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Discretization on unit disk
Consider eigen-value problem on unit disk 

2u uλ∆ = − with  boundary condition ( )1, 0u r θ= =
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, and non-periodic Chebyshev grid in    rUsually we take periodic Fourier grid in  θ
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Observation: nodes are clustered near origin    0r = , for time evolution problem,   

we need smaller time-step to maintain numerical stability.   
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Asymptotic behavior of spectrum of Chebyshev diff. matrix

2
ND�In chapter 10, we have showed that spectrum of Chebyshev differential matrix 

(second order) approximates 
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2

2
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Since ppw is too small such that 

resolution is not enough

Mode N is spurious and localized near 
boundaries 1x = ±



Grid distribution

[ ]0,1r∈ [ ]1,1r∈ −1 2



Preliminary: Chebyshev node and diff. matrix   [1]

Consider  1N + Chebyshev node on  [ ]1,1− ,  cosj
jx
N
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Preliminary: Chebyshev node and diff. matrix   [2]

Given  1N + Chebyshev nodes   ,  cosj
jx
N
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and corresponding function value   jv
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Preliminary: Chebyshev node and diff. matrix   [3]

Let  ( )p x be the unique polynomial of degree   with   N≤ ( )1 0p ± = and  ( )j jp x v=

define    0 j N≤ ≤( )j jw p x′′= and  ( )j jz p x′= for  
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Preliminary: DFT        [1] 

Given a set of data point  { }1 2, , , N
Nv v v R∈" with   2N m= is even,  
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( )
1

2ˆ exp
N

k j j
j

v v ikx
N
π

=

= −∑ for   , 1, , 1,k m m m m= − − + −"

( )
1

1 ˆ exp
2

m

j k j
k m

v v ikx
π =− +

= ∑ for   1,2, ,j N= "
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Preliminary: DFT        [2] 

Direct computation of derivative of   ( ) ( )
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Preliminary: DFT        [3] 
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Fornberg’s idea : extend radius to negative image  [1]

[ ]1,1r∈ − [ ]0, 2θ π∈( ),  x y unit disk∈ and

5rN = (odd): to avoid singularity of coordinate transformation 0r =1

( ) ( )( )( ), , mod  2u r u rθ θ π π= − +6Nθ = (even): to keep symmetry condition2
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In general
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1r

kr

1kr +

1rNr −

1
rNr− =
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2 1rN k= + 2N mθis odd, and is even, then=

Fornberg’s idea : extend radius to negative image  [2]
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Redundancy in coordinate transformation   [1]

( ) ( )( )( ) ( ), , , mod  2 ,r r x yθ θ π π− + ↔2 to 1 mapping
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Redundancy in coordinate transformation   [2]
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Redundancy in coordinate transformation   [3]
2 1 5rN k= + = is odd, then Chebyshev differential matrix 
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Redundancy in coordinate transformation   [4]

( ) ( ), ,N Ni j N i N j
D D

− −
= −Symmetry property of Chebyshev differential matrix : 
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-3.6944
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Redundancy in coordinate transformation   [5]
2 1 5rN k= + = is odd, then Chebyshev differential matrix 2

rND is expressed as

2
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Redundancy in coordinate transformation   [6]

( ) ( )2 2

, ,N Ni j N i N j
D D
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=Symmetry property of Chebyshev differential matrix : 

2
rND =�

-31.5331

7.3167
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Row-major indexing: remove redundancy      [1]

( ),ij i ju u r θ�

( ) ( )( ),1 ,2 , , 1 , 2 ,, , , , , , ,
T

i i i i m i m i m i Nu u u u u u u
θ+ +

K � " "

1 1ri N j Nθ≤ ≤≤ ≤ − 1Define active variable for and
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u
u
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⎜ ⎟
⎝ ⎠
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⎜ ⎟
⎜ ⎟
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Index order
21
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u
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⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

24
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u
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⎜ ⎟
⎝ ⎠

7
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Index order



2 1rN k= + is odd, and

Row-major indexing: remove redundancy      [2]

0 j k≤ ≤ , then 1 0k j k jr r− + ++ =

cos :   0i r
r

ir i N
N
π⎛ ⎞

= ≤ ≤⎜ ⎟
⎝ ⎠

suppose since
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1
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k j k j k j
r r
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π = +
− + +
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= = − − ⎯⎯⎯⎯→− = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

2 ,
N mθ

π πθ∆ = = :   1j j j Nθθ θ= ∆ ≤ ≤2N mθ = is even, and

( )( )mod 2m j jθ π π θ+ + =Hence for and
j m jθ π θ ++ =1 ,j m≤ ≤

0 1r =1rkr01kr +1rNr −1
rNr− =

r
k jr −1k jr + +

1 0k kr r ++ =

1 0k j k jr r− + ++ =

1 1 0
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Row-major indexing: remove redundancy      [3]

( ) ( )( )( )1 1, , mod 2k i j k i ju r u rθ θ π π+ + + += − +From symmetry condition, we have

( ) ( )1 , ,k i j k i m ju r u rθ θ+ + − +=

0 i k≤ ≤for 0 j m≤ ≤ , symmetry condition impliesand
( ) ( )1 , ,k i m j k i ju r u rθ θ+ + + −=

Therefore, we have two important relationships

1, , 1,

2, 1, 2,

1, 1, ,

1
1

1
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k j k m j m j

k j k m j m j
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u u u
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u u u

+ + +

+ − + +

− + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

# # #$
1

1, , 1,
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1
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1
r
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N m j j k j

u u u
u u u

u u u
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− +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

# # #$
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θ

r

01 r=

1r

2r

31 r− =

00 θ= 1θ 2θ 3θ π=

Kronecker product      [1]

1 2 3

4 5 6

11

12

13

u
u
u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

21

22

23

u
u
u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1u =K

2u =K

1

2
( ),ij i ju u r θ�

1 2i≤ ≤ 1 3

Define active variable 3

4j≤ ≤andfor

5
6

Separation of variable: assume matrix A acts on r-dir and matrix B acts on   dirθ −

( )
( )
( )

1 1,11 12

2,21 222

,

,

j j

jj

r ua a
Au

ua ar

θ

θ

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
is independent of j

( )
( )
( )
( )

1 11 12 13 ,1

2 21 22 23 ,

3 31 32 33 ,3

,
,
,

i i

i i

i i

r b b b u
Bu r b b b u

r b b b u

θ
θ
θ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

i

Let 1 6

2

u
X R

u
⎛ ⎞

= ∈⎜ ⎟
⎝ ⎠

K
K be row-major 

index of active variable 2 is independent of 



Kronecker product      [2]

11 12 6 6

21 22

a B a B
A B R

a B a B
×⎛ ⎞

⊕ ≡ ∈⎜ ⎟
⎝ ⎠

Kronecker product is defined by 

( ) 11 12 1 11 1 12 2

21 22 2 21 1 22 2

a B a B u a Bu a Bu
A B X

a B a B u a Bu a Bu
+⎛ ⎞⎛ ⎞ ⎛ ⎞

⊕ = =⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠⎝ ⎠ ⎝ ⎠

K K K
K K K

Case 1:  A I=
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1 11 12 13 ,1

2 21 22 23 ,2

3 31 32 33 ,3

,
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,

i i

i i

i i

r b b b u
Bu r b b b u

r b b b u

θ
θ
θ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
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2

Bu
I B X
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⎛ ⎞

⊕ = ⎜ ⎟
⎝ ⎠

K
K
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11 21

11 12 12 22

13 2311 1 12 2

21 1 22 2 11 21

21 12 22 22

13 23

u u
a u a u

u ua u a u
A I X

a u a u u u
a u a u

u u

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟+⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟+⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎜ ⎟⊕ = =⎜ ⎟+ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠
⎜ ⎟ ⎜ ⎟⎜ ⎟+⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

K K
K K ( )

( )
( )

1 1,11 12

2,21 221

,

,

j j

jj

r ua a
Au

ua ar

θ

θ

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠



Kronecker product      [3]

Case 3: permutation, if permute   2 3θ θ↔

θ

r

01 r=

1r

2r

31 r− =

00 θ= 1θ 2θ 3θ π=

1 2 3

4 5 6
θ

r

01 r=

1r

2r

31 r− =

00 θ= 1θ 2θ π=3θ

1 2 3

4 5 6

11

12

13

u
u
u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

21

22

23

u
u
u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

11

13 1

12

u
u P u
u

θ

⎛ ⎞
⎜ ⎟ = ⋅⎜ ⎟
⎜ ⎟
⎝ ⎠

K

21

23 2

22

u
u P u
u

θ

⎛ ⎞
⎜ ⎟ = ⋅⎜ ⎟
⎜ ⎟
⎝ ⎠

K

( )1,3, 2Pθ = 1

2

u
X

u
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

��
�

1

2

u
X

u
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

K
K ( ) 1

2

P u
I P X X

P u
θ

θ
θ

⎛ ⎞
⊕ = =⎜ ⎟

⎝ ⎠

K
�K



Kronecker product      [4]

Case 4:  ( )1 2,A diag a a=

( ) 1 1

2 2

a Bu
A B X

a Bu
⎛ ⎞

⊕ = ⎜ ⎟
⎝ ⎠

K
K

( )
( )
( )
( )

1 1 11 12 13 1,1

1 1 2 1 21 22 23 1,2

1 3 31 32 33 1,3

,
,
,

r b b b u
a Bu r a b b b u

r b b b u

θ
θ
θ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

( )
( )
( )
( )

2 1 11 12 13 2,1

2 2 2 2 21 22 23 2,2

2 3 31 32 33 2,3

,
,
,

r b b b u
a Bu r a b b b u

r b b b u

θ
θ
θ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
2

2

1 1    rr ru u u u
r r θθ λ+ + = −

2
,2 2 2

1 2

1 1 1, , , N
k

diag D
r r r θθ

⎛ ⎞
⊕⎜ ⎟

⎝ ⎠
�"

1i =

2i =



2
2

1 1
rr ru u u u

r r θθ λ+ + = − , on [ ]1,1r∈ − [and ]0,2θ π∈

2 1rN k= + 2N mθ = is even, thenis odd, and

cos :   1i
r

ir i k
N
π⎛ ⎞

= ≤ ≤⎜ ⎟
⎝ ⎠

:   1j j j Nθθ θ= ∆ ≤ ≤
Active variable is

Total number is ,kNθ NOT ( )1rN Nθ− ⋅

Non-active variable active variable       [1]

0,  0 2i jr, that is θ π> < ≤

2 2
2

1 1
r rN N r ND u D u D u u

r r θ
λ+ + = −� �

x

y
1θ2θ

3θ

4θ 5θ

6θ( )1 0u r = ± =

Note that differential matrix 
rND ( )1rN +is of dimension

0,

1,

1,

,

r

r

j

j

N j

N j

u
u

u

u
−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

# Neglect due to B.C.
,acts on



Non-active variable active variable       [2]

2
rND�

rND�

1,

2,

,

j

j

k j

u
u

u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

1,

2,

1,r

k j

k j

N j

u
u

u

+

+

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

However and act on

NOT active variable, how 
to deal with?

From previous discussion, we have following relationships which can solve this problem

( )

1, , 1,

2, 1, 2,

1, 1, ,

: 1:1

r

k j k m j m j

k j k m j m j

N j m j k m j

u u u
u u u

k

u u u

+ + +

+ − + +

− + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

# # # ( )

1, , 1,

2, 1, 2,

1, 1, ,

: 1:1

r

k m j k j j

k m j k j j

N m j j k j

u u u
u u u

k

u u u

+ +

+ + −

− +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

# # #⎟ and

( ): 1:1k −where is a permutation matrix 



Non-active variable active variable       [3]

( ),ij i ju u r θ� 1 1ri N j Nθ≤ ≤≤ ≤ − 1Recall for and

and evaluate at  ( ),i jr θConsider Chebyshev differential matrix , rr ND� acts on  u

( )( ) ( ) ( ), ,, row of  ,
r rr N i j r N jD u r i D uθ θ= − ⋅� � i

We write in matrix notation  

( )( ) ( ), ,1 ,2 , , 1 , 2 , 1,
r rr N i j i i i k i k i k i ND u r d d d d d dθ + + −=� " "

0r > 0r <

1,

2,

,

j

j

k j

u
u

u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

1,

2,

1,r

k j

k j

N j

u
u

u

+

+

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

0r >

0r <

Question: How about if we arrange equations on   ( ),    i jr iθ ∀ when fixed  j



Non-active variable active variable       [4]

( )

( )
( )

( )
( )
( )

( )

1
11 12 1, 1, 1 1, 2 1, 1

2
21 22 2, 2, 1 2, 2 2, 1

,1 ,2 , , 1 , 2 , 1

1,1 1,2 1,1

2

1

,

,

,

,

,

,

r

r

r

r

r

j
k k k N

j
k k k N

k j k k k k k k k k k N
N

k k k kk j

k j

N j

r
d d d d d d

r d d d d d d

r d d d d d d
D u

d d d dr

r

r

θ

θ

θ

θ

θ

θ

+ + −

+ + −

+ + −

+ + ++

+

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

=⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

" "

" "
# # " % # " " % #

" "�
"

#

1, 1 1, 2 1, 1

2,1 2,2

1,1 1,2 1, 1, 1 1, 1

r

r r r r r r

k k k k k N

k k

N N N k N k N N

d d

d d

d d d d d

+ + + + + −

+ +

− − − − + − −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

"
" # # " " #

# " % # " " % #
" " "

1,

2,

,

j

j

k j

u
u

u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

1,

2,

1,r

k j

k j

N j

u
u

u

+

+

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

,

1,

1,

k m j

k m j

m j

u
u

u

+

− +

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

0r >

0r >

0r <

0r <

We only keep operations on active variable ( )0,u r θ>

( ), ju r θ

That is, only consider equation ( )( ),
rN i jD u r θ� for 0ir >

1 2

3 4
rN

E E
D

E E
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

�abbreviate 

( )1 2rND E E=�Later on, we use the same symbol



Non-active variable active variable       [5]

Define permutation matrix ( ) ( )( ) 1
1: , 1: 1: 1

1

r

I

P k N k

⎛ ⎞
⎜ ⎟
⎜ ⎟= − − + =
⎜ ⎟
⎜ ⎟
⎝ ⎠

$ k

k

1,

2,

,

j

j

k j

u
u

u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

1,

2,

1,r

k j

k j

N j

u
u

u

+

+

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

( )( ), jP u r θ

1,

2,

,

j

j

k j

u
u

u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

1,

2,

,

m j

m j

k m j

u
u

u

+

+

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

,

1,

1,

k m j

k m j

m j

u
u

u

+

− +

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

( ), ju r θ ≡Let 

Active variable with the same 
indexing in r-direction
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Moreover, we modify differential matrix according to permutation P by

( )( ) ( ) ( )( ), ,
r r

T
N j N jD u r D P Pu rθ θ=� �

( )
11 12 1, 1, 1 1, 2 1, 1

21 22 2, 2, 1 2, 2 2, 1
1 2

,1 ,2 , , 1 , 2 , 1

r

r

r

r

k N k k

k N k kT
N

k k k k k N k k k k

d d d d d d

d d d d d d
D P E E

d d d d d d

− + +

− + +

− + +

⎛ ⎞
⎜ ⎟
⎜ ⎟= =⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

" "

" "� �
# " % # # % # #

" "

0r > 0r <

where

such that for 1 j m≤ ≤

( )( )
1, 1,

2, 2,
, 1 2

, ,

,
r

j m j

j m j
r N j

k j k m j

u u
u u

D u r E E

u u

θ

+

+

+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

� �
# # ( )( )

1, 1,

2, 2,
, 1 2

, ,

,
r

m j j

m j j
r N m j

k m j k j

u u
u u

D u r E E

u u

θ

+

+
+

+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

� �
# #

and

( ) ( ) ( )( )1 2, , , , , ,j j k jr r rθ θ θ"Evaluated at
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( ) ( ) ( ) ( )( )
1,1 1,2 1, 1, 1 1, 2 1,2

2,1 2,2 2, 2, 1 2, 2 2,2
, 1 2 1 2

,1 ,2 , , 1 , 2 ,2

, , , , , ,
r

m m m m

m m m m
r N m

k k k m k m k m k m

u u u u u u
u u u u u u

D u r r r E E

u u u u u u

θ θ θ

+ +

+ +

+ +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

" "
" "� �"

# " % # # " % #
" "

( ) ( ) ( ) ( )( )
1, 1 1, 2 1,2 1,1 1,2 1,

2, 1 2, 2 2,2 2,1 2,2 2,
, 1 2 2 1 2

, 1 , 2 ,2 ,1 ,2 ,

, , , , , ,
r

m m m m

m m m m
r N m m m

k m k m k m k k k m

u u u u u u
u u u u u u

D u r r r E E

u u u u u u

θ θ θ

+ +

+ +
+ +

+ +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

" "
" "� �"

# " % # # " % #
" "

,1

,2

,

,

i

i
i

i m

u
u

U

u

⎛ ⎞
⎜ ⎟
⎜ ⎟≡ ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

, 1

, 2

,2

i m

i m
i

i m

u
u

V

u

+

+

⎛ ⎞
⎜ ⎟
⎜ ⎟≡ ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

# ( )
1 1

2 2
1 2 1 2,  ,   

T T

T T

T T
k k

U V
U V

X X X X X

U V

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

# #
define and active variable 

( ) ( ) ( )( ) ( ) ( ), 1 2 1 1 2 2 2 1, , , , | |
rr N mD u r r E X X E X Xθ θ = +� "To sum up
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( )
1 1

2 2
1 2

T T

T T

T T
k k

U V
U V

X X X

U V

⎛ ⎞
⎜ ⎟
⎜ ⎟= = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

# #

( ) ( )1 1 2 2| | | | | | | | |
TT T T T T T T T

j j k kmem X U V U V U V U V= " "

Note that under row-major indexing, memory storage of 

is

( ) ( )2 1 1 1 2 2| | | | | | | | | |
TT T T T T T T T

j j k kmem X X V U V U V U V U= " "but

( ) ( )2 1| m
k

m

I
mem X X I mem X

I
⎧ ⎫⎛ ⎞⎪ ⎪= ⊕ ⋅⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

If we adopt Kronecker products, then 

( ) ( ) ( )( ) ( ), 1 2 1 2, , , ,
r

m m
r N m

m m

I I
D u r r E E mem X

I I
θ θ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= ⊕ + ⊕⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

� "

11 12 1

12 22 2

1 2

n

n

m m mn

a B a B a B
a B a B a B

A B

a B a B a B

⎛ ⎞
⎜ ⎟
⎜ ⎟⊕ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

"
"

# " % #
"

Definition: Kronecker product is defined by
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The same reason holds for second derivative operator

1 22
,

3 4
rr N

D D
D

D D
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

�

( ) ( ) ( )( ) ( )2
, 1 2 1 2, , , ,

r

m m
r N m

m m

I I
D u r r D D mem X

I I
θ θ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= ⊕ + ⊕⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

� "

( )2
, 1 2rr ND D D=�

0r

neglect equation on 

<
( )2

, 1 2r

T
r ND P D D=� �

then 

( ) ( ) ( ), ,
1 1, row of matrix 

r r

T
r N i j r N

i

D u r i D P
r r

θ⎡ ⎤ = × −⎢ ⎥⎣ ⎦
� � collect equations on each :1ir i k≤ ≤

1 2
1 m m

m m

I I
R E E

I Ir r
⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ⎪ ⎪→ ⊕ + ⊕⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

we have

1

2

1 2

1/
1/ 1 1 1, , ,

1/
k

k

r
r

R diag
r r r

r

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

"
%

where 
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directionθ −We write second derivative operator on as

( ) ( )
( )

( )
( ) ( )

2

2
2

2

1            0 mod    
6 3

1
,   0 mod

2sin / 2

jN j

j N
h

S x
j N

jh

π⎧
− − =⎪
⎪= ⎨ −⎪− ≠⎪⎩

( ) ( )( )22
,N N k jD S x x

θθ ≡ − where

( )1 ,  1 2   0ii k j m r≤ ≤ ≤ ≤ >for

( )( )
,1

,22 2 2
, , ,

,2

, row of   row of   

i

i i
N i j N N

i

i m

u
u U

D u r j D j D
V

u

θ θ θθ θ θθ

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ⎧ ⎫⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟= − = −⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎪ ⎪⎝ ⎠⎩ ⎭⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

#

( )( )

,1

,22 2 2
, , ,

,2

,

i

i i
N i N N

i

i m

u
u U

D u r D D
V

u

θ θθ θ θθ

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠

#
( )2 2

, ,2 2

1 1, i
N i N

ii

U
D u r D

Vr rθ θθ θθ
⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
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If we adopt Kronecker products, then 
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summary 
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so that all three system of equations are of the same order. 
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Discretization on ( )mem X
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where 



Example: program 28

2u uλ∆ = − with  boundary condition ( )1, 0u r θ= =

25rN = ( ),k kVλis even, let eigen-pair beis odd and 20Nθ =

( ) ( ) ( )2 2
1 1 2 2 ,

m m
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m m

I I
L D RE D RE R D

I I θθ
⎛ ⎞ ⎛ ⎞

= + ⊕ + + ⊕ + ⊕⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

sparse structure of  

Dimension :  
1 12 20 240

2
rN Nθ
−

= × =



Example: program 28 (mash plot of eigenvector)

1 Eigenvalue is sorted, monotone increasing and normalized to first eigenvalue

1 2 nλ λ λ≤ ≤ ≤ ≤" "

Eigenvector is normalized by supremum norm, k
k

k

VV
V

∞

←2

1 5.7832λ = 2 3 14.682λ λ= = 4 5 26.3746λ λ= = 6 30.4713λ = 7 8 40.7065λ λ= = 9 10 42.2185λ λ= =



Example: program 28 (nodal set)



Exercise 1

2u uλ∆ = − with  boundary condition ( )1,2 0u r = =

25rN = is odd and 20Nθ = is even, let eigen-pair be ( ),k kVλ

{ }1 2r< <on annulus 

{ }1 2r< <[ ]1,1x∈ −Chebyshev node on Chebyshev node on

11
2

xr +
= +

( ) ( )2 2 2
, , ,r rr N r N N NL D RD I R D

θ θθ= + ⊕ + ⊕� �



Exercise 1 (mash plot of eigenvector)
1 Eigenvalue is sorted, monotone increasing and normalized to first eigenvalue

1 2 nλ λ λ≤ ≤ ≤ ≤" "

Eigenvector is normalized by supremum norm, k
k

k
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∞

←2


