Chapter 5 polynomial interpolation and Runge phenomenon

Consider the function $f(x)=\frac{1}{1+25 x^{2}}$, Runge found that if this function is interpolated at equidistant points $x_{i}=-1+(i-1) \frac{2}{n}$ between -1 and 1 with a polynomial $P_{n}(x)$, the resulting interpolation oscillates toward the end of the interval, i.e. close to -1 and 1 . It can even be proven that the interpolation error tends to infinity when degree of polynomial increases, that is, $\lim _{n \rightarrow \infty}\left(\max _{-1 \leq x \leq 1}\left|f(x)-P_{n}(x)\right|\right)=\infty$.

Preliminary:
Theorem 1(Newton Approximation, see p224 [1]): Assume that $P_{n}(x)$ is the Newton polynomial to interpolate $f(x)$ such that $f(x)=P_{n}(x)+E_{n}(x)$. If $f \in C^{n+1}[a, b]$, then for each $x \in[a, b]$, there corresponds a number $c=c(x) \in(a, b)$ such that error term
(Eq. 1) $\quad E_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!} \prod_{j=0}^{n}\left(x-x_{j}\right)$.
Moreover if $x_{j}=a+h j$ is equi-distributed and let $x=a+(b-a) t$, then
(Eq. 2) $\quad E_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1} \prod_{j=0}^{n}\left(t-\frac{j}{n}\right)$.
If we $\left\|f^{(n+1)}\right\|_{\infty}$ cannot be controlled, then Error would be large, that is Runge phenomenon.

Question 1: why oscillates near boundary points -1 and 1?
<ans> $f^{\prime}(x)=\frac{50 x}{\left(1+25 x^{2}\right)^{2}}, \quad f^{(2)}(x)=\frac{5000\left(1+25 x^{2}\right)-50\left(1+25 x^{2}\right)^{2}}{\left(1+25 x^{2}\right)^{4}}$

	f	$f^{(1)}$	$f^{(2)}$	$f^{(3)}$	$f^{(4)}$	$f^{(5)}$		
$\\|\cdot\\|_{(-1,1)}$	1	3.2439	50	580	1.5 E 4	3.1105 E 5		

Figure 1: left panel is f (even), right panel is $f^{(1)}$ (odd)

Figure 2: left panel is $f^{(2)}$ and right panel is $f^{(3)}$

Figure 3: left panel is $f^{(4)}$ and right panel is $f^{(5)}$

In page 275 of [2], Consider the function $f(x)=\frac{1}{1+x^{2}}$ on $[-5,5]$ with equidistant points
$x_{i}=-5+(i-1) \frac{10}{n}$. The author shows
(Eq. 3)

$$
R_{n}(x)=f(x)-P_{n}(x)=f\left[x_{0}, x_{1}, \cdots, x_{n}, x\right] \prod_{j=0}^{n}\left(x-x_{j}\right)
$$

where $f\left[x_{0}, x_{1}, \cdots, x_{n}, x\right]=f(x) \frac{(-1)^{r+1}}{\prod_{j=0}^{r}\left(1+x_{j}^{2}\right)} \begin{cases}1 & \text { if } n=2 r+1 \\ x & \text { if } n=2 r\end{cases}$
for case $n=2 r+1$, we can re-write
(Eq. 4)

$$
R_{n}(x)=(-1)^{r+1} f(x) g_{n}(x), \quad g_{n}(x)=\prod_{j=0}^{r} \frac{x^{2}-x_{j}^{2}}{1+x_{j}^{2}}
$$

Since $\frac{1}{26} \leq f(x) \leq 1$, hence $R_{n}(x) \rightarrow 0$ if and only if $g_{n}(x) \rightarrow 0$.
In order to estimate $g_{n}(x)$, we write $\left|g_{n}(x)\right|=\left[\exp \left(h \ln \left|g_{n}(x)\right|\right)^{1 / h}\right.$. It suffices to estimate $h \ln \left|g_{n}(x)\right|=h \prod_{j=0}^{r} \ln \left|\frac{x^{2}-x_{j}^{2}}{1+x_{j}^{2}}\right|$. Note that we can use integral test
(Eq. 5) $\quad q(x) \equiv \lim _{h \rightarrow 0} h \ln \left|g_{n}(x)\right|=\int_{-5}^{0} \ln \left|\frac{x^{2}-\xi^{2}}{1+\xi^{2}}\right| d \xi \quad$ for $\min _{0 \leq j \leq r}\left|x+x_{j}\right| \geq \theta \frac{h}{2}, 0<\theta<1$.
We have $q(x)=\left\{\begin{array}{ll}=0 & x=3.63 \\ <0 & |x|<3.63 \\ >0 & 5 \geq|x|>3.63\end{array}\right.$, and from $\lim _{n}\left|g_{n}(x)\right|=\lim [\exp (q(x))]^{1 / h}$, we conclude that if $5 \geq|x|>3.63$, then $\lim _{n}\left|g_{n}(x)\right|=\infty$.

Consider monic polynomial p of degree $n, p(z)=\prod_{k=1}^{N}\left(z-z_{k}\right)$ where $\left\{z_{k}\right\}$ are roots, counting multiplicity, then $|p(z)|=\prod_{k=1}^{N}\left|z-z_{k}\right| \in R$, then $\log |p(z)|=\sum_{k=1}^{N} \log \left|z-z_{k}\right|$, we define $\varphi_{N}(z)=\frac{1}{N} \sum_{k=1}^{N} \log \left|z-z_{k}\right|$, then $|p(z)|=\exp \left(N \varphi_{N}(z)\right)$. In order to estimate growth rate (or asymptotic behavior) of $|p(z)|$, it suffices to consider limit behavior of $\varphi_{N}(z)$.
Remark 1: 2D Laplace equation $\Delta f=\frac{1}{s} \frac{\partial}{\partial s}\left(s \frac{\partial f}{\partial s}\right)+\frac{1}{s^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}$, then $\Delta \log \left|z-z_{k}\right|=0$ for $z \neq z_{k}$. In fact $\Delta \log r=2 \pi \delta$, one can check this by Gauss theorem. $\varphi_{N}(z)=\frac{1}{N} \sum_{k=1}^{N} \log \left|z-z_{k}\right|$ is solution of $\Delta f=2 \pi \frac{1}{N} \sum_{k=1}^{N} \delta\left(z-z_{k}\right)$. Let charge distribution be $\rho(x, y)$ satisfying $\int_{a}^{b} \rho d x=1$ (in fact, charge is negative, since Gauss law is $\nabla \cdot E=4 \pi \rho$ and $E=-\nabla V)$. Then we expect that $\lim \varphi_{N}(z)=\varphi(z)=\int_{a}^{b} \rho(x) \log |z-x| d x$.

Example 1: uniformly distribution $\rho(x)=\frac{1}{2}$ over $[-1,1]$
(Eq. 6) $\quad \varphi(z)=\int_{-1}^{1} \rho(x) \log |z-x| d x=-1+\frac{1}{2} \operatorname{Re}[(z+1) \log (z+1)-(z-1) \log (z-1)]$
First we focus on $z \in[-1,1]$, then $\min _{z \in[-1,1]} \varphi(z)=\varphi(0)=-1$ and $\max _{z \in[-1,1]} \varphi(z)=\varphi(\pm 1)=-1+\log 2=-0.3069$, see Figure 4.

Figure 4: plot $\varphi(z)$ for $z \in[-1,1]$

Hence $|p(z)|=\exp \left(N \varphi_{N}(z)\right) \sim\left\{\begin{array}{ll}(2 / e)^{N} & \text { near } x= \pm 1 \\ (1 / e)^{N} & \text { near } x=0\end{array}\right.$. This means that $|p(z)|$ is larger near endpoints.

Figure 5: plot $\varphi(z)$ over square region, uniform distribution.
$\varphi(z)=\left\{\max _{z \in[-1,1]} \varphi(z)=-0.3069\right\}$ is between level curve -0.47428 and -0.29904 in Figure 5. If we consider standard benchmark $f(x)=\frac{1}{1+16 x^{2}}$ which has analytic extension $f(z)=\frac{1}{1+16 z^{2}}$ with two poles at $z= \pm 0.25 i$, from Figure 5, we know $z= \pm 0.25 i$ is inside
$\varphi(z)=\left\{\max _{z \in[-1,1]} \varphi(z) \leq-0.3069\right\}$, hence we know Runge phenomenon occurs, see Figure 6.

Figure 6: Runge phenomenon occurs at uniform grid (left panel)

However if we use $f(x)=\frac{1}{1+x^{2}}$, with poles $z= \pm i$ is outside $\varphi(z)=\left\{\max _{z \in[-1,1]} \varphi(z) \leq-0.3069\right\}$, then we expect that interpolation is well for uniform distribution grid.

Figure 7: Runge phenomenon disappear for $f(x)=\frac{1}{1+x^{2}}$

Example 2: Chebyshev density $\rho(x)=\frac{1}{\sqrt{1-x^{2}}}$, the potential
(Eq. 7) $\quad \varphi(z)=\int_{-1}^{1} \rho(x) \log |z-x| d x=\log \frac{\left|z-\sqrt{z^{2}-1}\right|}{2}$
$\varphi(x)=\log \frac{\left|x-i \sqrt{1-x^{2}}\right|}{2}=\log (1 / 2)$ over $[-1,1]$

Figure 8: plot $\varphi(z)$ for $z \in[-1,1]$. Under chebyshev density, potential is constant, means no tangential electric force on this interval

Figure 9: plot $\varphi(z)$ over square region, one can see that discontinuity occurs near $x=0$.

Figure 10: plot $\varphi_{N}(z)$ for $\mathrm{N}=17$ over square region, the level curve does not reveal discontinuity

Reference

[1] John H. Mathews, Numerical Methods Using Matlab, $3^{\text {rd }}$ edition.
[2] Eugene Isaacson, Analysis of Numerical Methods.

