Chapter 6 Chebyshev Differentiation Matrices

Consider $N+1$ Chebyshev node on $[-1,1]$
(Eq. 1) $\quad x_{j}=\cos (j \pi / N)$ for $j=0,1,2, \cdots, N$
Remark 1: under such configuration, $1=x_{0}>x_{1}>x_{2}>\cdots>x_{N}=-1$, this order is different than usual notation, we must be careful since our Chebyshev Differentiation matrix is based on this order.
Remark 2: Given $N+1$ points x_{j} and corresponding function value v_{j}, then we can construct a unique polynomial of degree N (if we consider v_{j}, then it may less than N), called $p(x)$, $p(x)=\sum_{j=0}^{N} v_{j} S_{j}(x)$ where $S_{j}(x)$ is a basis (polynomial of degree N) under $\left\{x_{j}\right\}$, say $S_{j}\left(x_{k}\right)=\left\{\begin{array}{ll}1 & k=j \\ 0 & k \neq j\end{array}\right.$. In fact under Lagrange polynomial, we can write down $S_{j}(x)$ explicitly

$$
\begin{equation*}
S_{j}(x)=\frac{\prod_{k=0, k \neq j}^{N}\left(x-x_{k}\right)}{\prod_{k=0, k \neq j}^{N}\left(x_{j}-x_{k}\right)} \tag{Eq.2}
\end{equation*}
$$

Example 1: $N=1, x_{0}=1, x_{1}=-1$
$S_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}}=\frac{1}{2}(x+1)$ and $S_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}=-\frac{1}{2}(x-1)$, then $p(x)=\frac{1}{2}(x+1) v_{0}-\frac{1}{2}(x-1) v_{1}$, that means $p^{\prime}(x)=\frac{1}{2}\left(v_{0}-v_{1}\right)$. Note that if we sample $w_{j}=p^{\prime}\left(x_{j}\right)$ for $j=0,1$, then we have $w_{0}=w_{1}$, or write in matrix form
(Eq. 3) $\binom{w_{0}}{w_{1}}=\left(\begin{array}{ll}1 / 2 & -1 / 2 \\ 1 / 2 & -1 / 2\end{array}\right)\binom{v_{0}}{v_{1}} \triangleq D_{1}\binom{v_{0}}{v_{1}}$
Moreover we have $p^{\prime}(x)=w_{0} S_{0}(x)+w_{1} S_{1}(x)$. This means that we can do twice differentiation, if we set $z_{j}=p^{(2)}\left(x_{j}\right)$, then
(Eq. 4) $\binom{z_{0}}{z_{1}}=D_{1}\binom{w_{0}}{w_{1}}=D_{1}^{2}\binom{w_{0}}{w_{1}}=\binom{0}{0}$, that is $D_{1}^{2}=0_{2 \times 2}$

Example 2: $N=2, x_{0}=1, x_{1}=0$ and $x_{2}=-1$
$S_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}=\frac{1}{2} x(x+1), \quad S_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}=-(x-1)(x+1)$ and
$S_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{1}{2}(x-1) x$, then $p^{\prime}(x)=v_{0} S_{0}^{(1)}(x)+v_{1} S_{1}^{(1)}(x)+v_{2} S_{2}^{(1)}(x)$,
$p^{\prime}(x)=\left(x+\frac{1}{2}\right) v_{0}-2 x v_{1}+\left(x-\frac{1}{2}\right) v_{2}$
(Eq. 5) $\left(\begin{array}{l}w_{0} \\ w_{1} \\ w_{2}\end{array}\right)=\left(\begin{array}{ccc}3 / 2 & -2 & 1 / 2 \\ 1 / 2 & 0 & -1 / 2 \\ -1 / 2 & 2 & -3 / 2\end{array}\right)\left(\begin{array}{l}v_{0} \\ v_{1} \\ v_{2}\end{array}\right)=D_{2}\left(\begin{array}{l}v_{0} \\ v_{1} \\ v_{2}\end{array}\right)$
$D_{2}^{2}=\left(\begin{array}{lll}1 & -2 & 1 \\ 1 & -2 & 1 \\ 1 & -2 & 1\end{array}\right)$ matches $p^{(2)}(x)=v_{0}-2 v_{1}+v_{2}$ and $D_{2}^{3}=0_{3 \times 3}$.

In general we have $S_{j}(x)=\frac{1}{a_{j}} \prod_{k=0, k \neq j}^{N}\left(x-x_{k}\right)$ where $a_{j}=\frac{1}{\prod_{k=0, k \neq j}^{N}\left(x_{j}-x_{k}\right)}$, then
(Eq. 6) $\log S_{j}(x)=-\log a_{j}+\sum_{k=0, k \neq j}^{N} \log \left(x-x_{k}\right)$
we differentiate (Eq. 6), then $\frac{1}{S_{j}(x)} S_{j}^{(1)}(x)=\sum_{k=0, k \neq j}^{N} \frac{1}{\left(x-x_{k}\right)}$, hence
(Eq. 7)

$$
S_{j}^{(1)}(x)=S_{j}(x) \sum_{k=0, k \neq j}^{N} \frac{1}{\left(x-x_{k}\right)}=S_{j}(x)\left\{\frac{1}{\left(x-x_{i}\right)}+\sum_{k=0, k \neq i, j}^{N} \frac{1}{\left(x-x_{k}\right)}\right\}
$$

Case 1: $x=x_{j}$, then
(Eq. 8) $S_{j}^{(1)}\left(x_{j}\right)=\sum_{k=0, k \neq j}^{N} \frac{1}{\left(x_{j}-x_{k}\right)}$
Case 2: $x=x_{i}$, then
(Eq. 9)

$$
S_{j}^{(1)}\left(x_{i}\right)=\left.\frac{S_{j}(x)}{\left(x-x_{i}\right)}\right|_{x=x_{i}}+S_{j}\left(x_{i}\right) \sum_{k=0, k \neq i, j}^{N} \frac{1}{\left(x_{i}-x_{k}\right)}=\left.\frac{S_{j}(x)}{\left(x-x_{i}\right)}\right|_{x=x_{i}}
$$

$$
=\left.\frac{1}{a_{j}} \prod_{k=0, k \neq i, j}^{N}\left(x-x_{k}\right)\right|_{x=x_{i}}=\frac{1}{a_{j}} \prod_{k=0, k \neq i, j}^{N}\left(x_{i}-x_{k}\right)=\frac{a_{i}}{a_{j}} \frac{1}{\left(x_{i}-x_{j}\right)}
$$

$p^{\prime}\left(x_{i}\right)=\sum_{j=0}^{N} v_{j} S_{j}^{(1)}\left(x_{i}\right)=\sum_{j=0}^{N} D_{i j}^{N} v_{j}$, we have $D_{i j}^{N}=S_{j}^{(1)}\left(x_{i}\right)$
We implement such differentiation matrix as function diff_matrix_for_polyInterpolate.m in directory F:\course\2008spring\spectral_method\matlab
In particular, for Chebyshev nodes, we have simplified version

Theorem 1: for Chebyshev nodes $x_{j}=\cos (j \pi / N)$ for $j=0,1,2, \cdots, N$, we have $D_{00}^{N}=\frac{2 N^{2}+1}{6}, D_{N N}^{N}=-\frac{2 N^{2}+1}{6}, D_{i j}^{N}=\frac{-x_{j}}{2\left(1-x_{j}^{2}\right)}$ for $j=1,2, \cdots, N-1$ $D_{i j}^{N}=\frac{c_{i}}{c_{j}} \frac{(-1)^{i+j}}{\left(x_{i}-x_{j}\right)}$ for $i \neq j, \quad i, j=0,2, \cdots, N$ where $c_{i}= \begin{cases}2 & i=0, N \\ 1 & \text { otherwise }\end{cases}$
with identity $D_{i i}^{N}=-\sum_{j=0, j \neq i}^{N} D_{i j}^{N}$
We implement such special matrix in cheb.m in directory
F:\course\2008spring\spectral_method\matlab

Exercise 1: Let D^{N} be Chebyshev differentiation matrix. We know $\left(D^{N}\right)^{N+1}=0_{(N+1) \times(N+1)}$.
However we need consider rounding error (in order to check if rounding contaminates the result, we can use high precision package to point out), this error can be amplified due to so many multiplication, we demonstrate this as follows.

Table 1: use MATLAB, first number is double precision, second number is double-double and third number is quad-double.

High precision code is located at
/home/macrold/backup/2008spring/spectral_method/cxx_example/chap6, see ex8.cpp

	$N=5$	$N=10$	$N=15$	$N=20$		
$\left\\|\left(D^{N}\right)^{N+1}\right\\|_{2}$	$9.8017 \mathrm{E}-011$	$4.8672 \mathrm{E}-002$	$1.0941 \mathrm{E}+009$	$4.8124 \mathrm{E}+019$		
	$3.7644 \mathrm{E}-27$	$3.3708 \mathrm{E}-18$	$2.7839 \mathrm{E}-8$	$1.7886 \mathrm{E}+2$		
$\operatorname{cond}\left(D^{N}, 2\right)$	$1.6810 \mathrm{E}+017$	$2.1488 \mathrm{E}+017$	$6.8901 \mathrm{E}+016$	$3.0900 \mathrm{E}+017$		
$\operatorname{det}\left(D^{N}\right)$	$1.0232 \mathrm{E}-012$	$1.3201 \mathrm{E}-006$	$-2.5372 \mathrm{E}+001$	$4.0785 \mathrm{E}+009$		
$\max \left(\max \left(D^{N}\right)\right)$	10.4721	40.8635	91.5231	162.4476		

It is clear that $\left\|\left(D^{N}\right)^{N+1}\right\|_{2} \neq 0$ is due to rounding, not condition number.

Exercise 2: Compare two methods, method 1 is $D_{i j}^{N}=\frac{-x_{j}}{2\left(1-x_{j}^{2}\right)}$ and method 2 is $D_{i i}^{N}=-\sum_{j=0, j \neq i}^{N} D_{i j}^{N}$. We measure difference,

	$N=5$	$N=10$	$N=15$	$N=20$
$\max _{i}\left\|\Delta D_{i i}^{N}\right\|$	$5.3291 \mathrm{e}-015$	$2.8422 \mathrm{e}-014$	$2.2737 \mathrm{e}-013$	$8.5265 \mathrm{e}-013$
	$4.9303 \mathrm{E}-31$	$8.2830 \mathrm{E}-30$	$2.7610 \mathrm{E}-29$	$9.1236 \mathrm{E}-29$
	$1.2534 \mathrm{e}-63$	$1.3839 \mathrm{e}-62$	$1.1668 \mathrm{e}-61$	$4.6870 \mathrm{e}-62$

