Chapter 1 Spectral method in Matlab

Centered second-order and 4-th order finite difference on uniform grid

du u,—u_, h?
Ea. 1 x =t it
(Eq. 1) dx( J) 2h 3!

du -u._,+8u ,—-8u _,+u_, h
Eq. 2 My )= j+2 j+1 j-1 -2 _u(S) c
(Eq-2) dx( ) 12h t30Y (0

We can use another representation to derive this formula, consider polynomial interpolation

p, (x) with degree <2 forsmooth u over [xjfl,xj+1 :

P; (%) =Uj4a. (%) +U;8 (%) +U;..3 (X)

satisfying p; (x,,)=u;,, p;(x;)=u; and p;(x;,)=u,. Inother words,

a,(x),a,(x),a(x) are Lagrange polynomial satisfying
a,(x4)=1 |[a(x,)=0 a(x,)=0

(Eq.3) <a,(x)=0 , {ay(x)=1 and {a(x;)=0
a—l(xj+l):0 ao(xm):o a1(XJ+1):1

_ (xa)(x=x _
ao(x)_(xj_le)(xj Xj+l)_ _h? ao(xj)—O
COexa)ex)  Gexa)(xex) oy
ai(X)—(XHl_le)(XJ+1 X,)_ oh? %(Xi)_%
% P; (%) her, = Uy 12 () + U8y () ) + Uy () = umz_huj_l
If we write w, = Bin Hin o W, = iz +8u"112_hsuj‘l+ui‘2 , then general matrix form can

be represented as w= Au, see Figure 1 and Figure 2. In fact matrix A is skew symmetry, say

A=—A", this can be obtained from antiHermitian of operator di under periodic boundary
X



condition through integration by parts.
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Figure 1: matrix representation of W, = oh with periodic boundary condition
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Figure 2: w; = with periodic boundary condition.

12h

u . —u _
From w, =—=—1= we have A(j,j+1)=i and A(j,j—1)=—1.Infactifwewantto
2h 2h 2h

use Matlab as platform, what we only do is to construct triangle part R of A, then

A=R-R". Moreover we can use ”sparse matrix representation” in Matlab to construct matrix
R. (how to construct R: please see source code pl.m in Example 1)



5 = SPARSE(i,i,=,m,n,nzmax) uses the rows of [i,j,8] to generate an
n-bv-n zparze natrix with space allocated for nzmax nonzercz. The
tve integer index wectors, { and j, and the real or complex entries
vector, &, all have the same length, nnz, which iz the number of
nonzerog in the resulting sparge matrix S . dnv elementg of =
which have duplicate wvalues of i and j are added together.

Figure 3: document of sparse matrix representation in Matlab.

Example 1: try u(x) = exp(sin (x)) over [—7:7[] by using 4-th order finite difference
scheme. Matlab script: F:\course\2008spring\spectral_method\matlab\p1.m.

In this example we use N =8,16,32,---,4048, test convergence rate of || D.u—-u’
shown in Figure 4.

" result is

Convergence of 4-th order finite difference
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Figure 4: log-log plot for || D,u-u’

, note that it is clear O(h“)

Example 2: try u(x)=exp(sin(x)) over [-z,7] by using spectral method.
We plot error for |[D,u—u’| and |Du-u’,.

Question 1: dots in Figure 5 and Figure 6 lies in pair, means that error of n=8,10,
n=12,14 ... are almost the same, why? (Note that this pair phenomenon occurs even we

)

use|[Du—u’




Convergence of spectral differentiation
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Figure 5: spectral accuracy” of the spectral method, it achieve machine accuracy. Sup-norm

Convergence of spectral differentiation
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Figure 6: "spectral accuracy” of the spectral method, it achieve machine accuracy. 2-norm

Table 1: we list the value of pair (L> —err)

n=4,6 n=8,10 n=12,14

L? —err 0.24777190419502 0.00871672632422 0.94197188122419E-4
0.33078448076569 0.00864342870238 0.84097522689018E-4
n=16,18 n=20,22 n=24,26

L? —err 0.50008967910710E-6 | 0.15812146492563E-8 | 0.33254794093191E-11
0.42247516569957E-6 | 0.12910423145203E-8 | 0.26512109052603E-11




Table 2: we list the value of pair (L” —err)

n=4,6 n=8,10 n=12,14
L —err 0.17520119364380 0.00431791109859 0.38249095565268E-4
0.16307358056713 0.00316947217836 0.25253568612049E-4
n=16,18 n=20,22 n=24,26
L —err 0.17618931913432E-6 | 0.49879544938847E-9 0.97200025805932E-12

0.10953028789507E-6

0.29827984526776E-9

0.59258153939368E-12

Table 3: we list the value of pair (L” —err ) for arprec 128 digits

n=28,30

1.32624221983015620680098434362948e-15
7.56612859983412967818296086049246¢e-16

n=232,34

1.39095872807168126193852953110517e-18
7.81451569905447385343012380339833e-19

n=236,38

1.14244909925972473070099230882981e-21
6.34086538799698880852642854985210e-22

n=40,42

7.54806757417172375166373940244838e-25
4.14826359601086676154821757222175e-25

n=44,46

4.09864701833461299055736676547760e-28
2.23423056735975763167625559605640e-28

n=48,50

1.86164252456817011022120353206289¢-31
1.00786673375963438339376505661880e-31

n=52,54

7.17767982003012719000648270914229¢-35
3.86321334725399173651104700894601e-35

n=>56,58

2.37854454643974045195143562239834e-38
1.27374376983182194482918312198058e-38

n=160,62

6.84730032444346812021198287838704¢e-42
3.65071328394049314224342346654448e-42

n=64,66

1.72836808647069444865147310660496e-45
9.17936617551766050908476538695563e-46

n=68,70

3.85647559072931642402400673411656e-49
2.04115689771413325003291669779317e-49

n=72,74

7.66124774385363632507038345929950e-53
4.04254667547222108076077515483580e-53

n=76,78

1.36375587422112860698500475832273e-56
7.17625294246753762277314925189095e-57

n=380,82

2.18769132299786362708446911624823¢-60
1.14833541792638712588483843196297¢e-60

n=284,86

3.17896250168716103543670487976991e-64
1.66490575382791587484894062926081e-64

n=288,90

4.20398304881730575304253164828023e-68
2.19721922822932053740570006526006e-68

n=92,94

5.08108143833400125413169287191248e-72
2.65065013672443604039455837009901e-72

n=296,98

5.63449984243390032676388653577986e-76
2.93428197672848600468452855610906e-76
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N
Table 4: we compute Fourier component V, = hZ:e""X"vj for k=0,1,2,---,m, N=2m

since v, =V, =V, ,.Since vV, € C, we represent it as two value, real part (top value) and
k k N-k k

imaginary part (bottom value

n=38 n=10 n=12 n=14

R 7.95492777270178 7.95492651755339 7.95492652101937 7.95492652101284
Vo 0 0 0 0

. 0 0 0 0
Vi -3.55100946128190 | -3.55099934367285 -3.55099937850296 | -3.55099937842424

R -0.85306906632123 | -0.85292713831639 -0.85292776589386 | -0.85292776416086
Ve 0 0 0 0

R 0 0 0 0
Vs 0.14099397515943 0.13927827358326 0.13928835644092 0.13928832168940

R 0.03439566712026 0.01705653312949 0.01719845940133 0.01719783182714
Vi 0 0 0 0

~ eps 0 0
Vs eps -0.00171570149744 | -0.00170561863991

- -0.00028260085474 | -0.00014067458291
Ve 0 0
\77 eps

eps
n=16 n=18 n=20 n=22

. 7.95492652101284 7.95492652101284 7.95492652101284 7.95492652101285
Vo 0 0

. 0 0 0 0
Vi -3.55099937842436 | -3.55099937842436 -3.55099937842436 | - 3.55099937842436

R -0.85292776416412 -0.85292776416412 -0.85292776416412 | -0.85292776416412
Ve 0 0 0 0

R 0 0 0 0
Vs 0.13928832176800 0.13928832176787 0.13928832176788 0.13928832176788

- 0.01719783356013 0.01719783355686 0.01719783355687 0.01719783355687
Vi 0 0 0 0

R 0 0 0 0
Vs -0.00170565339142 | -0.00170565331282 -0.00170565331295 | - 0.00170565331295
J -0.00014130215710 | -0.00014130042411 -0.00014130042738 | -0.00014130042737

6 0 0 0 0




~ 0 0 0 0
V.
! 0.00001008285753 0.00001004810602 0.00001004818462 0.00001004818449
\7 0.00000125168893 0.00000062411474 0.00000062584773 0.00000062584446
8 0 0 0 0
\7 Eps 0 0
° Eps - 0.00000003475152 -0.00000003467292
~ -0.00000000345946 -0.00000000172646
Vio 0 0
~ Eps
Viu £
ps

In order to avoid confusion in discussion, we define \7k(”) as Fourier component \7k for degree
n. Then we have some observations
(01) ReV2k+l =0 and ImV2k =0 up to machine accuracy, this matches continuous

counterpart, see Lemma 2. Note that in the proof of Lemma 2, we use sin(z —x)=sin(x)

and claim _[ e sin (2kx) dx_—J' S'”Xsm(ka)dx and

I S'"Xcos 2k+1) dx——f S'“Xcos((2k+1)x)dx.

sin (2ka. ) = cos((2k+1) X; ) =0

Figure 7: There are two cases in discrete version of Re\?z(,?ll =0 and Im\?z(,?) =0.

Since we use uniform grids and N is even, we have symmetry over half pane, we just need to

take care one case that x :% forsome | (seeFigure 7)and x; =0,z inthe discrete sum.
However sin(2kx;)=sin(kz)=0 and cos((2k+1)x;)= cos(k;w%j =0, also

sin(2k-0) =sin(2kr)=0, cos((2k+1)z)=cos(r)=-1 (this means e cos((2k+1)x)
cancels each other at x =0, ), hence function value at point x; =%,0,72' does not affect the

summation, hence ReV2,<+1 0 and ImV2k =0 hold in discrete sum.



(02) V" =V =V —v®) — 0 up to machine accuracy, in fact they are exact zero, we

would show this and verify this with high precision package. Note this is key point for pair
phenomenon, we would discuss this later. First let us show why V. =0 but V" 20 and

R N 10 .
V¥ 2 0. First it is easy to show that V" =hY_(~1)' v, , where v, = exp(sin(hj)). We
-1

would demo V" =0 is dueto (1) (-1) =exp(i5x; ) and (2) symmetry of
v; =exp(sin(hj)).

exp(sin (hi)) eXp(i5>ij )=(-1)

i=3

v

j:? — +

Figure 8: distribution of Vv, = eXp(Sin (hj )) (left panel) and (—1)j = exp(iSXj) (right panel).
In left panel of Figure 8, we plot distribution of v, = exp(sin (hi )) please note the locations

with same color and shape have the same value, thatis, v, =v,, Vv, =V,, =V, V, =V, and
V, =V, this is consequence of sin(z —x)=sin(x) and we use uniform grid.

exp(sin(hj)) exp(i6xj ) :(_1)j
+ +
i=5 - -
+ +
j=6 i
]=7 B _
j=9 1=10 +09 ’

Figure 9: no cancellation for \76(12)

In right panel of Figure 8, we plot distribution of (—1)j = exp(i5xj ) From the graph, one can

. 10 _ ~
show cancellation in summation V" = h>(-1)'v,,so V0 =0,
i1



However when n=12, (—1)j # exp(i5xj ) = exp(i % jj, hence no cancellation occurs, that is
\75(12) # 0. Moreover \76(12) #0 is result of no cancellation, see Figure 9.

similarly, V" =v*® =v(® =0

Remark 1: From above argument, (O2) is valid when V (x)=V (z—Xx), for example,

V =V (sin(x)) on [0,27]. However cos(x) is not permitted though cos(x)= J1-sin?x,

why? Since in general cos(x) = +4/1-sin” x,, the sign depends on branch, that is
cos (7 — ) # cos(X).

03) VO =~ 2v™ VM 2 v v 2 v and V) ~ 2V although we cannot
interpret this phenomenon, but such fact is also a key to pair phenomenon. Now we explain this.

First, in chapter 3 (see chap3.doc), we split V™) into 2 parts, (say V(N =v(™ 2V )y, for
symmetry inteepolant p(x) defined by

(Eq. 4) pN(x)zziPZ eV for xe[0,2z], N=2m
T k=—m
where P (principal value) indicates that the terms k=+m are multiplied by %

Hence %\7}8)=0.01719783356013 and then [=V® —v.*| =1.413004306399998e-004 .

Now we estimate the difference between p8 (x) and py (x) :

e

2 k=+4 7T k=15
However we have shown V =0, so0

a (= P (9] SV oo 3

k=14
V1) —\70<8> — 1.255148390555405¢-006

’\

V) —%\Z((B)

A

V00 @

-

—1.011760904967574¢-005
V1) ¥ =1.419280048400307e-004

V1) v 8] = 0.00171570157617

%\74(‘*) ~V"9| =1.413004306399998e-004

Hence |py, (X)— Py (X)) < 6.396994825534096e-004 for any x<[0,27).

3 ~ ~ . ~ ~
Further i, (x)— pj () = i 3 ike™ (V) V) +2i 3 ike® (vk“(’) -%vﬁj

k=-3 T k=+4

‘pl’o(x)— pg(x)‘ <0.00191185832541 forany xe[0,27].



This number is about %| p;—V’|, . . hence pair phenomenon occurs at n=8,10.

Table 5: we copy data from Table 2 and add two new fields, one is |errn —errn+2| and the other

pr'l (X) - pr'1+2 (X)‘ ) |errn —er,,
derivation between pair, for example
lerr, —err,| =|0.00431791109859 — 0.00316947217836| = 0.00114843892023

is difference of two value in the field L” —err, it measure

is

Py (X)— pr’Hz(x)‘ measure derivation due to M(”) —v,["2)]

n=_8,10 n=12,14
L” —err 0.00431791109859 0.38249095565268E-4
0.00316947217836 0.25253568612049E-4
0.00114843892023 1.299552695321900e-5
lerr, —err,
, , 0.00191185832541 1.807600691270616€e-5
pn (X) - pn+2 (X)‘
n=16,18 n=20,22 n=24,26
L= —err 0.17618931913432E-6 0.49879544938847E-9 0.97200025805932E-12
0.10953028789507E-6 0.29827984526776E-9 0.59258153939368E-12
6.665903123925001¢e-8 2.00515604120710e-10 3.794187186656399-13
|errn - errn+2|
, ! 8.527607765287214e-8 2.441827585710109e-10 5.089522571307543e-13
pn (X) - pn+2 (X)‘

From above data, we would find |err, —err, ,|~

P, (X)— Ph., (x)‘ , this proves our idea that
pair phenomenon occurs due to 3 reasons

(1) ReV), =0 and ImV.” =0

2) \75(10) :\77(14) :\79(18) :\71(122) -0

3) \74(8) ~ 2\74(10)’ \76(12) ~ 2\76(14)1 \78(16) ~ 2\78(13) and \715)20) ~ 2\715)22)

(4) From chap3.doc, we have shown

Vk+ Np

for k=0,1,2,---,N-1

Lemma 1: ‘Ok —\7k‘ < Zi
p=1

Moreover from experimental result for V =exp(sin(x)) (see below), we found that M‘ ~ %

hence the error between discrete Fourier component \7&”) —\7&”*2) for k=0,1,2,---,n/2 can

be neglected.
10



So far, we cannot interpret reason 3.

We try to interpret reason 3.
First note that pair occursat n=4k and n= 4k +2

(Eq.5) Uy = hi(-l)" v, = 2h{1+(

j=1

=~(e+1/e)+

[ l

J:l

(Eq. 6) ) | - -
— 2ﬁ{1+2(—1)1 COS(ﬁj )(esm(hj) +esm(hl))}
j=1
where fi=—2"_ - 7 : =2—”=£,then h-h=— "
4k+2 2k+1 4k 2k 2k(2k+1)

From our experimental result, \“éik) ~

compare Ah- Vi)

k-
h{1+( 1 2 (e+1/e)+ > (-1

zzﬁ{1+zk:(

i-1

( sm (hi)

1
j=1

sm(h]) )}

~1)" cos(h )(esm(ﬁ” +e ) )}

Table 6: List difference between W) and ¥*? define A=

4k)
!

However result is negative, we CANNOT regard h=h.

4k+2
2v2k

j ( sm (h) sm(hj))}
Uee?) = HZN: ey, = HZN:(—l)j ey, = ﬁZ(—l)i cos(x; ),

200 | this means that we only need to show

)|, Ah=h—h, we

and A to determine if we can neglect difference of Ah andregard h=h.

n=4k=8 n=4k=12 n=4k =16 n=4k=20

\7( 4x) 0.03439566712026 -0.00028260085474 0.00000125168893 -0.00000000345946

2k
~(4k+2) 0.01705653312949 -0.00014067458291 0.00000062411474 -0.00000000172646

2k
A 2.826008612799996e-4 | 1.251688920000005e-6 3.459450000000128e-9 6.539999999999855¢-12
Ah 0.15707963267949 0.07479982508547 0.04363323129986 0.02855993321445
AR ~(4K) 0.00540285875702 2.113849450355667e-5 5.461523259816207e-8 9.880194655807041e-11

“Vaox
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1 (ke
A =2h(t,—s+t,—-s,) and A, _2(h h)(1+s_L+SZ) oK iikr?)

Then U =2h(1+t, +t,), W ? =2R(1+s +s,) and then
\Aéllik) _\A/gikﬂ) =A +A,

n=4k =8 n=4k=12 n=4k =16 n=4k =20
L(aks2) | 0.01705653312049 -1.4067458291e-4 6.2411474e-7 -1.72646¢-9
V2k
A 2.826008612799996e-4 | 1.251688920000005¢-6 | 3.459450000000128¢-9 | 6.539999999999855¢-12
t, -0.66897406741795 | -0.63041950969349 | -0.59800207628710 -0.57848539389295
t, -0.30912897080952 | -0.36985035424424 | -0.40199633001306 -0.42151461161294
S -0.65635567309515 | -0.61768932891181 | -0.58985808333448 -0.57283605860995
S, -0.33007116910701 | -0.38246739447485 | -0.41014102268702 -0.42716394441257
ht, -0.52541100391058 | -0.33008688338879 | -0.23483486621187 -0.18173654636631
ht, -0.24278932592674 | -0.19365319263688 | -0.15786358964238 -0.13242272072240
; -0.41240043214754 | -0.27721832255859 | -0.20589931347379 -0.16360159576731
S
- -0.20738983200567 -0.17165096524569 -0.14316622486770 -0.12199773724045
hs,
A, 0.01307500070840 -1.184805080196554¢-4 | 5.495508519973221e-7 | -1.560346593471024¢-9
A, 0.00426413328237 -2.344576381762684¢-5 | 7.801434217854332¢-8 | -1.726463642529372¢-10
- 7 h ,
Because hk=—-—,wecanrewrite s and s, as
2 2
L ~ sm(hj) cos(hlz)
5=y (-1) cos( j)( +(-1)" sm(h/2) and
j=1
k1 ~ sm('J) cos(hlz)
s =>(-1) cos( J)( )+(— ) sin(h/2)e
j=1
L (hj) ~ sin(ﬁj) k cos(hlz)
t-s=> (-1 [( i ) cos(hj)(e )}+(—1) {E—Sln(hIZ) }
j=1
K- 1 1
s, = [( —sin( hj)) COS(hJ)( (hj))}_i_(_l)k ——sm(h/2) —cos(h/2)
1:1 2e
1),
Then if we want to show 05 ~ 205? it suffices to show A, (1 E] o),

Another view: if we divide 1= %+% then we may regard summation in \72‘;") as sum of

Trapezoid rule, so is G."?), then we rewrite them as
hz j ( sm (hi) sm (hi+h) )+ hz j ( —sm (hi) e—sin(hj+h))

12




Possible solution
esin(x) _ esin(y) + IXCOS t)esin(t)dt

Then (M) _ i+ _ h_|'hj+hcos(t)e5i”(t)dt.

. 1 i ehi+ in(t hj-+h sin
v(ik):—hjz_(;(—l)’thj cos(t)€ dt+hz J'J cos(t)e "t

In this section, we try to find Fourier component of V = exp(sin (x)) , and decide the decay

rate of \7k numerically since this decay rate determine the accuracy of discrete Fourier

component.
From chapter 3 (see chap3.doc), we know

(Eq. 8) V(x)=2ii o

2w 2

TT 2 27 =
(Eq.9) V, j e "*dx
Because V s real, we have V_k=\7k* and
1.~ 18 sy 1la1E A .
(Eq. 10) V(x):EVOJr;;Re(ekka):gvo+;kz_;(cos(kx)Rer—sm(kx)lmvk)

Now let V (x)= exp(sin(x)),then V>0, |[\/||l:\70 and M‘SHV”l forall k.
ReV, = I V (x)cos (kx) dx:J':”cos(kx)eS‘”de

ImV, = J' V (x)sin (kx) dx:—Lz”sin(kx)eS‘”de

_IOZ exp(25|n )dx 14.32305687810046

V, = j:”exp(sin(x))dx= 7.95492652101279
ReV, = [ "cos(x)e™dx =" [*=0 and ImV, =~ "sin(x)e™ dx = -3.55099937842440

ReV, =-0.85292776416409 and ImV, =0

Prop 1: for k> 2, then
(Eg. 11) ReV, =i(|m\7k_1 +ImV,) and ImV, = —2—1k(Re\7k_1 +ReV, ;)
<proof>We use integration by parts

ReV, :LZ”cos(kx)eS‘“xdx:%sm e o ——_[ sin (kx)cos xe™"*dx
l T . sin x - H Sin x
:_EIOZ sin (kx)cos xe dx:—ﬁjo [sm (k+1)x)+sm((k—1)x)]e dx

:i(lm\&ﬁ Im\7k+l)
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ImV, = —IOZESin (kx) eS‘”de:%cos N j cos (kx) cos xe™dx
1 F sin x sin x
:_EJ'OZ cos(kx)cos xe dx:—ﬁjo [ cos((k+1)x)+cos((k-1)x) |&"™dx

= —i(Re\?kl + Re\7k+l)

We can rearrange (Eg. 11) to be

ReVi, | |ReV, —ImV, . . .
(Eg. 12) N “Lip2k| % or Vo, =-V_ +2kJ=1V,
ImV, , Ika_l ReV,

Remark 2: one can derive (Eq. 12) by

v, J' e "*dx = —I e cos xe"*dx = iﬁ” e (e +e™)e™dx = ?1k(\7“ +\7k+1)

for example
V, = -V, +4J/-1V, = (0,0.13928832176804), V, =-V, +6+/-1V, =(0.01719783355585,0)

Lemma 2: for V(x)=exp(sin(x)), we have ImV,, =0 and ReV,, =0

(Eq. 13) V(x):ziv L Z(cos(ka)ReVZk)_iisin((ZKH) X)ImV,, ,

T k=1 T k=0
<proof> we use induction
induction basis: k=0, we have V,eR and ReV, =0, OK

k=1, we have Im\72 =0 and Re\73 =0,0K
inductive hypothesis: Assume assertions holds for k=1,2,---,m

Inductive step, for k=m+1
From (Eq. 12) we have

MV, ==ImV,,, +2(2m-1)ReV, , =—ImV,, , +2(2m-1)ReV,, , .
ReV,,, =—ReV,,; —2-2mimV,, =—ReV, ,  —4mimV,, =0

last equality comes from inductive hypothesis.

Moreover we use Matlab to verify these two condition, see Figure 10. Even when k<40, we

still have O(1.E—15) accuracy.

Another proof: we use sin(z—x)=sin(x) to show the assertion

J' " sin (2kx) dx = J. e sin (2kx) dx+f " sin (2kx) dx

=0

First we claim j s'”XSIn(ZkX)dX=O
J. S”‘Xsm 2kx) dx = j S”‘Xsm(ka dx+J' S'”X5|n(2k><)dx
[7 esin(2kq)dx=—[" &""sin(2K(z-y)) dy:-jo’”zesi“ysin(zky)dy

Hence f e sin (2kx)dx =0, the same cancellation holds for J.Oﬂe‘Si“Xsin(ka) dx=0
Similarly

14



'[;eS‘“Xcos((ZkH)x)dx joes'”xcos((2k+1 dx+j e cos((2k+1) x) dx
we claim J.:eS‘”Xcos((Zk+1)x)dx=O

_[:/Zes"‘x cos((2k +1) x)dx = —j:/ZeS‘”y cos(7 —(2k+1)y)dy = —J':/Zesmy cos((2k+1) y)dy

x10"° Im'vhat2k 10 Revhat2k+1
T T T T .

Figure 10: we verify condition Im\72k =0 and Re\72k+1 =0 for k=1:10 by using trapezoid rule

to do integration. It is clear that all data reach machine accuracy.

From Lemma 2, we can simplify (Eq. 10) as

1.~ 1 1 ~
(Eq. 14) V(X)ZEV”;”Z;(COS(ZKX ReV,, )- ;kz_(;(sm( (2k+1)X) MV, ,
where
(Eq. 15) ReVay || RV || ~(2k-1) iV,
ImV2k+l |mV2(k_l)+1 2k REV2k

Moreover we can simplify (Eq. 15) further

| ReV,, _{—1 —2(2k-1) } ReVy.y,

~ak —(1+8Kk(2k-1)) |l iV, , ,

(Eq. 16) R
_ImV2k+1_

ReV, | [-1 -2][ReV,
mV, | -4 -9][mV, |

ReV, | [-1 —6} ReV, {25 56} ReV,
ImV, | [-8 —49]|ImV,| [204 457] imV,|
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Re\78 | 351841 788192 Re\7o
Im\79 | 5654440 12667041 Im\71
This recursive formulation is not numerically stable, means that if we want to use this formula

to find all \7k, then rounding error would be disastrous. So we need high precision package to

smooth accumulation error.

Next we use special technique to find \70

1-3-5.-.(n-1
12 12 #f if Nn>2, niseven
Lemma 3: J. SinnXdX:J. cos" xdx = 2.4.6---n 2
° 0 2-4-6---(n—1)
if n>3, nisodd
3.5...n

<proof> see integral table inside of cover of [1]

V, = _[02” M dx = fﬁ e"Xdx = _[Oﬁ(es"‘X +e°" ) dx= 2]0”/2 (€™ +e ") dx, the last equality

comes from sin(z —x) =sin(x).

Using power series (ex +e*X) = 2{“2 L xz"J , then we have

2 (2k)!
s Rl 21, I AR T T E2E
V0_4j0 (1+kz_;(2k)!sm (x)jdx_4 E+;WIO sin (x)dx}

i 3.5... I I
where jo /ZsinZK(x)dx: T_7 (2k) . _r (2k)2 ~Z o
2:4:6-(2K) 2 2(2:4.6.(2k)) 2 (21 2

o0
k=1

Hence \70=27z[1+z(2¢l'<‘)!]=27z 1+i( 1 : EZﬂ'(l"‘iakJ

Note that a, = L . : = 12a1<1

(2k1)" (k2<% (k-1))) (2K)

N
Then we use following code to compute partial sum Zak

k=1
a =1, sum=0
for k=1:N
1
—a —— ; SumH=
& ak(2k)z &
end
i 5 c 1 S e
Prop 2: If V =¢€™*, then V, =27z(1+ akj where a, = and a <——
’ kzi‘ * 2°k1) kzn“, 4N (N1’



0

<proof> Z a = i 5 i 1

N m:0(2’\‘+"” N+m)) 4N(N!) m:0(2"”(N+1)(N +2)---(N+m))2
We use 1 2<i and e:wi
(2"(N+1)(N+2)--(N+m))"  mt o m!
N =10 N =15 N =20 N =25 N =30 N=40 | N=50
e
4N (N ')2 10—16 10—42 10—60 10—80 10—100 10—142 10—184
N =100 N =200 N =300 N =400 N =500
e
4N (N ')2 107375 107869 1071409 1071978 1072568
- - 2 2 2e
Prop 3: If V =€, then ImV, =-2r where = and <
p | =273 3, (4] 2.3 N

<pr00f>|m\71:—I02”sin( x)€"dx, it suffices to show I sin(x)e™dx=27)_a, .

(1) check r”sin X eS‘”de:ZI” sin(x) (€™ —e " )dx

o0

@) ( ) g 2k+1 2k
=1z (2K)!
©) j sin( X= kZ(Zk -1)! 5(2 kl)2
2k 1
@) &= (2k1) " ak(k-1) ¥
S 2(N+m) S 1
2.a=2, ZZo(zm(N+1)(N+2)---(N+m—1))2(N+m)

Then we use following code to compute partial sum Zak
k=1

a =05, sum=0.5
for k=2:N

a < a,

SUMH = a,

LR
4k(k-1)

end

Next we use high precision package to compute \70 and Im\71 up to 128 digits, note that we
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N
use N=>42 to stabilize partial sum > a,.

k=1

\70 =7.9549265210128452 7451321966532939 4328161342771816 6385734005959553
8336060816469466 6995137357228568 7741332170437587 4113888148503023e0

Im\7l =-3.5509993784243618 9375715307444414 5068885827761984
4655200625893475 7625209545877072 0368124285904632 7616425367512080
1404294198552668e0

Table 7: We use high precision package with 1000 digits to compute \7k and estimate

K
Source code: F:\course\2008spring\spectral _method\cxx_example\chapl

convergence order of \7k, defined by ‘\7,(‘ :k%

m(k) m(k)
ReV/(0) = 7.9549265210128453e0 ImV(1) = -3.5509993784243619¢e0
ReV(2) = -8.5292776416412149e-1 ImV(3) = 1.3928832176787595e-1
ReV(4) = 1.7197833556865812¢-2 ImV(5) =-1.7056533129494463e-3
ReV(6) = -1.4130042737134921e-4 4.94744 ImV(7) = 1.0048184493255820e-5 5914
ReV(8) = 6.2584446576772422e-7 6.86923 ImV(9) =-3.4673040972232835e-8 7.81773
ReV/(10) = -1.7297282675331887e-9 8.76202 ImV(11) = 7.8475621569060340e-11 9.70361

ReV(12) = 3.2645930138612418e-12 10.6434 ImV(13) = -1.2538923639053624e-13 11.582

ReV(14) = -4.4728677072995018e-15 12.5199 ImV(15) = 1.4894058615019287e-16 13.4573

ReV/(16) = 4.6501227937157073e-18 14.3944 ImV(17) = -1.3665675129023628e-19 15.3313

ReV(18) = -3.7932498476738764e-21 16.2682 ImV(19) = 9.9756773976728090e-23 17.2051

ReV/(20) = 2.4924365582089317e-24 18.1421 ImV(21) = -5.9311648370821361e-26 19.0792

ReV/(22) = -1.3473266344345731e-27 20.0164 ImV(23) = 2.9276455700143845e-29 20.9539
ReV/(24) = 6.0967222795625615e-31 21.8915 ImV(25) = -1.2188758243549561e-32 22.8293
ReV/(26) = -2.3431577877807459-34 23.7674 ImV/(27) = 4.3377470896829986¢e-36 24.7056
ReV(28) = 7.7435935192659899%¢-38 25.6441 ImV/(29) = -1.3347188940443096e-39 26.5828
ReV(30) = -2.2239338089943938e-41 27.5217 ImV(31) = 3.5860864767329276e-43 28.4608

ReV(32) = 5.6019341997869982e-45 29.4002 ImV/(33) = -8.4858886924868411e-47 30.3397

ReV(34) = -1.2476627456831309e-48 31.2795 ImV(35) = 1.7820218415512617e-50 32.2195

ReV/(36) = 2.4745659724766378e-52 33.1597 ImV(37) = -3.3434136808250048e-54 34.1001

ReV/(38) = -4.3984866613426193e-56 35.0407 ImV(39) = 5.6381820461407180e-58 35.9815

ReV(40) = 7.0466535285927712e-60 36.9225 ImV(41) = -8.5922326650106772e-62 37.8637

ReV(42) = -1.0227432840158852e-63 38.805 ImV(43) = 1.1890792772412452e-65 39.7466
ReV/(44) = 1.3510558841438762e-67 40.6883 ImV(45) = -1.5009919463409708e-69 41.6302
ReV/(46) = -1.6313243700245210e-71 42.5723 ImV(47) = 1.7352591841154628e-73 43.5146
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ReV(48) = 1.8073695598597204e-75 44.457 ImV/(49) = -1.8440665013114252e-77 45.3996
ReV(50) = -1.8438857452372014e-79 46.3424 ImV(51) = 1.8075607422380681e-81 47.2853
ReV/(52) = 1.7378815437191885e-83 48.2283 ImV(53) = -1.6393677011213502e-85 49.1716
ReV/(54) = -1.5178053055730738e-87 50.1149 ImV(55) = 1.3797110243049970e-89 51.0584
ReV/(56) = 1.2317883757703079¢-91 52.0021 ImV(57) = -1.0804344225222833e-93 52.9459
ReV/(58) = -9.3134094904861371e-96 53.8899 ImV/(59) = 7.8921625891422459%¢-98 54.8339
ReV(60) = 6.5763529828695323e-100 55.7782 ImV(61) = -5.3900969880710571e-102 56.7225
ReV/(62) = -4.3465742284267052e-104 | 57.667 ImV(63) = 3.4494482194268623e-106 58.6116
ReV/(64) = 2.6947194885863902e-108 59.5563 ImV(65) = -2.0727403628291311e-110 60.5012
ReV(66) = -1.5701690851976058e-112 | 61.4462 ImV(67) = 1.1717036829142283e-114 62.3913
ReV/(68) = 8.6150092539842003e-117 63.3365 ImV(69) = -6.2424372377078596e-119 64.2819
ReV(70) = -4.4586594735415350e-121 | 65.2273 ImV(71) = 3.1397474971062253e-123 66.1729
ReV/(72) = 2.1802765069509171e-125 67.1186 ImV/(73) = -1.4932709690467884e-127 68.0644
ReV(74) = -1.0089214260595890e-129 | 69.0102 ImV/(75) = 6.7258478596712626e-132 69.9562
ReV/(76) = 4.4247108899611723e-134 70.9024 ImV(77) = -2.8730693028074481e-136 71.8486
ReV/(78) = -1.8416363770214422¢-138 | 72.7949 ImV(79) = 1.1655465399828615e-140 73.7413
ReV/(80) = 7.2843848521037795e-143 74.6878 ImV(81) = -4.4963646256784895e-145 75.6344
ReV(82) = -2.7415850462649380e-147 | 76.5811 ImV(83) = 1.6514980399108078e-149 77.5279
ReV/(84) = 9.8300012997093223e-152 78.4748 ImV(85) = -5.7821559641664032e-154 79.4218
ReV/(86) = -3.3616062643676250e-156 | 80.3689 ImV(87) = 1.9318945408827106e-158 81.316

ReV/(88) = 1.0976323170853944e-160 82.2633 ImV(89) = -6.1662812416461892e-163 83.2106
ReV(90) = -3.4256072372713951e-165 | 84.1581 ImV(91) = 1.8821455767799992e-167 85.1056
ReV(92) = 1.0228753179651741e-169 86.0532 ImV/(93) = -5.4991724078868826e-172 87.0009
ReV(94) = -2.9250098213943509e-174 | 87.9486 ImV/(95) = 1.5394366550286099e-176 88.8965
ReV(96) = 8.0176839992052904e-179 89.8444 ImV(97) = -4.1327181194190573e-181 90.7924
ReV(98) = -2.1084753231915019e-183 | 91.7405 ImV(99) = 1.0648596371350890e-185 92.6886
ReV/(100) = 5.3241664025762733e-188 | 93.6369 ImV(101) = -2.6356619834325278e-190 | 94.5852
ReV(102) = -1.2919604256718823e-192 | 95.5336 ImV(103) = 6.2715061887867499e-195 | 96.482

ReV(104) = 3.0150781811827308e-197 | 97.4306 ImV(105) = -1.4357192666992787e-199 | 98.3792
ReV/(106) = -6.7721114245441988e-202 | 99.3278 ImV(107) = 3.1644695908567913e-204 | 100.277
ReV/(108) = 1.4650011066538491e-206 | 101.225 ImV(109) = -6.7200484477269938e-209 | 102.174
ReV/(110) = -3.0545049364460404e-211 | 103.123 ImV/(111) = 1.3758754570485746e-213 104.072
ReV/(112) = 6.1421798204873893e-216 | 105.021 ImV(113) =-2.7177259399354918e-218 | 105.971
ReV/(114) = -1.1919623317795924e-220 | 106.92 ImV/(115) = 5.1823478021086980e-223 107.869
ReV/(116) = 2.2337294591867709-225 | 108.818 ImV(117) =-9.5456795389410712e-228 | 109.768
ReV/(118) = -4.0447074560274482e-230 | 110.717 ImV/(119) = 1.6994271629333847e-232 111.667
ReV(120) = 7.0808245992629515e-235 | 112.616 ImV/(121) = -2.9259110276340004e-237 | 113.566
ReV(122) = -1.1991238867047224e-239 | 114.516 ImV/(123) = 4.8744074477763628e-242 | 115.466
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ReV(124) = 1.9654551737166463e-244 | 116.415 ImV/(125) = -7.8616959079921701e-247 | 117.365
ReV(126) = -3.1196718603786482e-249 | 118.315 ImV/(127) = 1.2281983797660650e-251 | 119.265
ReV/(128) = 4.7975772843065435e-254 | 120.215 ImV(129) = -1.8594983589878912e-256 | 121.165
ReV/(130) = -7.1518117784269494e-259 | 122.116 ImV(131) = 2.7296596884347195e-261 | 123.066
ReV/(132) = 1.0339472798414659e-263 | 124.016 ImV(133) = -3.8869653249621741e-266 | 124.967
ReV/(134) = -1.4503401527580714e-268 | 125.917 ImV(135) = 5.3715570542648909e-271 | 126.867
ReV/(136) = 1.9748106550868906e-273 | 127.818 ImV/(137) = -7.2072428548484198e-276 | 128.768
ReV/(138) = -2.6112858423585874e-278 | 129.719 ImV(139) = 9.3929938718587938e-281 | 130.67

ReV/(140) = 3.3545981842720248e-283 | 131.62 ImV/(141) = -1.1895589712441229¢-285 | 132.571
ReV/(142) = -4.1885363598235693e-288 | 133.522 ImV/(143) = 1.4645054229194620e-290 | 134.473
ReV/(144) = 5.0850273907962369e-293 | 135.424 ImV/(145) = -1.7534370145803019e-295 | 136.375
ReV(146) = -6.0048513361321557e-298 | 137.326 ImV/(147) = 2.0424429712458045e-300 | 138.277
ReV(148) = 6.9000669490463556e-303 | 139.228 ImV/(149) = -2.3154328083236962e-305 | 140.179
ReV(150) = -7.7180241741020677e-308 | 141.13 ImV/(151) = 2.5556093075861283e-310 | 142.082

From the experimental result, we found m(k) ~ k, see Figure 11. Hence we expect that
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Figure 11: decay rate of

This is reasonable since we know from chap3.doc

If vV is periodic with period 27 for k=0,1,2,---,m, then

(Eq. 17) V, = .[OZHV(X)e’ikdez

Reference

1
(ik

P

.[OZHV(m)e’”‘de

[1] Finney, Weirm, Giordano, Thomas’s Calculus
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