e

L3090

= |=

.3090
.3090
.3090
.3090
.3090
.3090

1 1 1 1 1 1 1
o oo oo D O

L3090
L3090
L3090
L3090

1 1 1 1 1
—_—a o o O

.0000
.0000
.0000
.0000
.0000
.0000

1 1 1 1
—_—— — —

1
—_—

L3090

.8090

ans

o e

> ¥yl

L0000
.&090
L3090
-0.
-0.
-1.
0000

L8090
.3090
-0,

-0.

-1.
L0000

.8090
L3090
-0.
-0.
-1.

3080
g0s0
0000

3090
8090
0000

3080
gosn
0000

L0000

L8090
L3090
-0.
-0,
-1.

3080
g040
Q000

.0000

L8090
.3090
-0,
-0,
-1.

3080
g04a0
0000

0.8090

0.
-0,
-0.
-1.

3090
30890
g0an
Q000



Laplace equation : find boundary point [5]

7 M =» help find
e = ) . .
FIND  Find indicez of nonzero elements.
1.0000 0.8090 0.3090 -0.3090 -0.3090  -1.0000 [ = FIND(E) returnz the indices of the wector ¥ that are
1.ogoo  0.8080  0.3090  -0.3080  -0.30%0  -1.0000 non-zero., For example, I = FIND(4=100), returnz the indices
1.0000 0.8090 03090  -0.3090  -0.8090  -1.0000 of 4 where & iz greater than 100. See RELOP.
1. 0000 0.a090 0.3090  -0,3090  -0.8090  -1.0000
1. 0000 0.8090 0.3090  -0,3090  -0.8090  -1.0000
1.0000 0.8090 0.3090  -0.3090  -0,8090  -1.0000 == find( abalux) = 1) == Tind( abe(yy) = 1
== abz(xx) = 1 ang = ang =
ang = 1 |
I 0 0 0 0 I 2 6
10 0 0 0 1 3 7
1 0 N 0 ] | 4 12
1 0 1] 1] 0 1 5 13
1 0 N 0 ] | £ 18
10 0 0 0 1 1 19
32 24
¥¥ = 33 a5
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 34 %?
0.8090 0.8090 0.8030 0.8090 0.8090 0.8090 35
0.3090 0.3090 0.3030 0.3090 0.3090 0.3090 36 36
S0.30900 -0.3090  -0,3090  -0.3090  -0.3090  -0,3090
-0.8090  -0,8090  -0.8090  -0.8090  -0.8090  -0.8090 Y
-1.0000  -1.0000 -1.0000 -1.0000 -1.0000  -1.0000 1=y, e
»» aba(yy) = | N | o 20 LM 0 b
s — ¥, i_ AN 15 ) i
1. 2] 0|
S SRS GRS S B ] I
o 0 0 0 0 0 VA | L LW 15
0 0 0 0 0 0 =y, G AW D K x,
0 0 1] 1] 1] 0 3
0 0 1] 1] 1] 0 Xy XLy LoX, o 4oX
| | | 1 1 | -1 1




Laplace equation :

== b= find{ abs(xx)=l | abz{yyi=l

b =

Chebyshev differentiation matrix:

(second order)

b is index set of boundary points, if we write down

find boundary point

= B e

=

=1

=]
T FUE ]

s

[6]

Xy Xy g

Ly A

equations according to index of active variables, then we
can use index set b to modify the linear system.

A3 X X

Dz =
X

41. 6000
21,2859
-1.8472
0.7141
-0.9528
-§.0000

X

-68.3607
-31.5331
7.3167
-1.9056
2.2111
17.5724

%

40,8276
12.6833
-10.0669
5.7589
-3.6944
-23.6393

%

-23.6393
-3.65944
5.7889
-10.0669
12.6833
40,8276

X4
17.5724
2.2111
-1.9056
7.3167
-31.5331
-68. 3607

Xs

-5.0000
-0.9528

0.7141
-1.8472
21,2859
41.6000



Laplace equation : construct matrix

kron(1,,D2)

0 0
*EEE RS
e b
e b
*EE et
Elesssss
*EEE RS
[T X T
e
s eere
10 *e eSS
I
se s
T T YY)
T3 T
15 * -4 15
ITIIIT)
*
SRS
201 ITXXII] - 20
‘a0
*ERERS
*ERERS
*ERENS
25t XXX - 5t
see et
*seeeEE
seee 4
*Eee b e
30 F XXX -
XYY
T
T XTI YY)
*EEENS
35t [ITXITTE At
LT XY T
1 1 1 1 1 1 1
0 5 10 15 20 25 30 35
nz =216

[7]

kron(D2, 1)

30

2 Set w :AP()g,yj) for 1<i,J<N-1 (interior points)

J

Definition: Kronecker product is defined by A@ B =

a,B a,B
a,B  a,B

a.B a,B

W ZAP(K’Y,-) — w=[kron(|6, D2)+kron(D2, IG)]uE Lu

a,B
a,,B

a..B

T T
L ] L] L ] L] L ]
L ] L ] L] L ] L] L ]
* * * * *
* * * * *
+ +* + + +* -
L * L * L L
L L] L L] L
L L L] L L] L
L L] * - L]
* L] * L] -
+ +* + + +*
+ +* + +* L +
* * * * *
-* * L] * L] -*
-* * L] -* *
L] * L] * -*
L * L L *
L * L * L L
L ] L] L ] L] L ]
L ] L ] L] L ] L] L ]
L * L ] +* *
L ] * L ] * +*
+ +* + + +*
+ +* + +* L +
+ * + * L =
L + * + * L
L L] * - L]
* L] * L] -
L ] -» L ] L ] -»
L ] -» L ] -» L ] L
* * * * *
* * * * * *
L * L ] +* *
L] L] L] » *
L * L L L
L * L * L L
1 1 1 1
o 10 15 20 25 30 35
nz =216




Laplace equation : construct matrix [8]

3 | Additional constraints (equations) for boundary condition.

U ; =BC. for i=0,Norj=0,N

We need to replace equation of w= Lu on boundary points by u ; =B.C.

Index of boundary points

13
18
19
24
25
30
31
32
33
34
35
36

»» b= find( abs(xxi=1 | abs(yyi=1) L(k,) N QI fOf k c b
b =
| such that (Lu)(k) — L(k, :)u =g u=u, (boundary point)
5
3
: Lib,:] = zeros(4+*N, (N+1)*2);
& Lib,b) = eye(4¥HN):

where size(b)=4(N-1)+4=4N

/_ four corner points

each edge has N-1 points




Laplace equation : right hand side vector [9]

sin(zx) y=1and -1<x<0

Boundary data: u(Xx, y):<%sin(37ry) x=1

0, otherwise
C == (yy(b)=1).*(xx(b)<0)
b = ans =
identify y=1and -1<x<0
1 0
A 2 D
y 3 0
l=y, #*—23549+33 7 4 0
yo g 0
y, 2226 201 14 B } g 8
y, 3347 21115 b § g g
y, 328 22116 10 | 18 U|
19 1
Y, 35 29 43 /A1 24 0
X | 25 1|
1=y, 46 30 24|18 12 b . | 30 0|
3] 1
X X X% X X 1 0
1 33 0
1 14 ]
35 0
36 0




Laplace equation : right hand side vector [10]

sin(zx) y=1and -1<x<0

Boundary data: u(Xx, y):<%sin(37ry) x=1

0, otherwise
_ _ N == ¥(bi=1
identify x=1
yA b = ang =
1=y, 3+—3—40-+43——~ i 1 1
7 1
y1 32 6 0 4 B % 3 |
4 1
y2 33 4 1 5 D 3 5 1
6 1
Y. 34 28 22 6 10 7 0
3 17 0
y4 35 9 3 / 1 1% 0
X 15 0
1= y5 36 30 4| 18 2 b > 19 0
24 0
X X XX X X 25 0
-1 20 0
1 31 0
32 0
33 0
rha = geros( (N+1)"*2,1): 4 0
rha(bh) = (yy(bh)==1).*%(=x(b)<0) .*zin(pi*==xib)) .4 + ... 35 8
2T (wuih)l==1) . ¥F=zin(3%pityy (bl : 36




[11]

results

Laplace equation

5, method I

Solution under N

1 and -1<x<0

1
otherwise

y
X

*(7x)
sin(3ry)

(sin
1

< P
5
0,

)=

y

X

(

u

24, method Il

Solution under N

0.5

f
ol
S
L

el
o
'y .__....__“.m.p__.__._..P




Wave equation 1]

(u, (%,1L,t)=0 Neumann iny

=U.+U, , —3<x<3, —-1<y<l subjecttoB.C. -
ey Y u(-3,y,t)=u(3,y,t) Periodicinx

Separation of variables leads to

1 Periodic B.C. in x-coordinate = Fourier discretization in x

2 Chebyshev discretization in y, we must deal with Neumann B.C,
3 Leap-frog formula in time

- (n+1) _ o 4(n) (D)
U, = Au Leap-irog > = (ZAlJt)2+U o ﬂ(At)z € (_4,0)

eigenvalue of f),f, (chebyshev diff. matrix) is negative and A__ ~—0.048N*

eigenvalue of Dy ; (Fourier diff. matrix) is 4 =ik, k=-N/2+1,---,N/2-1

eigenvalue of D,f,,f (Fourier diff. matrix) is negative and A, = —( N /2—1)2

Hence stability requirement of U, = Uy, +U,, is [0.048N; +(N,/2-1)" |(At)° <4

At = 0 S
|\|§\/1+5|\|§/|\|;1 ( author chooses At = NI+ N,

)



Wave equation [2]

1 Periodic B.C. in x-coordinate = Fourier discretization in x
X=(% % %1% % [%)=(-2-10123)
2 Chebyshev discretization in 'y

y=(Yo %!, |¥slVelys) =(1]0.809]0.309|-0.309|-0.809| 1)’

Method Il
1| Let p(y) be unique polynomial of degree <N with p(yj ) =U; for0<j< N,

2 Set w,=p'(y;) for 0<j<N,

3 | replace U(X, yo), U(X, yNy) computed from |2 by Neumann B.C.

[DNyu(x,:)] = [DNyu(x,:)] =0

N

0 y

8.5000 -10.4721 2.8944  -1.5279 11056 -0.5000

76180 -[.[708 -2.0000  0.8944 -0.6180  0.2764
Chebyshev diff. matrix D = |-0.7236  2.0000 -0.1708 -1.6180  0.8944 -0.3820

v 0.3820 -0.8944  1.6180  0.1708 -2.0000  0.7236
_0.2764  0.6180  -0.8944  2.0000  1.1708  -2.6180

0.5000  -1.1056 1.5279  -2.8944 10,4721  -8.5000




Wave equation: order active variable

[3]

1=y, |—w 1=, t—7 ]I 45
Yi | ———| Yi s 1J: o
Y> | — | column-major Y, O
Y |———| Y Y2
Y ‘———| Ya S—HE—F—A3—+
X X
1=y, — 1=y, el 4p a8 da 15
X
X XX X X X X NRK XX X X
-3 2 -1 01 2 3 -3 2 -1 01 2 3
o= ¥¥ =
2 a1 0 123 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
2 10 123 0.8090  0.8090  0.8090  0.8090  0.8090  0.8090
2 -1 0 12 03 0.3090  0.3090  0.3090  0.3090  0.3090  0.3090
2 10 123 -0.3090  -0.3090 -0.3090 -0.3090 -0.3090  -0.3090
2 10 12 03 -0.8090  -0.8090 -0.8090 -0.8090 -0.8090  -0.8090
2 -1 0 12 3 -1.0000  -1.0000 -1.0000 -1.0000 -1.0000  -1.0000

In this example, we don't arrange u()g,yj) as vector vec(u) but keep in 2-dimensional form

say U ;= u()g , yj) , the same arrangement of xx and yy generated by meshgrid(x,y)



Wave equation: action of Chebyshev operator [4]

Yo Yi Y Ys Ya Ys

. A
41.6000 -68.3607 40.8276 -23.6393 17.5724 -8.0000 | Yo
212859 -31.5331 12.6833 -3.6044  2.2111 -0.9528 | Y
. . 2 1
Chebyshev 2nd diff. matrix Dy = -1.s472  7.3167 -10.0669 5.7889 -1.9056  0.7141 | ¥,
0.7141 -1.9056  5.7889 -10.0669  7.3167 -1.8472 | _ ¥,
0.9528 22111 -3.6944  12.6833 -31.5331 21.2850 | Ya
-8.0000 17.5724 -23.6393  40.8276 -68.3607 41.6000 |  Ys

N
e yI )

Y 7 —4B—%9
0 o Wy Uy Uy Uy Uy

Y1 21 gl 14 49
U, U, U U, U, U,

N QO Al 21
D2 Yz ~ i 2 u1,2 uz,z u3,2 u4,2 u5,2 u6,2

ooy A N NP S =Dy,
3 U U,; Ug U Us Us
Ya STt Z3—r X b, U, U, U, U, U,
Ys 6—12 24— Us UWs Us Ug Ug Us
-3 2 -1 01 2 3

U = U(’ﬁ ) yj) index (i,j ) is logical index according to index of ordinates x, y



Wave equation: action of Fourier operator [5]
X X X X X5 X

4 3
347260 2,193 07311 0.5483  -0.7311 21932 | X
_ _ _ , 3.1932  -3.4726  2.1932  -0.7311  0.5483  -0.7311 X,
Fourier 2nd diff. matrix Dy = |-0.7311  2.1932 34726 201932 -0.7311 0.5483 | X
0.5483  -0.7311  2.1932  -3.4726  2.1932  -0.7311 X,
007311 0.5483 -0.7311 2.1932 34726 2.1932 | X
(2.1932 -0.7311 0.5483  -0.7311  2.1932 34726 | X
Ys Yo Y5 Yo i Yo
4 \
X |
X, 6 |5 |4 |3 [2 |1 ul,O uz,o u3,0 u4,0 Us,o Ue,o
X2 12 11 10 9 8 7 ul,l u2,1 u3,1 u4,1 u5,1 u6,1
D2 . |x 1817 16 15 1 13 ., —Df . G oo tho Uip e U,
N
x x U, U, U. U, U
x 2423 22 21 20 19 y Ya tha s s U Uhs
X: u1,4 u2 4 u3,4 u4,4 u5,4 u6,4
u1,5 u2,5 u3,5 u4,5 u5,5 u6,5
X5
\ ) |
v X by
Yoo AT
n.},l E 3 i I'.ﬂ |r'_:
|
Take transpose ST G o A 2 \'
> Job e (D )
.},3 + 1 i i_i Nx
Vs L—H——r +|——i
Fs P NPT S VI S T
Moo M Ay X Xy X X



Wave equation: action of operator [6]

ul,O u2,0 u3,0 u4,0 u5,0 u6,0
ul,l u2,1 u3,1 u4 1 u5,1 u6,1
u, U, U, U, U .
Let active variable be U 2 Yo oo s Ut tho e , then operator for Laplacian is

u1,3 u2,3 u3,3 u4,3 u5,3 u6,3
ul,4 u2,4 u3,4 u4 4 u5,4 u6 4
u1,5 u2 5 u3,5 u4,5 u5,5 u6,5

Uy +U » LU=U-D2 +DZ U D2 ) =D?

X Yy = N, N, N, )] — YN,

Combine with Leap-frog formula in time

U (k+1) _ U (k) +U (k1)
(At)

where initial condition is Gaussian pilse traveling rightward at speed 1

U© _ u(xy,0)= exp[—8((x+1.5)2 + yz)}

Ly ®

v
Il

u, =Uu, -I—Uyy

Uty = u(x, Y, —At) = exp[—8((x+ At1.5)2 + yz)}

Question: how to match Neumann boundary condition u, (X, +1,t)=0



Wave equation: Neumann B.C. in y-coordinate [7]

3  replace U(X, yo), U(X, y,\.y) computed from ‘2 by Neumann B.C.

[DNyu(x,:)]0 = [DNyu(x,:)]N =0

y

(8.5000 -10.4721  2.8944 -1.5279  1.105% 0.5000 || 5 Lol ol .| L ||
2180 -1 1708 -2.0000  0.8944 -0.BI80 0.2764 1001 L]
0.7236 20000 0.1708 -1.6180 0.8%4 0380 | | Y | g y(; x)
0.3820 -0.8944  1.6180  0.1708 -2.0000  0.7236 | |% [t Ny A
0.2764  0.6180 -0.8944  2.0000  1.1708  -2.6180 | |% |et—H—H—p—t—
0.5000 -1.1056  1.5279 -2.8944 10.4721 -8.5000 || |» Lol b d b L5,
- 4 dp M XX Xy X X
We require [DNyU ( x)]o :[DNyU ( x)]Ny =0
Ui,O
Ui,l
8.5 -10.4721 2.8944 -15279 11056 -05) U, 0
or say C = for 1<i<6
05 -1.1056 15279 -2.8944 10.4721 -85)/U,, 0
U'4



Wave equation: Neumann B.C. in y-coordinate [8]

(8.5 —0.5}(%) (-10.4721 2.8944 -1.5279 1.1056}
or say =-

05 -85)(U;s) | -1.1056 1.5279 -2.8944 10.4721

Ui,l
Ui,2
Ui,S
Ui,4

U
: U. U 85 -05) (-10.4721 2.8944 -15279 1.1056
written as M 21 where M, =-
U BCl U 0.5 -85 -1.1056 1.5279 -2.8944 10.4721
U

Procedure of wave equation simulation

Given U©® y
U k) _oy® Ly

ar
At

Step 1: time evolution by Leap-frog

Step 2: correct boundary data U(k”)([l, N, +1], : )=MBCU("+1)(2:Ny, )

where Mge =-Dy ([LN,+1],[1N,+1]) D, ([LN,+1].2:N,)



Wave equation: result [9]

Solution under N, =30, N, =15 , method II

3
At :%20,0182 At = — 0.0547

N, + N2 J0.048N¢ +(N, /2-1Y

IIII"I

|_t=4 S
- = e e LR L

' "r- SEIEEENER R
1 = {1\'*:{};\\\:“:“‘\1 ‘ ‘I%‘ ‘h JI'.] || \i ]\ Ill:l 'I\ ',\ .'I,l ] ,‘51 \l,r \4 I]Hfl I'. If‘l'i‘ |
0 N i ' | ! ||"|!|I|rl:u|,u| J,ullr.ul,.IJI',II,III;IIJIIIE,II:.II[J,l,l v IJ'“,lr,l,lr, Lkt R AL A,
[ -3 2 1 0 1 2 3 0 i
T 2 -1 0 1 2 :
: : : 2
Theoretical optimal value is At = =0.0365 (see exercise 13.4)

J0.048N¢ +(N, /2-1Y



Exercise 13.2 [1]

The lifetime T (5) of metastable state depends strongly on the diffusion constant &
T(g) — The value of t at which U(X,t) first becomes monotonic in x.
U =¢c-U,+u-u’, -l<x<l u(-1)=-1 u(l)=1

with parameter ¢£=0.01 and initial condition u(t=0) =O.53x+0.47sin(—3?7[ xj

T(0.01)=47.36

@‘@1@‘#
SR

u(t=0)=0.53x+0.47sin sz X
2

initial walue

20
t 0 X
05+
1 whatis graph of T (¢) ol
2 Asymptotic behavior of T (&) 05t
as ¢ >0 W08 06 0s 02 0 02 04 06 08



a0

Exercise 13.2

lifetirne T(g) = first time that u is monotone in x

400

30

10

a
0.01

0.015

002 0025 003 003% 004 0045 005 0035 006
g

(1) Resolution is adaptive and

(2) Monotone under tolerance 1.E—7

[2]

maxT (&) =47.36
minT (&) =0.1927

lifetime T(g) = first time that u is monotone in x
450

4007

350+

300

250 -

200 -

180

100 -

a0 -




