
Chapter 1 Spectral method in Matlab 
 
Centered second-order and 4-th order finite difference on uniform grid 
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We can use another representation to derive this formula, consider polynomial interpolation 

( )jp x  with degree  for smooth  over 2≤ u 1 1,j jx x− +⎡ ⎤⎣ ⎦ .  

( ) ( ) ( ) ( )1 1 0 1 1j j j jp x u a x u a x u a x− − += + +  

satisfying ( )1 1j j jp x u− −= ,  and ( )j jp x u= j ( )1j j jp x u 1+ += . In other words, 

 are Lagrange polynomial satisfying ( ) ( ) ( )1 0 1, ,a x a x a x−
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we know  
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If we write 1

2
j j

j

u u
w

h
+ −

= 1−  or 2 1 18 8
12

j j j j
j

u u u u
w

h
2+ + − −− + − +

= , then general matrix form can 

be represented as , see Figure 1 and Figure 2. In fact matrix w Au= A  is skew symmetry, say 

, this can be obtained from antiHermitian of operator TA A= −
d
dx

 under periodic boundary 
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condition through integration by parts. 
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Figure 1: matrix representation of 1 1
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Figure 2: 2 1 18 8
12

j j j j
j

u u u u
w

h
+ + −− + − +

=  2− with periodic boundary condition. 

 

From 1 1

2
j j

j

u u
w

h
+ −−

= , we have ( ) 1, 1
2

A j j
h

+ =  and ( ) 1, 1
2

A j j
h
−

− = . In fact if we want to 

y do is to construc gle part use Matlab as platform, what we onl t trian R  of A , then 
TA R R= − . Moreover we can use ”sparse matrix representation” in Matlab to construct matrix 

R . (how to construct R : please see source code p1.m in Example 1) 
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Figure 3: document of sparse matrix representation in Matlab. 
 

 
Example 1: try  over ( ) ( )(exp sinu x x= ) [ ],π π−  by using 4-th order finite difference 
scheme. Matlab script: F:\course\2008spring\spectral_method\matlab\p1.m. 
In this example we use , test convergence rate of 8,16,32, , 4048N = " hD u u

∞
′− , result is 

shown in Figure 4. 

 

Figure 4: log-log plot for hD u u
∞
′− , note that it is clear ( )4O h  

 
 

Example 2: try  over ( ) ( )(exp sinu x x= ) [ ],π π−  by using spectral method. 

We plot error for hD u u
∞
′−  and 

2hD u u′− .  

Question 1: dots in Figure 5 and Figure 6 lies in pair, means that error of , 
… are almost the same, why? (Note that this pair phenomenon occurs even we 

use

8,10n =
12,14n =

2hD u u′− ).   
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Figure 5: ”spectral accuracy” of the spectral method, it achieve machine accuracy. Sup-norm 

 

Figure 6: ”spectral accuracy” of the spectral method, it achieve machine accuracy. 2-norm 
 

Table 1: we list the value of pair ( 2L err− ) 

 4,6n =  8,10n =  12,14n =  
2L err−  0.24777190419502 

0.33078448076569 
0.00871672632422 
0.00864342870238 

0.94197188122419E-4 
0.84097522689018E-4 

 
 16,18n =  20, 22n =  24, 26n =  

2L err−  0.50008967910710E-6 
0.42247516569957E-6 

0.15812146492563E-8 
0.12910423145203E-8 

0.33254794093191E-11
0.26512109052603E-11
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Table 2: we list the value of pair ( L err∞ − ) 

 4,6n =  8,10n =  12,14n =  

L err∞ −  0.17520119364380 
0.16307358056713 

0.00431791109859 
0.00316947217836 

0.38249095565268E-4 
0.25253568612049E-4 

 
 16,18n =  20, 22n =  24, 26n =  

L err∞ −  0.17618931913432E-6 
0.10953028789507E-6 

0.49879544938847E-9 
0.29827984526776E-9 

0.97200025805932E-12 
0.59258153939368E-12 

 

Table 3: we list the value of pair ( L err∞ − ) for arprec 128 digits  

28,30n =  1.32624221983015620680098434362948e-15 
7.56612859983412967818296086049246e-16 

32,34n =  1.39095872807168126193852953110517e-18 
7.81451569905447385343012380339833e-19 

36,38n =  1.14244909925972473070099230882981e-21 
6.34086538799698880852642854985210e-22 

40, 42n =  7.54806757417172375166373940244838e-25 
4.14826359601086676154821757222175e-25 

44, 46n =  4.09864701833461299055736676547760e-28 
2.23423056735975763167625559605640e-28 

48,50n =  1.86164252456817011022120353206289e-31 
1.00786673375963438339376505661880e-31 

52,54n =  7.17767982003012719000648270914229e-35 
3.86321334725399173651104700894601e-35 

56,58n =  2.37854454643974045195143562239834e-38 
1.27374376983182194482918312198058e-38 

60,62n =  6.84730032444346812021198287838704e-42 
3.65071328394049314224342346654448e-42 

64,66n =  1.72836808647069444865147310660496e-45 
9.17936617551766050908476538695563e-46 

68,70n =  3.85647559072931642402400673411656e-49 
2.04115689771413325003291669779317e-49 

72,74n =  7.66124774385363632507038345929950e-53 
4.04254667547222108076077515483580e-53 

76,78n =  1.36375587422112860698500475832273e-56 
7.17625294246753762277314925189095e-57 

80,82n =  2.18769132299786362708446911624823e-60 
1.14833541792638712588483843196297e-60 

84,86n =  3.17896250168716103543670487976991e-64 
1.66490575382791587484894062926081e-64 

88,90n =  4.20398304881730575304253164828023e-68 
2.19721922822932053740570006526006e-68 

92,94n =  5.08108143833400125413169287191248e-72 
2.65065013672443604039455837009901e-72 

96,98n =  5.63449984243390032676388653577986e-76 
2.93428197672848600468452855610906e-76 
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Table 4: we compute Fourier component  for 
1

ˆ j
N

ikx
k j

j
v h e v−

=

= ∑ 0,1, 2, ,k m= " ,  

since . Since , we represent it as two value, real part (top value) and 
imaginary part (bottom value) 

2N m=

ˆ ˆ ˆk k Nv v v∗
− −= = k ˆkv C∈

 8n =  10n =  12n =  14n =  

0̂V  
7.95492777270178 

0 

7.95492651755339 

0 

7.95492652101937 

0 

7.95492652101284 

0 

1̂V  
0 

-3.55100946128190 

0 

-3.55099934367285 

0 

-3.55099937850296 

0 

-3.55099937842424 

2̂V  
-0.85306906632123 

0 

-0.85292713831639 

0 

-0.85292776589386 

0 

-0.85292776416086 

0 

3̂V  
0 

0.14099397515943 

0 

0.13927827358326 

0 

0.13928835644092 

0 

0.13928832168940 

4̂V  
0.03439566712026 

0 

0.01705653312949 

0 

0.01719845940133 

0 

0.01719783182714 

0 

5̂V  
 eps 

eps 

0 

-0.00171570149744 

0 

-0.00170561863991 

6̂V  
  -0.00028260085474 

0 

-0.00014067458291 

0 

7̂V  
   eps 

eps 

 
 
 16n =  18n =  20n =  22n =  

0̂V  
7.95492652101284 

0 

7.95492652101284 

0 

7.95492652101284 7.95492652101285 

1̂V  
0 

-3.55099937842436 

0 

-3.55099937842436 

0 

-3.55099937842436 

0 

- 3.55099937842436 

2̂V  
-0.85292776416412 

0 

-0.85292776416412 

0 

-0.85292776416412 

0 

-0.85292776416412 

0 

3̂V  
0 

0.13928832176800 

0 

0.13928832176787 

0 

0.13928832176788 

0 

0.13928832176788 

4̂V  
0.01719783356013 

0 

0.01719783355686 

0 

0.01719783355687 

0 

0.01719783355687 

0 

5̂V  
0 

-0.00170565339142 

0 

-0.00170565331282 

0 

-0.00170565331295 

0 

- 0.00170565331295 

6̂V  
-0.00014130215710 

0 

-0.00014130042411 

0 

-0.00014130042738 

0 

-0.00014130042737 

0 
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7̂V  
0 

0.00001008285753 

0 

0.00001004810602 

0 

0.00001004818462 

0 

0.00001004818449 

8̂V  
0.00000125168893 

0 

0.00000062411474 

0 

0.00000062584773 

0 

0.00000062584446 

0 

9̂V  
 Eps 

Eps 

0 

- 0.00000003475152 

0 

-0.00000003467292 

10V̂  
  -0.00000000345946 

0 

-0.00000000172646 

0 

11V̂  
   Eps 

Eps  

 
In order to avoid confusion in discussion, we define ( )ˆ n

kV  as Fourier component  for degree 
. Then we have some observations 

k̂V
n
(O1) ( )

2 1
ˆRe 0n

kV + =  and ( )
2̂Im 0n

kV =  up to machine accuracy, this matches continuous 
counterpart, see Lemma 2. Note that in the proof of Lemma 2, we use ( ) ( )sin sinx xπ − =  

and claim  and 

.  

( ) ( )
/ 2sin sin

/ 2 0
sin 2 sin 2x xe kx dx e kx

π π

π
= −∫ ∫ dx

dx( )( ) ( )( )/ 2sin sin

/ 2 0
cos 2 1 cos 2 1x xe k x dx e k x

π π

π
+ = − +∫ ∫

j =10

j = 1

j = 2j = 3

j = 4

j = 5

j = 6

j = 7 j = 8

j = 9

j =12

j = 1

j = 2
j = 4

j = 5

j = 6

j = 7

j = 8 j = 10

j = 11

j = 3

j = 9

( ) ( )( )sin 2 cos 2 1 0j jkx k x= + =

Case 1 Case 2

Figure 7: There are two cases in discrete version of ( )
2 1
ˆRe 0n

kV + =  and ( )
2̂Im 0n

kV = .  
 

Since we use uniform grids and  is even, we have symmetry over half pane, we just need to 

take care one case that 

N

2jx π
=  for some  (see Figure 7) and j 0,jx π=  in the discrete sum. 

However  and ( ) ( )sin 2 sin 0jkx kπ= = ( )( )cos 2 1 cos 0
2jk x k ππ⎛ ⎞+ = +⎜ ⎟

⎝ ⎠
= , also 

, ( ) ( )sin 2 0 sin 2 0k kπ⋅ = = ( )( ) ( )cos 2 1 cos 1k π π+ = = − x+ (this means e k  

cancels each other at 

( )( )sin cos 2 1x

0,x π= ), hence function value at point ,0,
2jx π π=  does not affect the 

summation, hence ( )
2 1
ˆRe 0n

kV + =  and ( )
2̂Im 0n

kV =  hold in discrete sum.  
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(O2) ( ) ( ) ( ) ( )10 14 18 22
5 7 9 11
ˆ ˆ ˆ ˆ 0V V V V= = = =  up to machine accuracy, in fact they are exact zero, we 

would show this and verify this with high precision package. Note this is key point for pair 
phenomenon, we would discuss this later. First let us show why ( )10

5̂ 0V =  but ( )12
5̂ 0V ≠  and 

( )12
6̂ 0V ≠ . First it is easy to show that ( ) ( )

10
10

5
1

ˆ 1 j
j

j
V h

=

= −∑ v , where ( )( )exp sinjv h= j . We 

would demo ( )10
5̂ 0V =  is due to (1) ( ) ( )1 exp 5j

ji x− =  and (2) symmetry of 

( )( )exp sinjv h= j . 

( )( )exp sin hj ( ) ( )exp 5 1 j
ji x = −

+

+

+

+

+

−

−

−

−

−

j =10

j = 1

j = 2j = 3

j = 4

j = 5

j = 6

j = 7 j = 8

j = 9

Figure 8: distribution of ( )(exp sinjv = )hj  (left panel) and ( ) ( )1 exp 5j
ji x− =  (right panel). 

 
In left panel of Figure 8, we plot distribution of ( )( )exp sinjv = hj , please note the locations 

with same color and shape have the same value, that is, 1 4v v= , 2 3v v= , ,  and 
, this is consequence of 

5 1v v= 0 9

8

6v v=

7v v= ( ) ( )sin sinx xπ − =  and we use uniform grid. 

( )( )exp sin hj ( ) ( )exp 6 1 j
ji x = −

+
−

+

++

+

+

−

−

−

−
−

j =12

j = 1

j = 2
j = 4

j = 5

j = 6

j = 7

j = 8 j = 10

j = 11

j = 3

j = 9

Figure 9: no cancellation for ( )12
6̂V  

 

In right panel of Figure 8, we plot distribution of ( ) ( )1 exp 5j
ji x− = . From the graph, one can 

show cancellation in summation ( ) ( )
10

10
5

1

ˆ 1 j
j

j
V h

=

= −∑ v , so ( )10
5̂ 0V = . 
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However when , 12n = ( ) ( ) 51 exp 5 exp
12

j
ji x i j⎛− ≠ = ⎜

⎝ ⎠
⎞
⎟ , hence no cancellation occurs, that is 

( )12
5̂ 0V ≠ . Moreover ( )12

6̂ 0V ≠  is result of no cancellation, see Figure 9. 

similarly, ( ) ( ) ( )14 18 22
7 9 11
ˆ ˆ ˆ 0V V V= = = . 

Remark 1: From above argument, (O2) is valid when ( ) ( )V x V xπ= − , for example, 

 on [( )( )sinV V x= ]0, 2π . However ( )cos x  is not permitted though ( ) 2cos 1 sinx x= − , 

why? Since in general ( ) 2cos 1 sinx x= ± − , the sign depends on branch, that is 

( ) (cos cos )x xπ − ≠ . 

 
(O3) ( ) ( )8 10

4 4
ˆ ˆ2V V≈ , ( ) ( )12 14

6 6
ˆ ˆ2V V≈ , ( ) ( )16 18

8̂
ˆ2V V≈ 8  and ( ) ( )20 22

10 10
ˆ ˆ2V V≈ , although we cannot 

interpret this phenomenon, but such fact is also a key to pair phenomenon. Now we explain this. 

First, in chapter 3 (see chap3.doc), we split ( )ˆ N
mV  into 2 parts, (say ( ) ( ) ( )1ˆ ˆ ˆ

2
N N
m m mV V V− = ← N ), for 

symmetry inteepolant ( )p x  defined by  

(Eq. 4) ( ) ( )1 ˆ
2

m
Nikx

N k
k m

p x e V
π =−

= Ρ ∑   for [ ]0,2x π∈ , 2N m=  

where  (principal value) indicates that the terms Ρ k m= ±  are multiplied by 1
2

. 

Hence ( )8
4

1 ˆ 0.01719783356013
2

V =  and then ( ) ( )8 10
4 4

1 ˆ ˆ 1.413004306399998e-004
2

V V− = . 

Now we estimate the difference between ( )8p x  and ( )10p x .  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
3

10 8 10 8 10
10 8

3 4

1 1 1 1ˆ ˆ ˆ ˆ ˆ
2 2 2 2

ikx ikx ikx
k k k k k

k k

p x p x e V V e V V e V
π π π=− =± =±

⎛ ⎞− = − + − +⎜ ⎟
⎝ ⎠

∑ ∑
5k

∑  

However we have shown ( )10
5̂ 0V = , so  

( ) ( ) ( ) ( ) ( ) ( )
3

10 8 10 8
10 8

3 4

1 1ˆ ˆ ˆ ˆ
2 2k k k k

k k

p x p x V V V V
π π=− =±

− ≤ − + −∑ ∑ 1
2

 

( ) ( )10 8
0 0
ˆ ˆ 1.255148390555405e-006V V− =  
( ) ( )10 8

1 1
ˆ ˆ 1.011760904967574e-005V V− =  
( ) ( )10 8

2 2
ˆ ˆ 1.419280048400307e-004V V− =  
( ) ( )10 8

3 3
ˆ ˆ 0.00171570157617V V− =  

( ) ( )8 10
4 4

1 ˆ ˆ 1.413004306399998e-004
2

V V− =  

Hence ( ) ( )10 8 6.396994825534096e-004p x p x− ≤  for any [ ]0,2x π∈ .  

Further ( ) ( ) ( ) ( )( ) ( ) ( )
3

10 8 10 8
10 8

3 4

1 1ˆ ˆ ˆ ˆ
2 2

ikx ikx
k k k k

k k

p x p x ike V V ike V V
π π=− =±

⎛ ⎞′ ′− = − + −⎜ ⎟
⎝ ⎠

∑ ∑ 1
2

 

( ) ( )10 8 0.00191185832541p x p x′ ′− ≤  for any [ ]0,2x π∈ .  
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This number is about 8 ,

1
2 I

p V
∞

′ ′−  , hence pair phenomenon occurs at . 8,10n =

 

Table 5: we copy data from Table 2 and add two new fields, one is 2n nerr err +−  and the other 

is ( ) ( )2n np x p x+′ ′− , 2n nerr err +−  is difference of two value in the field L err∞ − , it measure 
derivation between pair, for example 

8 10 0.00431791109859 0.00316947217836 0.00114843892023err err− = − =  

( ) ( )2n np x p x+′ ′−  measure derivation due to ( ) ( )2ˆ ˆn n
k kV V +− .  

 8,10n =  12,14n =  

L err∞ −  0.00431791109859 
0.00316947217836 

0.38249095565268E-4 
0.25253568612049E-4 

2n nerr err +−  0.00114843892023 1.299552695321900e-5 

( ) ( )2n np x p x+′ ′−  0.00191185832541 1.807600691270616e-5 

 
 16,18n =  20, 22n =  24, 26n =  

L err∞ −  0.17618931913432E-6 

0.10953028789507E-6 

0.49879544938847E-9 

0.29827984526776E-9 

0.97200025805932E-12 

0.59258153939368E-12 

2n nerr err +−  
6.665903123925001e-8 2.00515604120710e-10 3.794187186656399e-13 

( ) ( )2n np x p x+′ ′−

 

8.527607765287214e-8 2.441827585710109e-10 5.089522571307543e-13 

 
From above data, we would find ( ) ( )2n n n nerr err p x p x+ ′ ′− ≈ − 2+ , this proves our idea that 
pair phenomenon occurs due to 3 reasons 
(1) ( )

2 1
ˆRe 0n

kV + =  and ( )
2̂Im 0n

kV =  

(2) ( ) ( ) ( ) ( )10 14 18 22
5 7 9 11
ˆ ˆ ˆ ˆ 0V V V V= = = =  

(3) ( ) ( )8 10
4 4
ˆ ˆ2V V≈ (, ) ( )12 14

6 6
ˆ ˆ2V V≈ , ( ) ( )16 18

8 8
ˆ ˆ2V V≈  and ( ) ( )20 22

10 10
ˆ ˆ2V V≈  

(4) From chap3.doc, we have shown 

Lemma 1: 
1

ˆ ˆˆ 2k k k Np
p

v V V
∞

+
=

− ≤ ∑  for 0,1, 2, , 1k N= −"  

Moreover from experimental result for ( )( )exp sinV = x  (see below), we found that 1
k̂ kV

k
∼ , 

hence the error between discrete Fourier component ( ) ( )2ˆ ˆn n
k kv v +−  for 0,1, 2, , / 2k n= "  can 

be neglected.  
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So far, we cannot interpret reason 3.  
 
We try to interpret reason 3.  
First note that pair occurs at  and 4n = k 4 2n k= +  

(Eq. 5) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1

4 sin sin
2

1 1

1ˆ 1 2 1 1 1/ 1
2

N k
j k jk hj hj

k j
j j

v h v h e e e e
−

−

= =

⎧ ⎫
= − = + − + + − +⎨ ⎬

⎩ ⎭
∑ ∑  

(Eq. 6)  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

24 2
2

1 1 1

sin sin

1

ˆ 1 1 co

         2 1 1 cos

j j
N N N

j ji kx ixk
k j j

j j j

k
j hj hj

j

v h e v h e v h x

h hj e e

− −+

= = =

−

=

= = − = −

⎧ ⎫
= + − +⎨ ⎬

⎩ ⎭

∑ ∑ ∑

∑
� �

� � �

� �

s j jv

where 2
4 2 2

h
k k 1
π π

= =
+ +

� , 2
4 2

h
k k
π π

= = , then 
( )2 2 1

h h
k k

π
− =

+
�  

From our experimental result, ( ) ( )4 4
2 2ˆ ˆ2k k

k kv v 2+≈ , this means that we only need to show  

(Eq. 7) 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1
sin sin

1

sin sin

1

11 1 1/ 1
2

2 1 1 cos

k
k j hj hj

j

k
j hj hj

j

h e e e e

h hj e e

−
−

=

−

=

⎧ ⎫
+ − + + − +⎨ ⎬

⎩ ⎭
⎧ ⎫

≈ + − +⎨ ⎬
⎩ ⎭

∑

∑
� �� �

 

Table 6: List difference between  and ( )4
2ˆ

k
kv ( )4 2

2ˆ
k

kv + , define ( ) ( )4 4 2
2 2ˆ ˆ2k k

k kv v +∆ = − h h h∆ = − �, , we 

compare  and  to determine if we can neglect difference of ( )4
2ˆ

k
kh v∆ ⋅ ∆ h∆  and regard h h≈ . 

However result is negative, we CANNOT regard h h≈ . 

 4 8n k= =  4 1n k= = 2 6 4 1n k= =  4 2n k= = 0 

( )4
2ˆ

k
kv  

0.03439566712026 -0.00028260085474 

 

0.00000125168893 

 

-0.00000000345946 

( )4 2
2ˆ

k
kv +  

0.01705653312949 -0.00014067458291 

 

0.00000062411474 

 

-0.00000000172646 

 

∆  2.826008612799996e-4 1.251688920000005e-6 3.459450000000128e-9 6.539999999999855e-12 

h∆  0.15707963267949 0.07479982508547 0.04363323129986 0.02855993321445 

( )4ˆ kh v∆ ⋅ 2k

 

0.00540285875702 2.113849450355667e-5 5.461523259816207e-8 9.880194655807041e-11 

 

Define ( ) ( ) ( )( )
1

sin
1

1
1 1

2

k
k j hj

j

et e
−

=

= − + −∑ , ( ) ( ) ( )( )
1

sin
2

1

11 1
2

k
k j hj

j
t e

e

−
−

=

= − + −∑ , 

 and ( ) ( ) ( )( )sin
1

1
1 cos

k
j hj

j
s hj

=

= −∑
�� e ( ) ( ) ( )( )sin

2
1

1 cos
k

j hj

j
s hj −

=

= −∑
�� e  
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( )1 1 1 22h t s t s∆ = − + − 2  and ( )( ) ( )4 2
2 1 2

1 ˆ2 1
2

k
kh h s s v

k 2
+∆ = − + + =�  

Then ( ) ( )4
2 1 2ˆ 2 1k

kv h t t= + + (, ) ( )4 2
2 1 2ˆ 2 1k

kv h s s+ = + +�  and then  
( ) ( )4 4 2
2 2 1ˆ ˆk k

k kv v +− = ∆ + 2∆

2 6
 

 4 8n k= =  4 1n k= =  4 1n k= =  4 2n k= = 0 

( )4 2
2ˆ

k
kv +  

0.01705653312949 -1.4067458291e-4 6.2411474e-7 -1.72646e-9 

 

∆  2.826008612799996e-4 1.251688920000005e-6 3.459450000000128e-9 6.539999999999855e-12 

1t  -0.66897406741795 -0.63041950969349 -0.59800207628710 -0.57848539389295 

2t  -0.30912897080952 -0.36985035424424 -0.40199633001306 -0.42151461161294 

1s  -0.65635567309515 -0.61768932891181 -0.58985808333448 -0.57283605860995 

2s  -0.33007116910701 -0.38246739447485 -0.41014102268702 -0.42716394441257 

1ht  -0.52541100391058 -0.33008688338879 -0.23483486621187 -0.18173654636631 

2ht  -0.24278932592674 -0.19365319263688 -0.15786358964238 -0.13242272072240 

1hs�  
-0.41240043214754 -0.27721832255859 -0.20589931347379 -0.16360159576731 

2hs�  
-0.20738983200567 -0.17165096524569 -0.14316622486770 -0.12199773724045 

1∆  0.01307500070840 -1.184805080196554e-4 5.495598519973221e-7 -1.560346593471024e-9 

2∆  0.00426413328237 -2.344576381762684e-5 7.801434217854332e-8 -1.726463642529372e-10

 

Because 
2 2

hhk π
= −

�� , we can rewrite  and  as  1s 2s

( ) ( ) ( )( ) ( ) ( ) ( )1
sin cos / 2

1
1

1 cos 1 sin / 2
k

j khj h

j
s hj e h

−

=

= − + −∑
� �� � e

e

 and 

 ( ) ( ) ( )( ) ( ) ( ) ( )1
sin cos / 2

2
1

1 cos 1 sin / 2
k

j khj h

j
s hj e h

−
− −

=

= − + −∑
� �� �

 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )1
sin cos / 2sin

1 1
1

1 cos 1 in / 2
2

k
j khj hhj

j

et s e hj e s h e
−

=

⎡ ⎤⎡ ⎤− = − − + − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
∑

� �� �  

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )1
sin cos / 2sin

2 2
1

11 cos 1 sin / 2
2

k
j khj hhj

j
t s e hj e h e

e

−
− −−

=

⎡ ⎤⎡ ⎤− = − − + − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
∑

� �� �  

Then if we want to show ( ) ( )4 4
2 2ˆ ˆ2k k

k kv v 2+≈ , it suffices to show ( )4 2
1 2

1 ˆ1
2

k
kv

k
+⎛ ⎞∆ ≈ −⎜ ⎟

⎝ ⎠
. 

 

Another view: if we divide 1 11
2 2

= + , then we may regard summation in  as sum of 

Trapezoid rule, so is 

( )4
2ˆ

k
kv

( )4 2
2ˆ

k
kv + , then we rewrite them as  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
1 1

4 sin sin sin
2

0 0

ˆ 1 1
k k

j jk hj hj h hj
k

j j
v h e e h e e

− −
+ − −

= =

= − − + − −∑ ∑ sin hj h+  
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Possible solution  
( ) ( ) ( ) ( )sin sin sincos

xx y t

y
e e t e= + ∫ dt

dt

sin t dt

 

Then .  ( ) ( ) ( ) ( )sin sin sincos
hj hhj hj h t

hj
e e h t e

++− = − ∫
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
4 sin

2
0 0

ˆ 1 cos 1 cos
k khj h hj hj jk t

k hj hj
j j

v h t e dt h t e
− −+ + −

= =

= − − + −∑ ∑∫ ∫  

______________________________________________________________________ 
 
In this section, we try to find Fourier component of ( )( )exp sinV = x , and decide the decay 

rate of  numerically since this decay rate determine the accuracy of discrete Fourier 
component. 

k̂V

From chapter 3 (see chap3.doc), we know 

(Eq. 8) ( ) 1 ˆ
2

ikx
k

k
V x e V

π

∞

=−∞

= ∑   with 2

22 1 ˆ
2 kL

k
V V

π

∞

=−∞

= ∑  

(Eq. 9)  ( )
2

0
ˆ ikx
kV V x e

π −= ∫ dx

Because  is real, we have V ˆ ˆ
k kV V ∗

− =  and  

(Eq. 10) ( ) ( ) ( ) ( )( )0 0
1 1

1 1 1 1ˆ ˆ ˆ ˆRe cos Re sin Im
2 2

ikx
k k

k k

V x V e V V kx V kx V
π π π π

∞ ∞

= =

= + = + −∑ ∑ k̂  

Now let ( ) ( )( )exp sinV x x= , then , 0V > 01
ˆV V=  and 

1k̂V V≤  for all . k

( ) ( ) ( )
2 2 sin

0 0
ˆRe cos cos x
kV V x kx dx kx e

π π
= =∫ ∫ dx

dx

 

( ) ( ) ( )
2 2 sin

0 0
ˆIm sin sin x
kV V x kx dx kx e

π π
= − = −∫ ∫  

( )( )2

22

0
exp 2sin 14.32305687810046

L
V x dx

π
= =∫  

( )( )2

0 0
ˆ exp sin 7.95492652101279V x dx

π
= =∫  

( )
2 sin sin 2

1 00
ˆRe cos | 0x xV x e dx e

π π= = =∫ ( )
2 sin

1 0
ˆIm sin -3.55099937842440xV x e dx

π
= − =∫ and  

2̂Re -0.85292776416409V =  and 2̂Im 0V =  

Prop 1: for , then  2k >

(Eq. 11) ( )1 1
1ˆ ˆRe Im Im

2k kV V
k −= + k̂V +  and ( )1 1

1ˆ ˆIm Re Re
2k kV V
k − += − + k̂V  

<proof> We use integration by parts 

( ) ( ) ( )

( ) ( )( ) ( )( )

( )

2 2sin sin 2 sin
00 0

2 2sin sin

0 0

1 1

1 1ˆRe cos sin | sin cos

1 1        sin cos sin 1 sin 1
2

1 ˆ ˆ        Im Im
2

x x x
k

x x

k k

V kx e dx kx e kx xe dx
k k

kx xe dx k x k x e dx
k k

V V
k

π ππ

π π

− +

= = −

⎡ ⎤= − = − + + −⎣ ⎦

= +

∫ ∫

∫ ∫  
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( ) ( ) ( )

( ) ( )( ) ( )( )

( )

2 2sin sin 2 sin
00 0

2 2sin sin

0 0

1 1

1 1ˆIm sin cos | cos cos

1 1        cos cos cos 1 cos 1
2

1 ˆ ˆ        Re Re
2

x x x
k

x x

k k

V kx e dx kx e kx xe dx
k k

kx xe dx k x k x e dx
k k

V V
k

π ππ

π π

− +

= − = −

⎡ ⎤= − = − + + −⎣ ⎦

= − +

∫ ∫

∫ ∫  

___________________________________________________________________ 
 
We can rearrange (Eq. 11) to be  

(Eq. 12)  or 1 1

1 1

ˆ ˆRe Re Im
2

ˆ ˆIm Im Re
k k

ˆ

ˆ
k k k

V V V
k

V V V
+ −

+ −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

k
1 1

ˆ ˆ ˆ2 1k k kk V+ −V V= − + −  

Remark 2: one can derive (Eq. 12) by  

( ) ( ) ( )2 2 2sin sin
1 10 0 0

1 1 1ˆ ˆ ˆcos
2 2

ikx ikx x ikx ix ix x
k k kV V x e dx e xe dx e e e e dx V V

ik ik ik
π π π− − − −

− += = = + =∫ ∫ ∫ +  

for example: 
( )3 1 2

ˆ ˆ ˆ4 1 0,0.13928832176804V V V= − + − = , ( )4 2 3
ˆ ˆ ˆ6 1 0.01719783355585,0V V V= − + − =  

 

Lemma 2: for ( ) ( )(exp sinV x x= ) , we have 2̂Im 0kV =  and 2 1
ˆRe 0kV + =  

(Eq. 13) ( ) ( )( ) ( )( )0 2
1 0

1 1 1ˆ ˆcos 2 Re sin 2 1 Im
2 k k

k k
V x V kx V k x V

π π π

∞ ∞

+
= =

= + − +∑ ∑ 2 1
ˆ  

<proof> we use induction  
induction basis: , we have  and 0k = 0̂V R∈ 1̂Re 0V = , OK 

              , we have 1k = 2̂Im 0V =  and 3̂Re 0V = , OK 
inductive hypothesis: Assume assertions holds for 1, 2, ,k m= "  
Inductive step, for  1k m= +
From (Eq. 12) we have  

( ) ( ) ( ) ( )2 2 2 2 1 2 1 2 1 1
ˆ ˆ ˆ ˆ ˆIm Im 2 2 1 Re Im 2 2 1 Re 0m m m m mV V m V V m V− − − −= − + − = − + − =+

m

)

 

( )2 1 2 1 2 22 1 1
ˆ ˆ ˆ ˆ ˆRe Re 2 2 Im Re 4 Im 0m m m mV V m V V m V+ − − += − − ⋅ = − − =  

last equality comes from inductive hypothesis. 
Moreover we use Matlab to verify these two condition, see Figure 10. Even when , we 
still have  accuracy. 

40k ≤
(1. 15O E −

Another proof: we use ( ) ( )sin sinx xπ − =  to show the assertion 

( ) ( ) ( )sin sin sin

0 0
sin 2 sin 2 sin 2x x xe kx dx e kx dx e kx

π π π

π

−

−
= − +∫ ∫ ∫ dx

dy

 

First we claim  ( )sin

0
sin 2 0xe kx dx

π
=∫

( ) ( ) ( )
/ 2sin sin sin

0 0 / 2
sin 2 sin 2 sin 2x x xe kx dx e kx dx e kx dx

π π π

π
= +∫ ∫ ∫  

( ) ( ) ( )( ) ( )
0 / 2sinsin sin

/ 2 / 2 0
sin 2 sin 2 sin 2yx ye kx dx e k y dy e ky

π ππ

π π
π−= − − = −∫ ∫ ∫  

Hence , the same cancellation holds for  ( )sin

0
sin 2 0xe kx dx

π
=∫ ( )sin

0
sin 2 0xe kx dx

π − =∫
Similarly 
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( )( ) ( )( ) ( )( )sin sin sin

0 0
cos 2 1 cos 2 1 cos 2 1x x xe k x dx e k x dx e k x dx

π π π

π

−

−
+ = − + + +∫ ∫ ∫  

we claim  ( )( )sin

0
cos 2 1 0xe k x dx

π
+ =∫

( )( ) ( )( ) ( )( )0 / 2sin sin sin

/ 2 / 2 0
cos 2 1 cos 2 1 cos 2 1x y ye k x dx e k y dy e k y

π π

π π
π+ = − − + = − +∫ ∫ ∫ dy  

 

Figure 10: we verify condition  and Re2̂Im 0kV = 2 1
ˆ 0kV + =  for k 1:10=  by using trapezoid rule 

to do integration. It is clear that all data reach machine accuracy. 
 

________________________________________________________________________ 
 
From Lemma 2, we can simplify (Eq. 10) as  

(Eq. 14) ( ) ( )( ) ( )( )( )0 2
1 0

1 1 1ˆ ˆcos 2 Re sin 2 1 Im
2 k k

k k
V x V kx V k x V

π π π

∞ ∞

+
= =

= + − +∑ ∑ 2 1
ˆ

1V

V

⎤
⎥
⎥⎦

 

where  

(Eq. 15)  
( )

( )

( )2 12 2

2 1 22 1 1

ˆˆ ˆReRe 2 1 Im
2

ˆ ˆˆIm 2 ReIm

kk k

k kk

VV k

V kV

− −

+ − +

⎡ ⎤⎡ ⎤ ⎡− −⎢ ⎥= − +⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎣⎣ ⎦

Moreover we can simplify (Eq. 15) further 

(Eq. 16) 
( )
( )( )

( )

( )

2 12

2 1 2 1 1

ˆˆ Re1 2 2 1Re
ˆ ˆ4 1 8 2 1Im Im

kk

k k

VkV
k k kV V

−

+ − +

⎡ ⎤⎡ ⎤ ⎡ ⎤− − −
⎢ ⎥=⎢ ⎥ ⎢ ⎥− − + − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

2 0

3 1

ˆ ˆRe Re1 2
ˆ ˆ4 9Im Im

V V

V V

⎡ ⎤ ⎡ ⎤− −⎡ ⎤
=⎢ ⎥ ⎢⎢ ⎥− −⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎥ , 

4 2 0

5 3 1

ˆ ˆ ˆRe Re Re1 6 25 56
ˆ ˆ ˆ8 49 204 457Im Im Im

V V V

V V V

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

, ….
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8 0

9 1

ˆ ˆRe Re351841 788192
ˆ ˆ5654440 12667041Im Im

V V

V V

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢⎢ ⎥
⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎥  

This recursive formulation is not numerically stable, means that if we want to use this formula 

to find all , then rounding error would be disastrous. So we need high precision package to 

smooth accumulation error.  

k̂V

________________________________________________________________________ 
Next we use special technique to find  0̂V

Lemma 3: 

( )

( )
/ 2 / 2

0 0

1 3 5 1
  if  2,    is even

2 4 6 2sin cos
2 4 6 1

   if  3,   is odd
3 5

n n

n
n n

nxdx xdx
n

n n
n

π π

π⎧ ⋅ ⋅ −
≥⎪⎪ ⋅ ⋅= = ⎨

⋅ ⋅ −⎪ ≥⎪ ⋅⎩

∫ ∫

"
"

"
"

 

<proof> see integral table inside of cover of [1] 
 

( ) ( )2 /sin sin sin sin sin sin
0 0 0 0
ˆ 2x x x x xV e dx e dx e e dx e e

π π π π

π

−

−
= = = + = +∫ ∫ ∫ ∫

2 x dx−

)
, the last equality 

comes from ( ) (sin sinx xπ − = . 

Using power series ( ) ( )
2

1

12 1
2 !

x x k

k
e e x

k

∞
−

=

⎛ ⎞
+ = +⎜⎜

⎝ ⎠
∑ ⎟⎟ , then we have  

( ) ( ) ( ) ( )
/ 2 / 22 2

0 0 0
1 1

1 1ˆ 4 1 sin 4 sin
2 ! 2 2 !

k k

k k
V x dx

k k
π ππ∞ ∞

= =

⎛ ⎞ ⎛
= + = +⎜ ⎟ ⎜⎜ ⎟ ⎜

⎝ ⎠ ⎝
∑ ∑∫ ∫ x dx

⎞
⎟⎟
⎠

 

where ( ) ( )
( )

( )
( )( )

( )
( )

/ 2 2
2 20

1 3 5 2 1 2 ! 2 !
sin

2 4 6 2 2 2 2 22 4 6 2 2 !
k

kk

k k k
x dx

k k k

π π π π π ϕ
⋅ ⋅ −

= = =
⋅ ⋅ ⋅ ⋅

∫
"
" "

≡  

Hence 
( ) ( )0 2

1 1

1ˆ 2 1 2 1 2 1
2 ! 2 !

k
kkk k

V a
k k

ϕπ π π
∞ ∞

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + = + ≡ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑

1k

∞

=
∑  

Note that 
( ) ( )( ) ( ) 12 21

1 1 1
22 ! 2 2 1 !

k kk k
a a

kk k k
2 −

−
= = =

−
 

Then we use following code to compute partial sum 
1

N

k
k

a
=
∑  

: 1ka = ,  : 0sum =
for  1:k N=

 
( )2

1
2

k ka a
k

←  ;  ksum a+ =

end 
 

Prop 2: If , then sin xV e= 0
1

ˆ 2 1 k
k

V aπ
∞

=

⎛
= +⎜

⎝ ⎠

⎞
⎟∑  where 

( )2
1

2 !
k k

a
k

=  and 
( )24 !

k N
k N

ea
N

∞

=

≤∑  
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<proof> 
( )( ) ( ) ( )( ) ( )( )2 2

0 0

1 1 1
4 !2 ! 2 1 2

k NN m mk N m m
a

NN m N N N m

∞ ∞ ∞

+= = =

= =
+ + +

∑ ∑ ∑
"

2
+

 

We use 
( )( ) ( )( )2

1 1
!2 1 2m mN N N m

<
+ + +"

 and 
0

1
!m m

∞

=

=e ∑ .  

 
 
 10N =  15N =  20N =  25N =  30N =  40N =  50N =

( )24 !N

e
N

  
1610−  

 
4210−  

 
6010−  

 
8010−  

 
10010−  

 
14210−  

 
18410−  

 
 100N =  200N =  300N =  400N =  500N =   

( )24 !N

e
N

  
37510−  

 
86910−  

 
140910−  

 
197810−  

 
256810−  

 
 
 

 

Prop 3: If , then sin xV e= 1
1

ˆIm 2 k
k

V π
∞

=

= − a∑  where 
( )2

2

2 !
k k

ka
k

=  and 
( )2
2

4 !
k N

k N

ea
N

∞

=

≤∑  

<proof> , it suffices to show ( )
2 sin

1 0
ˆIm sin xV x e

π
= −∫ dx ( )

2 sin

0
1

sin 2x
k

k
x e dx a

π
π

∞

=

= ∑∫ . 

(1) check ( ) ( )( )2 / 2sin sin sin

0 0
sin 2 sinx x xx e dx x e e dx

π π −= −∫ ∫  

(2) ( ) ( )
2 1

1

1
2 1 !

x x k

k
e e x x

k

∞
− +

=

− = +
+∑  

(3) ( ) ( ) ( ) ( )
( )
( )

2 2sin 2
20 0

1 1

2 !1 1sin 4 sin 4
2 1 ! 2 1 ! 2 2 !

x k

kk k

k
x e dx x dx

k k k

π π π∞ ∞

= =

= =
− −∑ ∑∫ ∫  

(4) 
( ) ( ) 12

2 1
4 12 !

k kk

ka a
k kk

−= =
−

 

( )
( )( ) ( ) ( )( ) ( )( ) ( )

2 2 2
0 0

2 2 1
4 !2 ! 2 1 2 1

k NN m mk N m m

N m
a

NN m N N N m N m

∞ ∞ ∞

+= = =

+
= =

+ + + + −
∑ ∑ ∑

" +
 

Then we use following code to compute partial sum 
1

N

k
k

a
=
∑  

: 0.5ka = ,  : 0.5sum =
for  2 :k N=

 
( )
1

4 1k ka a
k k

←
−

 ;  ksum a+ =

end 
 

Next we use high precision package to compute  and  up to 128 digits, note that we 0̂V 1̂ImV
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use  to stabilize partial sum 42N ≥
1

N

k
k

a
=
∑ . 

0̂V  = 7.9549265210128452  7451321966532939  4328161342771816  6385734005959553 
8336060816469466  6995137357228568  7741332170437587 4113888148503023e0 
 

1̂ImV  = -3.5509993784243618  9375715307444414  5068885827761984 
4655200625893475  7625209545877072  0368124285904632 7616425367512080 
1404294198552668e0 
 
Table 7: We use high precision package with 1000 digits to compute  and estimate 

convergence order of , defined by 

k̂V

k̂V ( )
1

k̂ m kV
k

= . 

Source code: F:\course\2008spring\spectral_method\cxx_example\chap1  
 ( )m k  

 ( )m k  

ReV(0) = 7.9549265210128453e0  ImV(1) = -3.5509993784243619e0  

ReV(2) = -8.5292776416412149e-1  ImV(3) = 1.3928832176787595e-1  

ReV(4) = 1.7197833556865812e-2  ImV(5) = -1.7056533129494463e-3  

ReV(6) = -1.4130042737134921e-4 4.94744 ImV(7) = 1.0048184493255820e-5 5.914 

ReV(8) = 6.2584446576772422e-7 6.86923 ImV(9) = -3.4673040972232835e-8 7.81773 

ReV(10) = -1.7297282675331887e-9 8.76202 ImV(11) = 7.8475621569060340e-11 9.70361 

ReV(12) = 3.2645930138612418e-12 10.6434 ImV(13) = -1.2538923639053624e-13 11.582 

ReV(14) = -4.4728677072995018e-15 12.5199 ImV(15) = 1.4894058615019287e-16 13.4573 

ReV(16) = 4.6501227937157073e-18 14.3944 ImV(17) = -1.3665675129023628e-19 15.3313 

ReV(18) = -3.7932498476738764e-21 16.2682 ImV(19) = 9.9756773976728090e-23 17.2051 

ReV(20) = 2.4924365582089317e-24 18.1421 ImV(21) = -5.9311648370821361e-26 19.0792 

ReV(22) = -1.3473266344345731e-27 20.0164 ImV(23) = 2.9276455700143845e-29 20.9539 

ReV(24) = 6.0967222795625615e-31 21.8915 ImV(25) = -1.2188758243549561e-32 22.8293 

ReV(26) = -2.3431577877807459e-34 23.7674 ImV(27) = 4.3377470896829986e-36 24.7056 

ReV(28) = 7.7435935192659899e-38 25.6441 ImV(29) = -1.3347188940443096e-39 26.5828 

ReV(30) = -2.2239338089943938e-41 27.5217 ImV(31) = 3.5860864767329276e-43 28.4608 

ReV(32) = 5.6019341997869982e-45 29.4002 ImV(33) = -8.4858886924868411e-47 30.3397 

ReV(34) = -1.2476627456831309e-48 31.2795 ImV(35) = 1.7820218415512617e-50 32.2195 

ReV(36) = 2.4745659724766378e-52 33.1597 ImV(37) = -3.3434136808250048e-54 34.1001 

ReV(38) = -4.3984866613426193e-56 35.0407 ImV(39) = 5.6381820461407180e-58 35.9815 

ReV(40) = 7.0466535285927712e-60 36.9225 ImV(41) = -8.5922326650106772e-62 37.8637 

ReV(42) = -1.0227432840158852e-63 38.805 ImV(43) = 1.1890792772412452e-65 39.7466 

ReV(44) = 1.3510558841438762e-67 40.6883 ImV(45) = -1.5009919463409708e-69 41.6302 

ReV(46) = -1.6313243700245210e-71 42.5723 ImV(47) = 1.7352591841154628e-73 43.5146 
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ReV(48) = 1.8073695598597204e-75 44.457 ImV(49) = -1.8440665013114252e-77 45.3996 

ReV(50) = -1.8438857452372014e-79 46.3424 ImV(51) = 1.8075607422380681e-81 47.2853 

ReV(52) = 1.7378815437191885e-83 48.2283 ImV(53) = -1.6393677011213502e-85 49.1716 

ReV(54) = -1.5178053055730738e-87 50.1149 ImV(55) = 1.3797110243049970e-89 51.0584 

ReV(56) = 1.2317883757703079e-91 52.0021 ImV(57) = -1.0804344225222833e-93 52.9459 

ReV(58) = -9.3134094904861371e-96 53.8899 ImV(59) = 7.8921625891422459e-98 54.8339 

ReV(60) = 6.5763529828695323e-100 55.7782 ImV(61) = -5.3900969880710571e-102 56.7225 

ReV(62) = -4.3465742284267052e-104 57.667 ImV(63) = 3.4494482194268623e-106 58.6116 

ReV(64) = 2.6947194885863902e-108 59.5563 ImV(65) = -2.0727403628291311e-110 60.5012 

ReV(66) = -1.5701690851976058e-112 61.4462 ImV(67) = 1.1717036829142283e-114 62.3913 

ReV(68) = 8.6150092539842003e-117 63.3365 ImV(69) = -6.2424372377078596e-119 64.2819 

ReV(70) = -4.4586594735415350e-121 65.2273 ImV(71) = 3.1397474971062253e-123 66.1729 

ReV(72) = 2.1802765069509171e-125 67.1186 ImV(73) = -1.4932709690467884e-127 68.0644 

ReV(74) = -1.0089214260595890e-129 69.0102 ImV(75) = 6.7258478596712626e-132 69.9562 

ReV(76) = 4.4247108899611723e-134 70.9024 ImV(77) = -2.8730693028074481e-136 71.8486 

ReV(78) = -1.8416363770214422e-138 72.7949 ImV(79) = 1.1655465399828615e-140 73.7413 

ReV(80) = 7.2843848521037795e-143 74.6878 ImV(81) = -4.4963646256784895e-145 75.6344 

ReV(82) = -2.7415850462649380e-147 76.5811 ImV(83) = 1.6514980399108078e-149 77.5279 

ReV(84) = 9.8300012997093223e-152 78.4748 ImV(85) = -5.7821559641664032e-154 79.4218 

ReV(86) = -3.3616062643676250e-156 80.3689 ImV(87) = 1.9318945408827106e-158 81.316 

ReV(88) = 1.0976323170853944e-160 82.2633 ImV(89) = -6.1662812416461892e-163 83.2106 

ReV(90) = -3.4256072372713951e-165 84.1581 ImV(91) = 1.8821455767799992e-167 85.1056 

ReV(92) = 1.0228753179651741e-169 86.0532 ImV(93) = -5.4991724078868826e-172 87.0009 

ReV(94) = -2.9250098213943509e-174 87.9486 ImV(95) = 1.5394366550286099e-176 88.8965 

ReV(96) = 8.0176839992052904e-179 89.8444 ImV(97) = -4.1327181194190573e-181 90.7924 

ReV(98) = -2.1084753231915019e-183 91.7405 ImV(99) = 1.0648596371350890e-185 92.6886 

ReV(100) = 5.3241664025762733e-188 93.6369 ImV(101) = -2.6356619834325278e-190 94.5852 

ReV(102) = -1.2919604256718823e-192 95.5336 ImV(103) = 6.2715061887867499e-195 96.482 

ReV(104) = 3.0150781811827308e-197 97.4306 ImV(105) = -1.4357192666992787e-199 98.3792 

ReV(106) = -6.7721114245441988e-202 99.3278 ImV(107) = 3.1644695908567913e-204 100.277 

ReV(108) = 1.4650011066538491e-206 101.225 ImV(109) = -6.7200484477269938e-209 102.174 

ReV(110) = -3.0545049364460404e-211 103.123 ImV(111) = 1.3758754570485746e-213 104.072 

ReV(112) = 6.1421798204873893e-216 105.021 ImV(113) = -2.7177259399354918e-218 105.971 

ReV(114) = -1.1919623317795924e-220 106.92 ImV(115) = 5.1823478021086980e-223 107.869 

ReV(116) = 2.2337294591867709e-225 108.818 ImV(117) = -9.5456795389410712e-228 109.768 

ReV(118) = -4.0447074560274482e-230 110.717 ImV(119) = 1.6994271629333847e-232 111.667 

ReV(120) = 7.0808245992629515e-235 112.616 ImV(121) = -2.9259110276340004e-237 113.566 

ReV(122) = -1.1991238867047224e-239 114.516 ImV(123) = 4.8744074477763628e-242 115.466 
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ReV(124) = 1.9654551737166463e-244 116.415 ImV(125) = -7.8616959079921701e-247 117.365 

ReV(126) = -3.1196718603786482e-249 118.315 ImV(127) = 1.2281983797660650e-251 119.265 

ReV(128) = 4.7975772843065435e-254 120.215 ImV(129) = -1.8594983589878912e-256 121.165 

ReV(130) = -7.1518117784269494e-259 122.116 ImV(131) = 2.7296596884347195e-261 123.066 

ReV(132) = 1.0339472798414659e-263 124.016 ImV(133) = -3.8869653249621741e-266 124.967 

ReV(134) = -1.4503401527580714e-268 125.917 ImV(135) = 5.3715570542648909e-271  126.867 

ReV(136) = 1.9748106550868906e-273 127.818 ImV(137) = -7.2072428548484198e-276 128.768 

ReV(138) = -2.6112858423585874e-278 129.719 ImV(139) = 9.3929938718587938e-281 130.67 

ReV(140) = 3.3545981842720248e-283 131.62 ImV(141) = -1.1895589712441229e-285 132.571 

ReV(142) = -4.1885363598235693e-288 133.522 ImV(143) = 1.4645054229194620e-290 134.473 

ReV(144) = 5.0850273907962369e-293 135.424 ImV(145) = -1.7534370145803019e-295 136.375 

ReV(146) = -6.0048513361321557e-298 137.326 ImV(147) = 2.0424429712458045e-300 138.277 

ReV(148) = 6.9000669490463556e-303 139.228 ImV(149) = -2.3154328083236962e-305 140.179 

ReV(150) = -7.7180241741020677e-308 141.13 ImV(151) = 2.5556093075861283e-310 142.082 

From the experimental result, we found ( )m k k∼ , see Figure 11. Hence we expect that 

( )
1 1ˆ

!k km kV
k kk

= ∼ ∼ 1 .  

Figure 11: decay rate of ( )
1

k̂ m kV
k

=  

 
This is reasonable since we know from chap3.doc 

If ( )kV  is periodic with period 2π  for 0,1, 2, ,k m= " , then  

(Eq. 17) ( )
( )

( )2 2

0 0

1ˆ mikx ikx
k mV V x e dx V e dx

ik

π π− −= =∫ ∫  
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