Chapter 10 Time-Stepping and Stability Region

Example 1: consider variable coefficient wave equation (we have do this in p6.m)
(Eq.1) u+c(x)u, =0, c(x)=0.2+sin*(x-1) for xe[0,2z],t>0
with initial condition u(x,0)= exp(—lOO(x—l)z) and periodic boundary condition.

Here we adopt leap-frog scheme for temporal discretization, and Fourier in space
(n+1) (n-1)

ul . ] _
(Eq. 2) T=—c(xj)(Du())j for j=1,2,---,N

and extrapolate another initial condition, u(x,0)= exp(—lOO(x—O.ZAt —1)2 ) which is wave

backward with constant speed of 0.2. The result of spectral method is shown in Figure 1, note
that
@ u(x,O) has compact support, we may regard it as periodic function before wave touch the

boundary.
(2) From Figure 1, wave move faster at X e (2,4) and slower at xe (4, 5), this is reasonable

since c(1+7/2)=c(2.57)=1.2 ismaximaand c(1+7)=c(4.14)=0.2 is minima.

Also, we use Atzhzlz—ﬂzl.wN’l, t =8.
4 4 N
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(3) period T = jj”%dx: [ Z”de:%”\/é ~12.8255.
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Figure 1: solution of wave equation under spectral method, At=1.57N™"

Question 1: Can we use larger At to save simulation time?

Let us consider a simple example, try At=19N™* and t_, =5, then numerical simulation is

catastrophic, see Figure 2. There are oscillation wave at x=0, X :1+% =2.57 and

x:1+3?7r =5.7124 . This tells us that not any At will work, it depends on stability issue.
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Figure 2: solution of wave equation under
‘ spectral method, At=1.9N™" and t  =5.
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Time-dependent PDE is discretized in space, whether by spectral method or finite difference

method, then the result is a coupled ODE, say %U =AU where U; =u(x ). Under normal
mode analysis, we have A=VAV™ and then %U =AU becomes %Z =AZ,for Z=VU.
The problem is then reduced to scalar problem %; = 4 Z . Hence we only consider stability

issue on model problem %u = Au, this is called method of lines. Hence stability issue means

that we need to analyze stability region corresponding different time-discretized scheme in

gu:/lu.
dt

Definition 1: stability region is a subset in complex plane consisting of 4 C for which the
numerical approximation produces bounded solution when applied to the scalar linear model

problem gu =AuU.
dt

Definition 2 (Rule of Thumb) : The method of line is stable if the eigenvalues of the linearized
spatial discretization operator, scaled by At lie in the stability region of time-discretized
operator.

In our problem we use Leap-frog scheme for %u = Au, say

Eq.3) — = u"
(Eg. 3) At

The characteristic equation for this recurrence relationis g—g™ =24At by ansatz u™ =g"
Ml<M weask |g|<1 and if |g|:1,then g

u(n+1) u(n—l)

and for boundedness requirement of solution Hu

must be simple or we will have Jordan form. Consider g* —(2/1At) g—-1=0, it has two solution



9,9, suchthat g,g,=-1,nowif g, g, R, then |g|<1 (stable) means |gz|:i>1

-9l
(unstable). Hence we ask g, =€’ and g, =-e"?, under such configuration,
2AAt=g,—g, =€’ -e" =2ising, orsay AAt=isin@, possible candidate of A in stable
regionis AAt e(—i,i), note that we eliminate g=+i since g must be simple.

i (n+1) _ u(n—l) -
Figure 3: stability region of leap frog ——— 9 = Au'".
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Remark 1: solution to recurrence T:iu(”) is u" =ag] +bg; , ab are
_ 1 17a] |[u©
determined by u®,u®, say [ }{ }: .
gl gz b U(l)

Exercise 1: consider transport equation u, +u, =0, if we use Fourier basis, that is,

0, j=0(modN)

Eq. 4 u (X)) = ' |
(Eq.4)  S(x) 1(_1)Jcot J—h], j#=0(modN)
2 2
0 Logtdh
2 2
1 1h 1...2h
—~cot— - cot—-
272 2.2
1 2h 1.3
(Eq. 5) DN=[S\1()§_XJ)]= 1 .3h
——cot—
2
1 1h
Zcot—
2 2
1oth 0
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Eigenvalue pf Fourier differentiation matrix D, is A, =ik corresponding to eigenvector
o =exp(ik<) for k=-N/2+1---,N/2-1 with 2=0 has multiplicity 2, why ?

(Eq.6) w, = p'(xj):ZN:ka&,(xj—xk) where SN(X):LPZm: g,



Clearly, S’“(x—xj)zL Z ike 'k“)+—[|me'm(“) imike 'm(“)} and then

27 oo 4r
k=0
- hpe
Eq. 7 X—X. =— iked*“V +—ime™v_—ime '™y
( q ) SN( ) ﬂ'kzml k 472_': m —m:l
k=0
where V, = hz e v ZI\T e"k"ivj for K=-m+1---.m

j=1

However we know ém —(™NX — ™ and §_=V__, hence (Eq. 7) can be simplified as

m-1

(Eq.8) Dyv=S(x- x)v:— > ke,

72' k=—m-1
k=0

Therefore when v=1(€%) and v=€™ wehave D=0

The stability condition for Fourier Spectral discretization in space coupled with leap frog scheme

At a

in time for u, +u,=0 is At(%—l}<1 ( AAte(-i,i) ), or At<

2
N-2'

little, say At< % <

Remark 2: If we increase At across this threshold, then first mode to go to unstable is
o, =™ = exp(i (%—1) xj .

Exercise 2: consider u, +c(x)u, =0, c(x)=0.2+sin*(x-1), then maxc=1.2 and

argmax c(x)=1+ % A+ 37” . Consider Fourier discretization + leapfrog scheme

(n+1) _(n-1)
u u
‘—:—c(xj)(Du(”)) , then maximum eigemvalue is about (max c)i Ny , SO
2At j 2
stability condition is At < 2 L5 1 S\
N-212 3N-2 3

Question 2: %N‘l <19N™" (19N is numerical threshold for unstable), why?
<Ans> This is because we estimate large eigenvalue by (max c)i (%—1} , in fact we should find

eigenvalue of diag(c(xj )) Dy

Table 1: /Imax=max|A|, 1.2(%—1} is estimated largest eigenvalue, At=1.9N™" is numerical

threshold of stability.



N 20 60 128 200
A 7.686139 29.051133 67.427430 108.899804
1_2( N 1) 10.8 34.8 75.6 118.8
19N 0.095 0.031667 0.014844 0.0095

1 ey 0.130104 0.034422 0.014831 0.009183

From above table we see 4, < 1.2[%—1}.

In Figure 6, largest eigenmode for N =128 is the same as unstable mode visible in Figure 2,

since At=1.9N™" is slightly bigger than L , SO largest eigenmode would be unstable at first.
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Figure 4: eigenmode corresponding to maximum eigenvalue 4., =£7.686139i, N =20
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Figure 5: eigenmode corresponding to maximum eigenvalue 4., =£29.051133i, N =60




W= 128, EV to EW = B7 427430 i h=128, BV to EW = -67. 427430 i

Figure 6: eigenmode corresponding to maximum eigenvalue A _. =167.427430i, N =128

largest eigenmode for ¢ = 0, cos((N/2-1)x)

Ej Figure 7: largest eigenmode ¢ = COS(( N/2 —1) X) , is
0 ] different from Figure 6.
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Question 3: Can you explain why largest eigenmode of u, +c(x) u, =0 would localize at
X=argmaxc?

Example 2: consider second order wave equation (we have do this in p19.m)

(Eq.9) u,=u, for xe[-11],t>0 with chebyshev node

The exact solution u(t, x) = exp(—200(x+t)2) , it is a wave packet propagating backward.
In this problem we use chebyshev in space and Leap-frog in time,

(14D) _ o), ()
(Eq.10) Y —2 V7 gy

(at)

Here DZ is D} without first and last row and column, means that we use Dirichlet B.C.

Numerical simulation is plot in Figure 8 and Figure 9 with N =80, t_, =2.2. One can see that
when At =9.2N?, then we have unstable mode near boundary.
Next we want to find stable region of such second order derivative of Leap-frog scheme and

interpret unstable phenomenon in Figure 9.
As usual, let us consider model problem u, = Au under Leap-frog scheme



M= 80,0t = 8.000°, tmay = 0.22

Figure 8: wave is propagating backward for
N =80, dt=8N"
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The characteristic equation for this recurrence relationis g+g™" = A(At)2 +2 by ansatz

u” = g".Wesolve g°-ag+1=0 for a= /1(At)2 +2.As before if g isone root, then g™
is the other root, we require |g|<1,say g=exp(i¢) andthen 2cos(6)= A(At) +2 implies
~4sin?(0/2)=A(At)", orsay A(At)" e(-4,0).

Figure 10: stability region of leap-frog formula for second derivative.
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It suffices to find asymptotic behavior of eigenvalues of D7, note that we have show that
spectrum of D? approximates following continuous counterpart
(Eq.12) u,=Au —1<x<1 with Dirichlet B.C u(+1)=0



2
The eigenmode is 4, :—”Tk2 and u, :sin(%(xﬂ)j.

Prop 1: we show some known facts about D2 without proof

~ , . d? " ,
(1) D? approximates Hermitian operator procs but it is asymmetric.
X

(2) eigenvalue of D} is negative, real and 4, ~—0.048N*.
2
(3) large eigenmode of D’ does not approximate to A, = —% k? and u, :sin(%(xﬂ)j

since ppw is too small such that resolution is not enough, we called these modes are not physical,
see Figure 11.
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Under A, ~-0.048N*, condition of stability region is —0.048N*(At)" > -4, say

At <9.1287N"2. When At exceeds the threshold, then largest mode is unstable, and oscillates
near the boundary, see Figure 9.

Problem 1 (exercise 10.5): Chebyshev grids have an O(N’Z) spacing near the boundaries.

Therefore it is sometimes said, it is obvious that an explicit Chebyshev spectral method for a

hyperbolic PDE such as u, =u, must require time steps of size O( N’Z) , “because of the CFL

(Courant-Friedrichs-Lewy) condition”. Explain why this argument is invalid.

<ans> we must find maximum eigenvalue of D, (for Dirichlet problem). We find eigenvalue of
D, over N =8:8:300, see Figure 12, if we use linear approximation, then
log A, =—2.3508+1.9858log N , this means that A, (n) ~0.0953n***. In this example, we

max

cansay A, (n)~n’.1fwe consider Dy, then logA,, =-4.9263+2.1478logN.

8



log-log plat of maximurm eigenvalue

Figure 12: log-log plot of maximum eigenvalue of

D, it seems that A ___ (n) ~ 0.0953N**%*
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Figure 13: log-log plot of maximum eigenvalue of
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Example 3: consider second order wave equation (we have do this in p20.m)
(Eq.13) u,=u,+u,, -1<xy<Lt>0

with initial data u(0, x, y) =exp [—40((x—0.4)2 + yz)} has compact support near

(xy)=(0.4,0) and u(0,x y)=0.
Source code: F:\course\2008spring\spectral_method\matlab\chap10_example3.m

First we use At=6N"?, the result is good, see Figure 14. However if we add At to

At =6.6N?, then we have unstable mode near boundary, see Figure 15.
2 2

Since we use tensor product to construct Laplacian operator FJFF' hence maximum
X y

eigenvalue of D’ ®1+1®D} istwiceof Di. 4

At< = 9.1287N" ~ 6.455N 2.
2

o ~—2x0.048N*, then

m

Hence unstable mode appears in At =6.6N"* > threshold and we know largest eigenmode is
localized on the boundary.
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Figure 14: left panel is initial data u(O, X, y) = exp[—40((x— 0.4)2 +y° )} right panel is
evolution of u(t, X, y) at t=0.42708

t=0.42306

Figure 15: when At=6.6N"%, t =0.42396, we
have unstable mode near boundary.

Example 4: KdV equation
(Eq. 14) u, +uu,+u, =0
There are two terms in the equation
(1) nonlinear term uu, = di%uz corresponding to Burger’s equation u, +uu, =0
X
(2) dispersive term u, =0, if we neglect nonlinear term, then u, +u,, =0 leadsto
—iw+(ik)3 =0 for u=¢&>"™ then w=-k*, group velocity v, = Z—\{(V = k2.

Prop 2: solution of (Eq. 14) are called solitary ( ) waves, traveling wave of the form

(Eg. 15) u(t,x)=3a’ sechz(z(x X, — 2at)) for any real a,x, and
(1) speed v=2a* proportional to amplitude
(2) u decays exponentially by a factor exp(—(x—(x0+2a2t))) since sech(x):

solitary wave is a localized wave in space.
10



(3) If solution of (Eq. 14) is composed of several solitary waves with different speed, then those
solitary waves will interact cleanly, passing through one another with the only lasting effect of
interaction being a phase shift.

Next we introduce method of integration factor to add stability, we use Fourier transform in
d1l,

space, then u,+——=u“+u,, =0 becomes
dx 2

(Eg. 16) G, +% F (u2)+(ik)3 G=0

If we neglect nonlinear term, then G, —ik’(=0 give us an idea to introduce integration factor

U =e ™G, such that U, =0. Hence

(Eq.17) U, +i§e‘”‘3th (u*)=0
Then we replace u? :(Fl(e“‘stlj))2 to simplify (Eq. 17) as
(Eq. 18) U, +iEe‘k3th ((Fl(e”(ztﬁ ))ZJ -0

with initial condition u(0, x) =3A’sech? [?(XJF 2)] +3B%sech’ (?(xﬂ)) , composed of two

solitons.

Prop 3: Recall forth-order Runge-Kutta method for X' = f (t, x)
X(t+h)= x(t)+%(F1 +2F,+2F, +F,)

F,=hf (t,x), F,=hf(t+h/2,x+F,/2)
F,=hf (t+h/2,x+F,/2), F,=hf (t+hx+F,)

If we apply Runge-Kutta algorithm into (Eq. 18) by setting
~ i IRRY
f (t,U ) = —'Ee"'“kF ((F‘l(e"“u )) J ,thenset o, = exp(ikstn), then we have

Algorithm 1 (directly use Runge-Kutta)
i ~ 2
F, = (—EankAtJ F (( FH (e, 0")) )
F,= _iza—n—llzkmj F [(F_l (0{“*“2 (lj(n) +hR/ 2)))2]
F; = _iEa—n—llzkAtj F ((F_l(a"*“z (U(n) K /2)))2j

i _IE“—n—lkAtJ F ((F_l(anﬂ(ﬁ(”) s Fs)))j

gy =g +%(F1+2F2 +2F,+F,)

11



Under such configuration, stability condition is At <0.02N™* since we need to compute
a, =exp(ik’t,) explicitly, however a, =exp(ik’t,) is highly oscillatory when k >>1, see

Figure 16, source code: F:\course\2008spring\spectral_method\matlab\p27_2.m

N=258, dt=3.0518E-007, tmax=0.0060 N=256, dt=1.5258E-007, trmax=0.0060

Figure 16: apply Algorithm 1, left panel: At = 0.02N 2, unstable. Right panel: At = 0.01N, stable.

If we rewrite Algorithm 1in G = U™ then

Algorithm 2 ( Runge-Kutta + implicit integration factor )

e

o= (‘iik“j i ((Fl(%z (6" + B/ z)m
E, = @y = (—%kmj = (( IR ﬁz))zj

Fo = anaF = (—'5 kAtj F (( FH (pd® + al,zﬁg))zj

o -6 () )

source code: F:\course\2008spring\spectral_method\matlab\p27.m

Since we have hide o, = exp(ik3tn) into G (we don’t evaluate «, explicitly), hence we

expect that At can be larger than 0.02N . Numerical simulation is shown in Figure 17, when
At =0.4N"?, result is stable, this means Algorithm 2 allows time steps ten times than Algorithm
1. However result is unstable when At =0.45N".

Question 4 (Exercise 10.2): Can you explain unstable of At=0.45N"* with reference to
stablility region of Runge-Kutta?

12



N=256, dt=B.86B5E-008, trnax=0.0080

MN=256, dt=6.1035E-008, tmax=0.00&0
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Figure 17: apply Algorithm 2, left panel: At = 0.4N?, stable. Right panel: At = 0.45N2,
unstable.

Prop 4: If we apply 4-th Runge Kutta to model problem %u =Au and define «=h4, and

n) _ AN . 1 1 1 - . . _ .
u™ =g" then g_1+a+5a2+ga3+ﬂa4.Stabllltyreglon is S_{aez.‘g(a)‘£1}

stability region of 4-th order Runge-Kutta
T T T T T

Figure 18: stability region of 4-th order Runge Kutta

method.

Exercise 3 (10.3): Consider the first-order inear initial boundary value problem
(Eq.19) u =u,, xe[-11], O<t<1, u(Lt)=0

with initial data u,(x)=u(0,x)= exp[—60(x—1/2)2} . We use Chebyshev spectral discretization

in space coupled with third-order Adams-Bashforth formula in time, say
h
(Eq 20) Yoi1 = Y +E[23f (tn1 Yn ) -16f (tn—li yn—l) +5f (tn—2' Yn-2 ):'

Take N =50 and At=vN™ for v=7,8.Plot &— pseudospectrum of Chebyshev spectral
matrix for £=107,107,---,10°°.

In fact, analytic solution of u, =u, is u(t,x)=u,(x+t), hence we can use analytic solution to
give initial conditionon t ,=-dt and t,=-2dt.

Experiment: Source code: F:\course\2008spring\spectral_method\matlab\chap10 ex3 v2.m

Let us set initial condition u® =exp [—60(x—1/ 2)2} ,u = exp[—60(x+ dt -1/ 2)2} and

13



u’ =exp| —-60(x+2at - and u =u"’+A—|23u"’ -16u" 7 +5u""

@ 60(x+2dt~1/2)° | and u™ =u® + A 230 160 1 5y
12

where A is Chebyshev differential matrix deleting first row and column.

In right panel of Figure 19, u(t, x) is propagated backward as we expected. But unstable mode

occurs at boundary x=1 in left panel of Figure 19 since At=8N"? is large.

M=50, dt=3.2000E-003, tmax=0.6000 1 M=50, dt=2 B000E-003, tmax=1.0000
e 1Y Il v .

]
-1 08 08 04 02 D 02z 04 06 08 1

Figure 19: left panel: At =8N, unstable mode occurs at boundary. Right panel: At = 7N, stable
traveling wave.
3 2 hﬂ’ 2 .
From (Eq. 20), we have g° =g +E[23g -169 +5], so we sweep all |g| <1 and plot region

of hA (intersection of all |g|<1), see Figure 20.
Source code: F:\course\2008spring\spectral_method\matlab\chap10_ex3.m

stability region of Adams-Bashfarth

I
{— It
|| — lgF05 ||

| I S N S R S ] Figure 20: stability region of
N L= = Adams-Bashforth
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pseudo-spectra of Chebyshey Diff matrix unde o{1)=0, N =140
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Figure 21: & — pseudospectrum of Chebyshev spectral matrix for & = 102,10°%,---,10°°,
N =50



