Chapter 5 polynomial interpolation and Runge phenomenon

Consider the function $f(x) = \frac{1}{1+25x^2}$, Runge found that if this function is interpolated at equidistant points $x_i = -1 + (i-1)\frac{2}{n}$ between -1 and 1 with a polynomial $P_n(x)$, the resulting interpolation oscillates toward the end of the interval, i.e. close to -1 and 1. It can even be proven that the interpolation error tends to infinity when degree of polynomial increases, that is, $\lim_{n \to \infty} \left(\max_{-1 \le x \le 1} |f(x) - P_n(x)| \right) = \infty.$

Preliminary:

Theorem 1(Newton Approximation, see p224 [1]): Assume that $P_n(x)$ is the Newton polynomial to interpolate f(x) such that $f(x) = P_n(x) + E_n(x)$. If $f \in C^{n+1}[a,b]$, then for each $x \in [a,b]$, there corresponds a number $c = c(x) \in (a,b)$ such that error term

(Eq. 1)
$$E_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} \prod_{j=0}^n (x-x_j).$$

Moreover if $x_j = a + hj$ is equi-distributed and let x = a + (b - a)t, then

(Eq. 2)
$$E_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1} \prod_{j=0}^n \left(t - \frac{j}{n}\right)$$

If we $\|f^{(n+1)}\|_{\infty}$ cannot be controlled, then Error would be large, that is Runge phenomenon.

Question 1: why oscillates near boundary points -1 and 1?

<ans> $f'(x) = \frac{50x}{(1+25x^2)^2}, f^{(2)}(x) = \frac{5000(1+25x^2)-50(1+25x^2)^2}{(1+25x^2)^4}$</ans>						
	f	$f^{(1)}$	$f^{(2)}$	$f^{(3)}$	$f^{(4)}$	$f^{(5)}$
$\ \cdot\ _{(-1,1)}$	1	3.2439	50	580	1.5E4	3.1105E5

Figure 1: left panel is f (even), right panel is $f^{(1)}$ (odd)

Figure 2: left panel is $f^{(2)}$ and right panel is $f^{(3)}$

Figure 3: left panel is $f^{(4)}$ and right panel is $f^{(5)}$

In page 275 of [2], Consider the function $f(x) = \frac{1}{1+x^2}$ on [-5,5] with equidistant points

 $x_i = -5 + (i-1)\frac{10}{n}$. The author shows

(Eq. 3)
$$R_n(x) = f(x) - P_n(x) = f[x_0, x_1, \dots, x_n, x] \prod_{j=0}^n (x - x_j)$$

where $f[x_0, x_1, \dots, x_n, x] = f(x) \frac{(-1)^{r+1}}{\prod_{j=0}^r (1+x_j^2)} \begin{cases} 1 & \text{if } n = 2r+1 \\ x & \text{if } n = 2r \end{cases}$

for case n = 2r + 1, we can re-write

(Eq. 4)
$$R_n(x) = (-1)^{r+1} f(x) g_n(x), \quad g_n(x) = \prod_{j=0}^r \frac{x^2 - x_j^2}{1 + x_j^2}$$

Since $\frac{1}{26} \le f(x) \le 1$, hence $R_n(x) \to 0$ if and only if $g_n(x) \to 0$.

In order to estimate $g_n(x)$, we write $|g_n(x)| = \left[\exp(h\ln|g_n(x)|)\right]^{1/h}$. It suffices to estimate $h\ln|g_n(x)| = h\prod_{j=0}^r \ln\left|\frac{x^2 - x_j^2}{1 + x_j^2}\right|$. Note that we can use integral test (Eq. 5) $q(x) \equiv \lim_{h \to 0} h\ln|g_n(x)| = \int_{-5}^0 \ln\left|\frac{x^2 - \xi^2}{1 + \xi^2}\right| d\xi$ for $\min_{0 \le j \le r} |x + x_j| \ge \theta \frac{h}{2}$, $0 < \theta < 1$. We have $q(x) = \begin{cases} = 0 \quad x = 3.63 \\ < 0 \quad |x| < 3.63 \\ > 0 \quad 5 \ge |x| > 3.63 \end{cases}$, and from $\lim_n |g_n(x)| = \lim_n \left[\exp(q(x))\right]^{1/h}$, we conclude

that if $5 \ge |x| > 3.63$, then $\lim_{n} |g_n(x)| = \infty$.

Consider monic polynomial p of degree n, $p(z) = \prod_{k=1}^{N} (z - z_k)$ where $\{z_k\}$ are roots, counting multiplicity, then $|p(z)| = \prod_{k=1}^{N} |z - z_k| \in R$, then $\log |p(z)| = \sum_{k=1}^{N} \log |z - z_k|$, we define $\varphi_N(z) = \frac{1}{N} \sum_{k=1}^{N} \log |z - z_k|$, then $|p(z)| = \exp(N\varphi_N(z))$. In order to estimate growth rate (or asymptotic behavior) of |p(z)|, it suffices to consider limit behavior of $\varphi_N(z)$. **Remark 1**: 2D Laplace equation $\Delta f = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial f}{\partial s}\right) + \frac{1}{s^2} \frac{\partial^2 f}{\partial \phi^2}$, then $\Delta \log |z - z_k| = 0$ for $z \neq z_k$. In fact $\Delta \log r = 2\pi\delta$, one can check this by Gauss theorem. $\varphi_N(z) = \frac{1}{N} \sum_{k=1}^{N} \log |z - z_k|$ is solution of $\Delta f = 2\pi \frac{1}{N} \sum_{k=1}^{N} \delta(z - z_k)$. Let charge distribution be $\rho(x, y)$ satisfying $\int_a^b \rho dx = 1$ (in fact, charge is negative, since Gauss law is $\nabla \cdot E = 4\pi\rho$ and $E = -\nabla V$). Then we expect that $\lim \varphi_N(z) = \varphi(z) = \int_a^b \rho(x) \log |z - x| dx$. **Example 1:** uniformly distribution $\rho(x) = \frac{1}{2}$ over [-1,1](Eq. 6) $\varphi(z) = \int_{-1}^{1} \rho(x) \log |z - x| dx = -1 + \frac{1}{2} \operatorname{Re} [(z+1) \log (z+1) - (z-1) \log (z-1)]$ First we focus on $z \in [-1,1]$, then $\min_{z \in [-1,1]} \varphi(z) = \varphi(0) = -1$ and $\max_{z \in [-1,1]} \varphi(z) = \varphi(\pm 1) = -1 + \log 2 = -0.3069$, see Figure 4.

endpoints.

Figure 5: plot $\varphi(z)$ over square region, uniform distribution.

 $\varphi(z) = \left\{ \max_{z \in [-1,1]} \varphi(z) = -0.3069 \right\}$ is between level curve -0.47428 and -0.29904 in Figure 5. If we consider standard benchmark $f(x) = \frac{1}{1+16x^2}$ which has analytic extension $f(z) = \frac{1}{1+16z^2}$ with two poles at $z = \pm 0.25i$, from Figure 5, we know $z = \pm 0.25i$ is inside $\varphi(z) = \left\{ \max_{z \in [-1,1]} \varphi(z) \le -0.3069 \right\}$, hence we know Runge phenomenon occurs, see Figure 6.

Figure 6: Runge phenomenon occurs at uniform grid (left panel)

However if we use $f(x) = \frac{1}{1+x^2}$, with poles $z = \pm i$ is outside $\varphi(z) = \left\{ \max_{z \in [-1,1]} \varphi(z) \le -0.3069 \right\}$, then we expect that interpolation is well for uniform distribution grid.

Figure 7: Runge phenomenon disappear for

$$f\left(x\right) = \frac{1}{1+x^2}$$

Example 2: Chebyshev density
$$\rho(x) = \frac{1}{\sqrt{1-x^2}}$$
, the potential
(Eq. 7) $\varphi(z) = \int_{-1}^{1} \rho(x) \log|z-x| dx = \log \frac{|z-\sqrt{z^2-1}|}{2}$
 $\varphi(x) = \log \frac{|x-i\sqrt{1-x^2}|}{2} = \log(1/2)$ over $[-1,1]$

Figure 8: plot $\varphi(z)$ for $z \in [-1,1]$. Under

chebyshev density, potential is constant, means no tangential electric force on this interval

Figure 9: plot $\varphi(z)$ over square region, one can see that discontinuity occurs near x = 0.

Figure 10: plot $\varphi_N(z)$ for N=17 over square region, the level curve does not reveal discontinuity

Reference

- [1] John H. Mathews, Numerical Methods Using Matlab, 3rd edition.
- [2] Eugene Isaacson, Analysis of Numerical Methods.