Chapter 11 polar coordinate

Speaker: Lung-Sheng Chien

Book: Lloyd N. Trefethen, Spectral Methods in MATLAB



Discretization on unit disk
Consider eigen-value problem on unit disk

Au=-2%u with boundary condition u(r =1,6)=0

_ X=rcosd
We adopt polar coordinate _ , then
y=rsing

1 1
Au=u”+?ur+r—2u99:—/12u ,on re(01] and 6¢[0,27]

Usually we take periodic Fourier grid in € , and non-periodic Chebyshev grid in ¥
1 Te [0,1]

Chebyshev grid in X e [—1,1] 2 » Chebyshev gridin I' € [0,1]

Observation: nodes are clustered near origin r =0 , for time evolution problem,

we need smaller time-step to maintain numerical stability.
2 e [—1,1]

X=rC0s0=—1cos(0+r) 1 to 2 mapping
(% y)=(0,0) >(r.0)

y=rsind=—rsin(0+r)



Asymptotic behavior of spectrum of Chebyshev diff. matrix

In chapter 10, we have showed that spectrum of Chebyshev differential matrix [N)IfI

(second order) approximates

2

u, =4Au, —l<x<1, B.C.u(£l)=0 with eigenmode A, =—7Z7k2

1 Eigenvalue of Ij,f, is negative (real number) and A__ ~-0.048N"

Since ppw is too small such that

resolution is not enough

Mode N is spurious and localized near —

boundaries x=+1

gigerny alus

2

Large eigenmode of |j|§l does not approximate to A, = —% k®

N=B0 max | =00474380"
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Preliminary: Chebyshev node and diff. matrix [1]

-.N

for J 20’1121"
Uniform division in arc

T
N

J

Consider N+1 Chebyshev node on [-11] , X =COS(

XN/2

Even case: N=6

X

Odd case: N=5




Preliminary: Chebyshev node and diff. matrix [2]

Given N+1 Chebyshev nodes , X; :cos(%j and corresponding function value V;

(%)

We can construct a unique polynomial of degree  , called p(x)=).V,

M-
<
n

1 k=j . .
S — IS a basis.
(%) {o K

N N
P'(x)=>v,SY(x)=>DMv, where differential matrix D é(Di,-N) is expressed as

j=0 j=0
L e Y\ G SN -
_ == - N = , for 1=12,---,N-1
Do —6 y NN 6 i (1_ ij ) J
c (-1)" o 2 i=0,N
DU-N=—( ) , for 1= ], 1,]=012,---, N where ¢ = :
C; X —X 1 otherwise

N

with identity D' =- > D/

j=0,j=#i

Second derivative matrix is D} =D, - D,




Preliminary: Chebyshev node and diff. matrix [3]
Let p(X) be the unique polynomial of degree <N with p(irl):O and p(xj):vj
define w; = p’(x;) and z = p/(x;) for 0<j<N
We abbreviate W=D; -v , thenimpose B.C. p(£1)=0 ,thatis, V,=Vy =0

In order to keep solvability, we neglect W, =W, ,thatis, [Slfl — D,fl (1; N-11:N _1)

~
Chwe ) 4 ) v, 3— zero
neglect —— 0
W Vi
W2 5 Vz
L Dy :
W1 VN1
lect W N | +— zero
neglect —{ Wy L PR b

Similarly, we also modify differential matrix as Dy = Dy, (1:N-11:N-1)



Preliminary: DFT [1]

2r
Given a set of data point  {\,V,,-+,Vy, } € R" with N =2m is even, h:W

Then DFT formula for {Vj}

:—Zv exp( lkx) for k=—m—m+1---, m-1m

Definition: band-limit interpolant of & —function, is periodic sinc function S, ()

SN(x)éLP S sin(zx/h) _1 sin(mx)
2r = (2z/h)tan(x/2) 2mtan(x/2)
N
If we write V, —Z:V5J «=0*V  then p(X ——ﬂPZe Ve =2 VS (X=%)
k=—m k=1

Also derivative is according to W, ( ) ZVkSV( )



Preliminary: DFT [2]
sin(zx/h)

Direct computation of derivative of S (x)= 22/ an(x/2) , we have
z/h)tan(x
0 j=0(modN)
S(\Il) (Xj ) =11

E(—1)j cot(%j, j#0(modN)

Example: D, :(Sél) (xj —xk)) -

is a Toeplitz matrix.

1 z°

— s j=0(modN)
Q2 6 3h
Second derivative is Sy (X,-)=< (_1)1
- , j#0(modN)
| 2sin®(jh/2)




N

. . . " 2

For second derivative operation W, =P (Xj)z E VkS(V)
k=1

(%)=

X

| 2sin?(jh/2)

Preliminary: DFT

[3]

(1 A .
_E_;W j=0(modN)
j
(1) , j#0(mod N)

N
k:

1

(x,—%)=>D2 (i, k)v,

second diff. matrix is explicitly defined by using Toeplitz matrix (command in MATLAB)

. —csc?(2h/2)/2

. 1
=toeplitz| ———
= 6

‘N

)

3h? ’Zsinz((l:

N

~1)h/2)



Fornberg’s idea : extend radius to negative image [1]

(X, y) € unit disk » re[-11] and 0 €[0,27]

A

1 N, =5 (odd): to avoid singularity of coordinate transformation r =0

2 N, =6 (even): to keep symmetry condition u(r,H) = u(—r,(0+ ﬁ)(mod 27z))

I 4 r — @ coordinate

X—y coordinate




Fornberg’s idea : extend radius to negative image [2]

Ingeneral N =2k+1 isodd,and N, =2m iseven, then Ar:non-unif and Aezil—”

0
r=1-iAr: 1<i<N -1

Active variable { _ _ . total number is (Nr —1) N,
0,=]A0: 1<) <N,

r 4 r —¢ coordinate
1=r, X—y coordinate
r ) °
L e Y
r2 o o o i
e e 00 0 00 0 o //// \\\\2
/ AN
—O———rk—————— _____ N . S [ ¢ 9 // \\\91
r=0- T / ‘
k+1 —@— 0 I! ‘l X
e o000 00 0 0 m ! '0 >
\ B\
\ /e
\ /
° i N //9
N1 0@ « —0—0 ° —— mi1 s O
° ° 0 \\\\\ ’/////
—:I_:rNr > . o o o o 0



Redundancy in coordinate transformation [1]

2 to 1 mapping (r,@),(—r,(¢9+7z)(mod 27[)) (% y)

r—@ coordinate X—Yy coordinate

2 Y

redundant




Redundancy in coordinate transformation [2]

2 to 1 mapping (r,@),(—r,(¢9+7z)(mod 27[)) (% y)

r—@ coordinate X—Yy coordinate

2 Y




Redundancy in coordinate transformation [3]

N, =2k +1="5is odd, then Chebyshev differential matrix Dy

IS expressed as

r0 rll IF2 IF3 r4 r5
/ 8.5 -10.4721 2.8944 -1.5279 1.1056 -0.5
2.6180 | -1.1708 -2 0.8944 | -0.618 | 0.2764
-0.7236 2 -0.1708 | -1.6180 | 0.8944 | -0.382
Py 0.3820 | -0.8944 | 1.618 | 0.1708 -2 0.7236
-0.2764 | 0.6180 | -0.8944 2 1.1708 | -2.618
0.5 -1.1056 | 1.5279 | -2.8944 | 10.4721 | -85
N
( ) 1
-1.1708 -2 0.8944 -0.618
2 -0.1708 | -1.6180 | 0.8944
-0.8944 | 1.618 | 0.1708 -2
0.6180 | -0.8944 2 1.1708
\ ) %8 6 & 4 6 §

-~ » neglect



Symmetry property of Chebyshev differential matrix : (DN )i j

Redundancy in coordinate transformation [4]

§
-1.1708 -2 0.8944 -0.618
- 2 -0.1708 | -1.6180 0.8944
DNr =
-0.8944 1.618 0.1708 -2
0.6180 -0.8944 2 1.1708
K \/
Permute column by P=(1,2,4,3)
v
§
-1.1708 -2 -0.618 0.8944
~ - 2 -0.1708 0.8944 -1.6180
By, P" =
-0.8944 1.618 -2 0.1708
0.6180 -0.8944 1.1708 2

= _(DN )N—i,N—j
-1.1708 -2
IS symmetric
2 -0.1708
-0.618 0.8944
is NOT symmetric
0.8944 | -1.6180
U
U |
(E1 EZ) is faster ?
u3
u4



Redundancy in coordinate transformation [5]

N, =2k +1=>5is odd, then Chebyshev differential matrix D,f,r

IS expressed as

\

r0 r.1 r2 IF3 r4 r5
41.6 -68.3607 40.8276 -23.6393 17.5724 -8
21.2859 | -31.5331 | 12.6833 | -3.6944 | 2.2111 | -0.9528
-1.8472 | 7.3167 | -10.0669 | 5.7889 | -1.9056 | 0.7141
D, - Dy
r r 0.7141 | -1.9056 | 5.7889 | -10.0669 | 7.3167 | -1.8472
-0.9528 | 2.2111 | -3.6944 | 12.6833 | -31.5331 | 21.2859
-8 17.5724 | -23.6393 | 40.8276 | -68.3607 41.6
\ P s
-31.5331 | 12.6833 | -3.6944 | 2.2111
7.3167 | -10.0669 | 5.7889 | -1.9056
-1.9056 | 5.7889 | -10.0669  7.3167
2.2111 | -3.6944 | 12.6833 | -31.5331
y 68 & & & & 4

-~ » neglect



Redundancy in coordinate transformation [6]

Symmetry property of Chebyshev differential matrix : (D,fI )i = ( D] )N_i .

-

-31.5331 | 12.6833 | -3.6944 | 2.2111
7.3167 |-10.0669 | 5.7889 | -1.9056
-1.9056 | 5.7889 | -10.0669 | 7.3167
2.2111 | -3.6944 | 12.6833 | -31.5331

"

Permute column by P=(1,2,4,3)

-31.5331 | 12.6833 | 2.2111 | -3.6944
7.3167 | -10.0669 | -1.9056 | 5.7889
-1.9056 | 5.7889 | 7.3167 | -10.0669
2.2111 | -3.6944 | -31.5331 | 12.6833

O

-31.5331 | 12.6833

7.3167 | -10.0669
2.2111 | -3.6944
-1.9056 | 5.7889

is NOT sym.

is NOT sym.



Row-major indexing: remove redundancy
Define active variable U = U(fi,é’j) for 1I<i<N -1 and 1< <N,
T
U é((ui,l’ui,2"”’ui,m)’(ui,m+l’ui,m+2"”’ui,N9))

total number of active variables is K-N, =2-6=12

NOT (Nr —1)-N9:4-6:24

I a
1=r,
I 1 2 13 4 |5 |6
Index order r /8 9 101112
r=0 "‘r‘ e e e e Ry
3 — |
r i - i redundant
4 _ |
|
vlEn =0 i | ‘ i 6’=
HO 91 92 (93 194 95 (96
0 T Oy, =27

Index order

!

jan]
S

[1]

o O~ W DN P

10

11
12



Row-major indexing: remove redundancy [2]

N, =2k+1 is odd, and ri:cos(:\lij: 0<i<N,

r

suppose 0<j<k ,then r_;+r.,. =0 since

- :cos—(k_ i)z :—cos[yz—(k_ J)ﬂ) Nfz“”%—cos((kJr J +1)7Zj=—rk "
N +14j

r r r

27

N, =2m iseven,and AO=—
N6’

T
m

Hencefor 1< j<m, ¢ +7z=6,, and (9m+,- +7z)(mod 27) =06,




Row-major indexing: remove redundancy  [3]

From symmetry condition, we have u(rk+1+i 0, ) = u(—rk+1+i ,(Hj + n)(mod 27[))

u(rk+1+i"9] ) - u(r"‘i’em*j)

for 0<i<k and Q< j<m, symmetry condition implies {
u(rk+l+i’9m+j): u(rk—i’gj)

Therefore, we have two important relationships

uk+l, j uk,m+j 1 u1,m+i
uk+2, j uk—l, m+ 1 u2,m+j
1 : = . = .
uNr—l,j u1,m+j 1 uk,m+j
uk+l,m+j uk,j 1 ul J
2 L’Ik+2,m+j . uk—1,j i 1 u2 J
uN,—l,m+j ul,j 1 uk J



Kronecker product

[1]

I -~ ~
ull 1
1=1, 5 U=|]U|| 2
Define active variable U; = U(fi 0, ) g 5 6 Us /)| 3
for 1<i<2 and 1<)<3 "> 0 U, \| 4
-1=r, ” U, = || Uy 5
0=6, 6 0, 6,=nx Uy )| 6

- J

Separation of variable: assume matrix A acts on r-dir and matrix B acts on @ —dir

(Au) <rl’(9j) =[a“ aﬂj(u“j is independent of |
Ay 9y UZ,J'
(r.6)) (b: b, by)fu,
(Bu) (ri,ez) =lb, b, by|lu,| is independent of |
(ri’93) b31 bBZ b33 l"Ii,3

a
Let X = (_1) e R® be row-major
u2

index of active variable



Kronecker product  [2]

B B
Kronecker product is defined by A® B = [a“ %o ]e R

a,B a,B

(A®E)X :(anB alZBJ(Uljz(anBUﬁalzBuzj

a,B a,B)l0, a,,Bu, +a,,B0,
Case 1. A=
B (ri"91) bu b12 b13 ui,l
(I@B)X:[B l] — (BU) (ri"gz) =|b, b, b, U,

a
i (ri’93) b31 b32 b33 U 3
Case 2: B=1

Uy Uy,

A | Uy [T, Uy
(A®I)X:[allul+31202j: U Uzs o (Au) (rl’el) :(
a21ul + aZZGZ Uy Uy, I, (9j

Q| Uy [T 8| Uy

U Ups



Kronecker product  [3]

Case 3: permutation, if permute 6, <> 6,

Ia [ a
_ 1=r
1—r0 2 r-0 2 3
I 1
5 |6 4 |5 |6
T sy
1=, 0, 1=, >
0=6, 6, 6, 6,=nr 0=6, 6 6, 9,=x
|| I
/u11\ /Un \ i
U, U, :Re U, i
¥ u P=(132) _ (g u i
fj: ” ! . X:[%j: ’ = (I®P)X= i
Y Uz U, Uz1 i ’ P,u
Uy, Uy, :F)e U, i
\u23/ Kuzz Y, i




Case 4: A=diag(a,,a,)

Kronecker product

[4]

by
0y,
oy,

b
0y,
by,

|

U,
U, | |
U,

u2,l
u2,2
u2,3




Non-active variable - active variable [1]

1 1
urr+?ur+r—2u%=—/12u,on re[-11] and 0€[0,27]

N. =2k+1 isodd, and N, =2m is even, then

I :cos(li): 1<i<k
Active variable is { N,

. . ,thatis r >0, 0<0 <2
0 =jA0: 1<j<N, TR ST AT

v Total numberis kN,, NOT (N, —1)-N,

= = 1
Dﬁ,ru+F D, u, t D, u=-2%

Note that differential matrix Dy is of dimension (N, +1)

,acts on u(r=+1)=0 &

Neglect due to B.C.




Non-active variable - active variable

2]

4 N

~ ~

However D and D,

act on
r uk+l, ]

r

5, NOT active variable, how

uk+2,j
: to deal with?

uNr _1: ]
o J

From previous discussion, we have following relationships which can solve this problem

where (k:-1:1) is a permutation matrix

uk+1, i uk,m+ i ul, MH uk+l, M | uk, i ul, i
u - u - u - u - u, .. u, .
k+2, k-1, 2, k+2, k-1, 2,
Y M =(ke-1)) T ang e S=(ki-11)) Y
L‘IN,—l,j u1,m+j uk,m+j L‘IN,—l,m+j u1,j uk,j




Non-active variable - active variable [3]

11>

Recall U U(ri,é’j) for 1<i<N -1 and 1< <N,

~

Consider Chebyshev differential matrix D, actson U and evaluate at (ri,ej)

(D, yu)(r.6,)=(i—rowof D, )-u(+6;)

We write in matrix notation

a )
U ;
r>0 r<0 UZ.,J' > 1 >0
(Dr,N,u)(ri’Hj):(di,l d, -+ Oy |G o di,N,—l) U ; )
uk+1,j )
uk+2,j
: > <0
Un, 1,
N -

Question: How about if we arrange equations on (ri,ej) Vi when fixed |



Non-active variable = active variable [4]

r>0 r<o0
r,0.
j
( ) 11 d12 o dl,k dl,k+1 dl,k+2 o dl,N, -1
r,,o.
2 J) d21 d22 d2,k d2,k+1 d2,k+2 dZ,Nr—l
<[~) u) (rk’ej) _ dy s d, - Oy dy i1 epiz o dk,Nr—l
N, 3
(rk+1,t9,-) ers Gean 0 Do | Gegpr Ggee o dk+1,Nr—1
Mo Qj k-.|-2,1 k+2,2
9 dNr—l,l dNr—1,2 dNr—l,k dNr—l,k+1 dNr—l,Nr—l
(rv,4:6,)

abbreviate D, :(E’Ej
- K | K

We only keep operations on active variable u(r >0,0)
That is, only consider equation ([3Nru)(ri,9j) for >0

Later on, we use the same symbol D, =(E, E,)

r>0

r<o0




Non-active variable - active variable [5]

| | | 1
Define permutation matrix P = ((1: k),(Nr -1:-1: k+1)) = y
4 N !
4 N
U U
u, i UZ’J-
Plul(r,od. u .
U, - ’
Let u(r,é?j)s K, | ( ( J)) g K, |
U1, U me
uk+.2,i uz'f“” » Active variable with the same
: : indexing in r-direction
uNr—l,j Ui me
2 _/

NS -/ Ug me
- l"lk—l,rmrj

u1,m+j




Non-active variable - active variable

Moreover, we modify differential matrix according to permutation P by

Dy, (u(r,ej))=(5N, PT)(P“(r’gj))
r>0 r<o0

d11 dlZ dl,k dl,N 1T dl,k+2 dl,k+1

r

_ d - d d . d d
where DN pT — 21 22 2,k 2,N, -1 2,k+2 2,k+1

dk,l dk,2 dk,k dk,N,—l dk,k+2 dk,k+1

such thatfor 1< j<m

ul,j u1,m+j
(5,,u)(r.6)=E| 2 |+&| *™| and (B,,u)(r.6n,)=E
I uk,j uk,m+j

| Evaluated at ((rl,ej ),(rz,ej ),.--,(rk,ej ))

[6]

-(& E)
u1,m+j
u2,m+j +E
2
uk,m+j




Non-active variable = active variable [7]

ul,l u1,2 e ul,m u1,m+1 ul, m+2 Tt u1,2m
i~ u2,1 uz,z e u2,m ~ u2,m+l u2,m+2 o u2,2m
(Dr,Nru)((r,81),(r,02),---,(r,<9m))=E1 S THE| .
uk,l uk,2 e uk,m uk,m+1 uk,m+2 o uk,2m
ul,m+l ul,m+2 e u1,2m u1,1 u1,2 o ul,m
= uz,m+1 uz,m+2 o u2,2m ~ u2,1 u2,2 o uz,m
r,N Yl ) YYm+2 ) ! 1H2m - . . . 2 : . :
(D U)((F1Ops) (1 60s) (1 6,)) = Er| 7 +E
uk,m+1 uk,m+2 e uk,2m uk,l uk,2 o uk,m
T T
i1 Ui mia U, \A
- ui 2 ui m+2 : : UT VT
define U=l | V= " and active variable X :(xl xz), X, = 2, X, = 2
T T
Ui m Ui 2m U, V,

To sum up ([N)r,Nru)((r,6’1),---,(r,6'2m))= E (X, 1X,)+E (X, 1%,)




Non-active variable - active variable [8]

Note that under row-major indexing, memory storage of X =(X, X,)=

. T
s mem(X)=(U] V" U] [V, [ JUT IV ] U V)

i
but - mem(X, | X,)= (V" U [V, [U] |-+ V] U] |-V Uy

|
If we adopt Kronecker products, then mem(X, | X, )= {I ’ @[I m)}mem(X)

N R L N L P T

ailB alZB ainB
B B ... B
Definition: Kronecker product is defined by A@ B = alf % . azn

a.B a,B - a,B




Non-active variable - active variable [9]

The same reason holds for second derivative operator

4
O
N
=z
[l
—~
O
O
N
N—
4
(WH
- N

1 8 Im Im
—— >R @ E @
we have . — {Ei ( |mj+ ) (lm ]}

1/,
where R-= 1, . _dlag[ll ,ij
. I

1/,




Non-active variable - active variable [10]

We write second derivative operator on & —direction as

( 2
—%—% j=0(mod N)
DjNgz(S,(f)(xk—xj)) where S(\Iz)(xj):< N
- (2_) , j#0(modN)
| 2sin®(jh/2)

for 1<i<k, 1<j<2m (r, >0)

(D2 y,u)(r.6,)=j—rowof <D}, ui:’z .= j—row of { Dj,Na(

9l

i,2m
U,
2 2 ui,z 2 Ui . . 1 2 1 2 Ui
SO (D )(r,,é’) DeNg f :DeN v implies r_ZDH,Nau (ri’g):r__zDe,Ng v
U




Non-active variable - active variable [11]

1 U, 1
r_2 Dg!Ne V o D;,Ng
1 1 f

(1.9) 1 U 1

,,0)| | =D2 | ? —D,

(I’iz D€27N9uj ( 21 ) = r22 7N Vz - r22 o

(1. 0) '
iDZ Uy %Dz
rk2 o:No V, e

If we adopt Kronecker products, then

(1.,0)

[riz D;Nguj (rzge) =(R ®D;,, Jmem(X)

(. 0)




Non-active variable - active variable [12]
summary

1 (ij,,\,ru)

—

(r,&l),---,(r,HZm)):{Dl@(lm Imjmz@(lm Im]}mem(x)

Lo (toaufta) o) -rles( | Jigs|, " g

(r..0)
s (o] 7 |=(R o0z, Jmem(x)
(r.0)
Note that (r.,0) (r.6) (n.6,) - (1,6,

—~

((r.6) (16) - (r.6.))= (r2;6’) _ (rz,:ﬁl) (rz.,ol.%) r2,:02m)

(rkle) (rk,.el) (r.6,) (rk,;92m)

so that all three system of equations are of the same order.



Non-active variable - active variable [13]

u, +%Ur +ri2u€9 - —4%u ,on re[-L11] and 6€[0,27]
J Discretization on mem(X)

L-mem(X)=-2°mem(X)

v L-foo( | Jooef, “lonfec(t |, oo, ")

+(R@D;j,, |
I I
:(D1+RE1)®[ " | j+(D2+RE2)€r)[I mj+(R2@D§,N9)
1/,
where R-= 1, = diag i 1 ..’l
Lr,or
1/,



Example: program 28

Au=-2’u  with boundary condition u(r=1,6)=0

N, =25 isoddand N,=20 iseven, leteigen-pair be (4,V,)

| |
sparse structure of L:(D1+RE1)@( " ]+(D2+RE2)@(| m]+(RZ@D§,N9)

N, -1

100 Dimension : N, =12x20 =240

150




Example: program 28 (mash plot of eigenvector)

1 Eigenvalue is sorted, monotone increasing and normalized to first eigenvalue

A< < <A <

V,
2 Eigenvector is normalized by supremum norm, Vi <—W
koo

Mode 1 Maode 3 Mode & Mode B

Made 10
= a=1.5933405057 A= 213554§ = Made 8 0
A.=1.0000000000 o h=27954173674 A= 2 BEI0RRA045 A= 20172054551

, =5.7832 A,=2,=14682  1,=1=263746  1,=304713 A, =1 =40.7065 A, =1, =42.2185



Example: program 28 (nodal set)

Mode 1
A= 10000000000 Mg S 33405057

Mode 3
A=1

Mode 5
5033405057 Mode e iaTa6E A= 2.1 355487866

C e O & &

hlode 7 hode & mode hlode 110
;rtﬂgdfzagsm TIGT4 A=2 6530664045 A= 2 A530664045 A=29172954551 A=2.9172954551

o O e | &= &=

hode 11 Mode 12 hode 13 Mode 14 Mode 15
A= 31554648154 A=31554648154 A= 35001474903 A=350014745903 A=3.59848467 39

e S e & &

Mode 17 Mode 149
Rﬂgdfauﬁmm 17491 A= 364745117481 ;,ngdfu15899313333 A=4.0539318833

o o & &=

Mode 20 Mode 21
=4 A=413173815493

o S

hode 23 ; Mode 23 :
A=4.2304391279-0.0000000000i =4 2304299 279+0.0000000000i

== &




Exercise 1
Au=-2%u  onannulus {1<r<2} with boundary condition u(r=21,2)=0

N, =25 isoddand N,=20 iseven, leteigen-pair be (4,V,)

r=1+——

Chebyshev node on xe[-11] > Chebyshev node on {l1<r <2}

L=(D?, +RD,, @I, +(ReD;, )

2 T T T
\ i P,
% i &
\ : ’
15k s
-, ", 5 3 § -
1+ W v b
.o. \ f
"'o. \ ’ e
0&-
Rl -
DnoOoooo LR L T N T T
...d‘ gy
OEF e’
- -~ o, -
& N,
1 ¥ § %
” : -
16k p : \
] E 1Y
. F] § A



1 Eigenvalue is sorted, monotone increasing and normalized to first eigenvalue

2 Eigenvector is normalized by supremum norm, Vi <

hode 1
A=1.0000000000

Mode &
L=1E250183585

Exercise 1 (mash plot of eigenvector)

Mode 2
A=1.08398338468

Mode 7
r=162501583585

hode 3

A=1.08933358468

Mode 8
A=18621022820

Vi

M.

Mode 4
A=1.32002789731

Mode &
A=19621022320

||||

i
"!Il-lll'
Wi =
-!-'.'.': I'III I, %
:.:.__.!I

i

Mode &
A=1.32002797 31

Maode 10
A=2.0000000000




