
Chapter 6  Chebyshev Differentiation Matrices 
 
Consider  Chebyshev node on 1N + [ ]1,1−  

(Eq. 1) ( )cos /jx j Nπ=  for  0,1, 2, ,j N=

Remark 1: under such configuration, 0 1 21 Nx x x x 1= > > > > = − , this order is different than 
usual notation, we must be careful since our Chebyshev Differentiation matrix is based on this 
order. 
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Example 1: , 1N = 0 1x = ,  1 1x = −
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Example 2: , 2N = 0 1x = ,  and 1 0x = 2 1x = −  
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We implement such differentiation matrix as function diff_matrix_for_polyInterpolate.m in 
directory F:\course\2008spring\spectral_method\matlab 
In particular, for Chebyshev nodes, we have simplified version 
 
Theorem 1: for Chebyshev nodes ( )cos /jx j Nπ=  for 0,1, 2, ,j N= , we have  
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with identity  
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We implement such special matrix in cheb.m in directory 
F:\course\2008spring\spectral_method\matlab 
 

Exercise 1: Let  be Chebyshev differentiation matrix. We know ND ( ) ( ) ( )
1

1 10
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However we need consider rounding error (in order to check if rounding contaminates the result, 
we can use high precision package to point out), this error can be amplified due to so many 
multiplication, we demonstrate this as follows. 

Table 1: use MATLAB, first number is double precision, second number is double-double and 
third number is quad-double. 

High precision code is located at 
/home/macrold/backup/2008spring/spectral_method/cxx_example/chap6, see ex8.cpp 
 5N =  10N =  15N =  20N =  
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 9.8017E-011 
3.7644E-27 
5.1923E-60 

4.8672E-002 
3.3708E-18 
6.6438E-51 

1.0941E+009 
2.7839E-8 
3.2691E-40 

4.8124E+019 
1.7886E+2 
4.6363E-31 

( ), 2Ncond D  1.6810E+017 2.1488E+017 6.8901E+016 3.0900E+017 

( )det ND  1.0232E-012 1.3201E-006 -2.5372E+001 4.0785E+009 

( )(max max ND )  10.4721 40.8635 91.5231 162.4476 
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