
Chapter 5  polynomial interpolation and Runge phenomenon  
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= − + −  between -1 and 1 with a polynomial , the resulting 

interpolation oscillates toward the end of the interval, i.e. close to -1 and 1. It can even be 
proven that the interpolation error tends to infinity when degree of polynomial increases, that is, 
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Preliminary: 
 
Theorem 1(Newton Approximation, see p224 [1]): Assume that ( )nP x  is the Newton 
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Moreover if jx a hj= +  is equi-distributed and let ( )x a b a t= + − , then  
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If we ( )1nf +

∞
 cannot be controlled, then Error would be large, that is Runge phenomenon.  

 

Question 1: why oscillates near boundary points -1 and 1? 
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Figure 2: left panel is ( )2f  and right panel is ( )3f  
 

 

Figure 3: left panel is ( )4f  and right panel is ( )5f  
 

In page 275 of [2], Consider the function ( ) 2
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 on [ ]5,5−  with equidistant points 

 2
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for case , we can re-write  2n r= +1
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In order to estimate ( )ng x , we write ( ) ( )( ) 1/
exp ln

h

n ng x h g x⎡ ⎤= ⎣ ⎦ . It suffices to estimate 

( )
2 2

2
0

ln ln
1

r
j

n
j j

x x
h g x h

x=

−
=

+∏ . Note that we can use integral test  

(Eq. 5) ( ) ( )
2 20

250
lim ln ln

1nh

xq x h g x dξ ξ
ξ−→

−
≡ =

+∫   for 
0
min

2jj r

hx x θ
≤ ≤

+ ≥ , 0 1θ< < . 

We have ( )
0     3.63
0     3.63

0     5 3.63

x
q x x

x

⎧= =
⎪

= < <⎨
⎪> ≥ >⎩

, and from ( ) ( )( ) 1/
lim lim exp

h

nn
g x q x⎡ ⎤= ⎣ ⎦ , we conclude 

that if 5 3.x≥ > 63, then ( )lim nn
g x = ∞ .  

_________________________________________________________________________ 
 

Consider monic polynomial  of degree n ,  where {p ( ) ( )
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asymptotic behavior) of ( )p z , it suffices to consider limit behavior of ( )N zϕ . 

Remark 1: 2D Laplace equation 
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In fact log 2r πδ∆ = , one can check this by Gauss theorem. 
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Example 1: uniformly distribution ( ) 1
2

xρ =  over [ ]1,1−  

(Eq. 6) ( ) ( ) ( ) ( ) ( ) ( )
1

1

1log 1 Re 1 log 1 1 log 1
2

z x z x dx z z z zϕ ρ
−

⎡ ⎤= − = − + + + − − −⎣ ⎦∫  

First we focus on [ ]1,1z∈ − , then 
[ ]

( ) ( )
1,1

min 0 1
z

zϕ ϕ
∈ −

= = −  and 

, see Figure 4. 
[ ]

( ) ( )
1,1

max 1 1 log 2 -0.3069
z

zϕ ϕ
∈ −

= ± = − + =

Figure 4: plot ( )zϕ  for [ ]1,1z  ∈ −
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Figure 5: plot ( )zϕ  over square region, 

uniform distribution.  
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Figure 6: Runge phenomenon occurs at 

uniform grid (left panel) 

 
However if we use ( ) 2
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Figure 7: Runge phenomenon disappear for 
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Example 2: Chebyshev density ( )
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Figure 8: plot  for [ ]1,1z . Under 

chebyshev density, potential is constant, means no 

tangential electric force on this interval 

∈ −
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Figure 9: plot ( )zϕ  over square region, one 

can see that discontinuity occurs near x = 0.  

 

 
 

Figure 10: plot ( )N zϕ  for N=17 over square 

region, the level curve does not reveal 

discontinuity  
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