
Chapter 10 Time-Stepping and Stability Region 
 
Example 1: consider variable coefficient wave equation (we have do this in p6.m) 
(Eq. 1) , ( ) 0t xu c x u+ = ( ) ( )20.2 sin 1c x x= + −   for [ ]0,2 , 0x tπ∈ >  

with initial condition  and periodic boundary condition. ( ) ( )( 2,0 exp 100 1u x x= − − )
Here we adopt leap-frog scheme for temporal discretization, and Fourier in space   

(Eq. 2) 
( ) ( )

( ) ( )(
1 1

2

n n
j j n

j j

u u
c x Du

t

+ −−
= −

∆ )   for 1, 2, ,j N= "   

and extrapolate another initial condition, ( ) ( )( )2,0 exp 100 0.2 1u x x t= − − ∆ − , which is wave 

backward with constant speed of . The result of spectral method is shown in Figure 1, note 
that  

0.2

(1)  has compact support, we may regard it as periodic function before wave touch the 
boundary. 

( ,0u x )

(2) From Figure 1, wave move faster at ( )2, 4x∈  and slower at ( )4,5x∈ , this is reasonable 

since  is maxima and ( ) ( )1 / 2 2.57 1.2c cπ+ = = ( ) ( )1 4.14c cπ+ = = 0.2  is minima. 

Also, we use 11 2 1.57
4 4
ht N

N
π −∆ = = = , max 8t = .  

(3) period 
( )

2 2

0 0

1 5 6 12.8255
3

dtT dx dx
dx c x

π π π
= = = ≈∫ ∫ . 

Figure 1: solution of wave equation under spectral method, 11.57t N −∆ =  

 

Question 1: Can we use larger  to save simulation time?  t∆

Let us consider a simple example, try 11.9t N −∆ =  and tmax 5= , then numerical simulation is 

catastrophic, see Figure 2. There are oscillation wave at 0x = , 1 2.
2

x 57π
= + =  and 

31 5.7124
2

x π
= + = . This tells us that not any t∆  will work, it depends on stability issue. 
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Figure 2: solution of wave equation under 

spectral method,  and t .11.9t N −∆ = max 5=

 
 
Time-dependent PDE is discretized in space, whether by spectral method or finite difference 

method, then the result is a coupled ODE, say d U AU
dt

=
K K

 where ( )iU u x= i . Under normal 

mode analysis, we have 1A V V −= Λ  and then d U AU
dt

=
K K

 becomes d Z Z
dt

= Λ , for 1Z V U−=
K

. 

The problem is then reduced to scalar problem i i
d z
dt izλ= . Hence we only consider stability 

issue on model problem d u
dt

uλ= , this is called method of lines. Hence stability issue means 

that we need to analyze stability region corresponding different time-discretized scheme in 
d u u
dt

λ= . 

 

Definition 1: stability region is a subset in complex plane consisting of Cλ∈  for which the 
numerical approximation produces bounded solution when applied to the scalar linear model 

problem d u
dt

uλ= .  

Definition 2 (Rule of Thumb) : The method of line is stable if the eigenvalues of the linearized 
spatial discretization operator, scaled by t∆  lie in the stability region of time-discretized 
operator. 

In our problem we use Leap-frog scheme for d u
dt

uλ= , say 

(Eq. 3) 
( ) ( )

( )
1 1

2

n n
nu u u

t
λ

+ −−
=

∆
  

The characteristic equation for this recurrence relation is 1 2g g tλ−− = ∆  by ansatz ( )n nu g=  

and for boundedness requirement of solution ( )nu M≤  we ask 1g ≤  and if 1g = , then  

must be simple or we will have Jordan form. Consider 

g

( )2 2 1g t gλ 0− ∆ − = , it has two solution 
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1 2,g g  such that , now if 1 2 1g g = − 1 2,g g R∈ , then 1 1g <  (stable) means 2
1

1 1g
g

= >
−

 

(unstable). Hence we ask 1
ig e θ=  and 2

ig e θ−= − , under such configuration, 
1

1 12 2 sini it g g e e iθ θλ θ− −∆ = − = − = , or say sint iλ θ∆ = , possible candidate of λ  in stable 
region is , note that we eliminate ( ,t iλ∆ ∈ − )i ig = ±  since g  must be simple.  

i

i−
 

( ) ( )
( )

1 1

2

n n
nu u u

t
λ

+ −−
=

∆
. Figure 3: stability region of leap frog 

 

Remark 1: solution to recurrence 
( ) ( )

( )
1 1

2

n n
nu u u

t
λ

+ −−
=

∆
 is ( )

1 2
n n nu ag bg= +  ,  are 

determined by 

,a b

( ) ( )0 1,u u , say 
( )

( )

0

1
1 2

1 1 a u
g g b u

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦
.  

Exercise 1: consider transport equation 0t xu u+ = , if we use Fourier basis, that is,  

(Eq. 4) 
( )

( ) ( ) ( )1 1 cot ,  0 mod
2 2

jN jS x jh j N
⎪′ = ⎨ ⎛ ⎞− ≠⎜ ⎟⎪

⎝ ⎠⎩

 

(Eq. 5) 

0,      0 modj N⎧ =

( )

1 10 c
2 2

1 1 1 2cot cot
2 2 2 2

1 2 1 3cot cot
2 2 2 2
1 3cot
2 2

1 1cot
2 2

1 1cot 0
2 2

N N i j

h

h h

h h

D S x x
h

h

h

⎛ ⎞−⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟⎡ ⎤′= − = ⎜ ⎟⎣ ⎦
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

% %

% %

#

# % %

 

ot

Eigenvalue pf Fourier differentiation matrix  is ND k ikλ =  corresponding to eigenvector 
w( )expk ikxϕ =  for / 2 1, , / 2 1k N N= − + −" ith  0λ =  h

___________________________________________________________________________ 

k=

as multiplicity 2, why ? 
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(Eq. 6) ( ) ( )
N

j j k N j kw p x v S x x′ ′
1

= = −∑   where ( ) 1 m
ikx

NS x e= Ρ
2 k mπ =−

∑ . 



Clearly, ( ) ( ) ( ) ( )1

1
0

2 4
j j

m
ik x x im x x im x x

N j
k m
k

h hS x x ike ime imike
π π

−
− − −

=− −
≠

j−⎡ ⎤′ − = + −⎢ ⎥⎣ ⎦∑  and then  

(Eq. 7) ( )
1

1
0

1 ˆ ˆ
2 4

m
ikx imx imx

N j k m
k m
k

hS x x v ike v ime v ime v
π π

−
−

−
=− −
≠

′ ˆ m⎡ ⎤− ⋅ = + −⎣ ⎦∑K  

where 
1 1

2ˆ j j
N N

ikx ikx
k j

j j
v h e v e v

N
π− −

= =

= =∑ ∑ j m  for 1, ,k m= − + "  

However we know ( ) ii ii m N ximx imxe e e+ −= = ˆ ˆm mv v and , hence (Eq. 7) can be simplified as −=

(Eq. 8) ( )
1

1
0

1 ˆ
2

i

m
ikx

N N i j
k m
k

D v S x x v ike v
π

−

=− −
≠

′= − ⋅ = ∑K
k  

Therefore when ( )01 i xv e=  and  we have imxv e= 0ND v =  

_________________________________________________________________________ 
 
The stability condition for Fourier Spectral discretization in space coupled with leap frog scheme 

in time for  is 0t xu u+ = 1
2
Nt ⎛ ⎞∆ − <⎜ ⎟

⎝ ⎠
1 ( ( ),t i iλ∆ ∈ −  ), or 2

2
t

N
∆ <

−
, we can restrict t∆  a 

little, say 2 2
2

t
N N

∆ < <
−

. 

Remark 2: If we increase  across this threshold, then first mode to go to unstable is t∆

( )1
1 exp 1

2
i m x

m
Ne iϕ −

−

⎛ ⎞⎛ ⎞= = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

x . 

 
Exercise 2: consider ( ) 0t xu c x u+ = , ( ) ( )20.2 sin 1c x x= + − , then  and max 1.2c =

( ) 3arg max 1 ,1
2 2

c x π π
= + + . Consider Fourier discretization + leapfrog scheme 

( ) ( )

( ) ( )(
1 1

2

n n
j j n

j j

u u
c x Du

t

+ −−
= −

∆ ) , then maximum eigemvalue is about ( )max 1
2
Nc i ⎛ ⎞−⎜ ⎟

⎝ ⎠
, so 

stability condition is 12 1 5 1 5
2 1.2 3 2 3

t N
N N

−∆ < =
− −

∼ .  

 

Question 2:  1 15 1.9
3

N N− −<  (  is numerical threshold for unstable), why? 11.9N −

<Ans> This is because we estimate large eigenvalue by ( )max 1
2
Nc i ⎛ ⎞−⎜

⎝ ⎠
⎟ , in fact we should find 

eigenvalue of  ( )( )j Ndiag c x D

Table 1: max maxλ = Λ , 1.2 1
2
N⎛ −⎜

⎝ ⎠
⎞
⎟  is estimated largest eigenvalue,  is numerical 

threshold of stability. 

11.9t N −∆ =

 4



N  20 60 128 200 

maxλ  7.686139 29.051133 67.427430 108.899804 

1.2 1
2
N⎛ ⎞−⎜ ⎟

⎝ ⎠
 10.8 34.8 75.6 118.8 

11.9N −  0.095 0.031667 0.014844 0.0095 

max1/λ  0.130104 0.034422 0.014831 0.009183 

From above table we see max 1.2 1
2
Nλ ⎛ ⎞< −⎜ ⎟

⎝ ⎠
.  

In Figure 6, largest eigenmode for  is the same as unstable mode visible in Figure 2, 

since  is slightly bigger than 

128N =

11.9t N −∆ =
max

1
λ

, so largest eigenmode would be unstable at first. 

 

,  20N =max 7.686139iλ = ±Figure 4: eigenmode corresponding to maximum eigenvalue 
 

 

Figure 5: eigenmode corresponding to maximum eigenvalue max 29.051133iλ = ± ,  60N =
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,  128N =max 67.427430iλ = ±Figure 6: eigenmode corresponding to maximum eigenvalue 
 

Figure 7: largest eigenmode , is 

different from Figure 6. 

( )( )cos / 2 1N xϕ = −

  

Question 3: Can you explain why largest eigenmode of ( ) 0t xu c x u+ =  would localize at 

arg maxx c= ? 

 
Example 2: consider second order wave equation (we have do this in p19.m) 
(Eq. 9)   for tt xxu u= [ ]1,1 , 0x t∈ − >  with chebyshev node  

The exact solution , it is a wave packet propagating backward. ( ) ( )( 2, exp 200u t x x t= − + )
In this problem we use chebyshev in space and Leap-frog in time, 

(Eq. 10) 
( ) ( ) ( )

( )
( )

1 1
2

2
2n n n

n
N

v v v D v
t

+ −− +
=

∆
�    

Here  is  without first and last row and column, means that we use Dirichlet B.C. 2
ND� 2

ND

Numerical simulation is plot in Figure 8 and Figure 9 with 80N = , max 2.2t = . One can see that 

when , then we have unstable mode near boundary.  29.2t N −∆ =
Next we want to find stable region of such second order derivative of Leap-frog scheme and 
interpret unstable phenomenon in Figure 9. 
As usual, let us consider model problem ttu uλ=  under Leap-frog scheme 
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(Eq. 11) 
( ) ( ) ( )

( )
( )

1 1

2
2n n n

nv v v v
t

λ
+ −− +

=
∆

   

Figure 8: wave is propagating backward for 

, 28dt N −=  80N =

 

Figure 9: wave is propagating backward for 

80N = , 29.2dt N −= , unstable mode occurs 

at boundary. 

 

The characteristic equation for this recurrence relation is ( )21 2g g tλ−+ = ∆ +  by ansatz 
( )n nu g= . We solve 2 1 0g gα− + =  for ( )2 2tα λ= ∆ + . As before if  is one root, then g 1g −  

is the other root, we require 1g ≤ , say ( )expg iθ=  and then ( ) ( )22cos 2tθ λ= ∆ +  implies 

, or say ( ) ( )224sin / 2 tθ λ− = ∆ ( ) ( )2 4,0tλ ∆ ∈ − .  

4− 0
Figure 10: stability region of leap-frog formula for second derivative.

  

It suffices to find asymptotic behavior of eigenvalues of , note that we have show that 
spectrum of  approximates following continuous counterpart 

2
ND�

2
ND�

(Eq. 12) xxu uλ=    with Dirichlet B.C 1 x− < <1 ( )1 0u ± =  

 7



The eigenmode is 
2

2

4k kπλ = −  and ( )sin 1
2k

ku xπ⎛ ⎞= +⎜ ⎟
⎝ ⎠

. 

Prop 1: we show some known facts about  without proof 2
ND�

(1)  approximates Hermitian operator 2
ND�

2

2

d
dx

 but it is asymmetric. 

(2)  eigenvalue of  is negative, real and .  2
ND� 4

max 0.048Nλ −∼

(3)  large eigenmode of  does not approximate to 2
ND�

2
2

4k kπλ = −  and ( )sin 1
2k

ku xπ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

since ppw is too small such that resolution is not enough, we called these modes are not physical, 
see Figure 11.  

Figure 11: mode N is spurious and 

localized near the boundaries. 

 

Under , condition of stability region is 4
max 0.048Nλ −∼ ( )240.048 4N t− ∆ ≥ − , say 

. When 29.1287t −∆ ≤ N t∆  exceeds the threshold, then largest mode is unstable, and oscillates 
near the boundary, see Figure 9. 
 

Problem 1 (exercise 10.5): Chebyshev grids have an ( )2O N −  spacing near the boundaries. 

Therefore it is sometimes said, it is obvious that an explicit Chebyshev spectral method for a 

hyperbolic PDE such as  must require time steps of size tu u= x ( )2O N − , “because of the CFL 

(Courant-Friedrichs-Lewy) condition”. Explain why this argument is invalid. 

<ans> we must find maximum eigenvalue of  (for Dirichlet problem). We find eigenvalue of 
 over , see Figure 12, if we use linear approximation, then 

ND�

ND� 8:8 :300N =

maxlog 2.3508 1.9858log Nλ = − + , this means that ( ) 1.988
max 0.0953nλ ∼ n . In this example, we 

can say . If we consider , then ( ) 2
max n nλ ∼ ND maxlog 4.9263 2.1478log Nλ = − + . 
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Figure 12: log-log plot of maximum eigenvalue of 

, it seems that ND� ( ) 1.9858
max 0.0953n Nλ ∼  

 

Figure 13: log-log plot of maximum eigenvalue of 

, it seems that ND ( ) 2.1478
max 0.0073n Nλ ∼  
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0
Example 3: consider second order wave equation (we have do this in p20.m) 
(Eq. 13) , tt xx yyu u u= + 1 , 1,x y t− < < >   

with initial data  has compact support near 

 and 

( ) ( )( 2 20, , exp 40 0.4u x y x y⎡= − − +⎢⎣ )⎤⎥⎦
)0( ) (, 0.4,x y = ( )0, , 0tu x y = . 

Source code: F:\course\2008spring\spectral_method\matlab\chap10_example3.m 
 
First we use , the result is good, see Figure 14. However if we add  to 

, then we have unstable mode near boundary, see Figure 15. 

26t N −∆ = t∆
26.6t N −∆ =

Since we use tensor product to construct Laplacian operator 
2 2

2

d d
dx dy

+ 2

2
N
�

, hence maximum 

eigenvalue of  is twice of . , then 2
ND I I D⊗ + ⊗� 2

ND� 4
max 2 0.048Nλ − ×∼

2 21 9.1287 6.455
2

t N − −∆ ≤ ∼ N .  

Hence unstable mode appears in  and we know largest eigenmode is 
localized on the boundary. 

26.6t N threshold−∆ = >



 

( ) ( )( )2 20, , exp 40 0.4u x y x y⎡ ⎤= − − +⎢ ⎥⎣ ⎦
Figure 14: left panel is initial data , right panel is 

evolution of  at t  ( ), ,u t x y 0.42708=
 

Figure 15: when 26.6t N −∆ = , , we 

have unstable mode near boundary. 

0.42396t =

 
 
Example 4: KdV equation  
(Eq. 14)  0t x xxxu uu u+ + =
There are two terms in the equation 

(1) nonlinear term 21
2x

duu u
dx

=  corresponding to Burger’s equation 0t xu uu+ =  

(2) dispersive term 0xxxu = , if we neglect nonlinear term, then 0t xxxu u+ =  leads to 

 for , then ( )3 0iw ik− + = ikx iwtu e −= 3w k= − , group velocity 2
g

wv k
k
∂

= = −
∂

. 

 

Prop 2: solution of (Eq. 14) are called solitary (單獨的) waves, traveling wave of the form 

(Eq. 15) ( ) (2 2 2
0, 3 sec 2

2
au t x a h x x a t⎛ ⎞= − −⎜ ⎟

⎝ ⎠
)  for any real  and  0,a x

(1) speed  proportional to amplitude  22v a=

(2)  decays exponentially by a factor u ( )( )( )2
0exp 2x x a t− − +  since ( ) 2sec xh x

e e−=
+ x , so 

solitary wave is a localized wave in space. 
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(3) If solution of (Eq. 14) is composed of several solitary waves with different speed, then those 
solitary waves will interact cleanly, passing through one another with the only lasting effect of 
interaction being a phase shift. 

 
Next we introduce method of integration factor to add stability, we use Fourier transform in 

space, then 21 0
2t xxx

du u u
dx

+ + =  becomes  

(Eq. 16) ( ) ( )32ˆ ˆ 0
2t
iku F u ik u+ + =  

If we neglect nonlinear term, then  give us an idea to introduce integration factor 

, such that 

3ˆ ˆ 0tu ik u− =
3ˆ ˆk tU e u−= ˆ 0tU = . Hence  

(Eq. 17) ( )3 2ˆ 0
2

ik t
t

iU e kF u−+ =  

Then we replace ( )( )3 2
2 1 ˆik tu F e U−=  to simplify (Eq. 17) as 

(Eq. 18) ( )( )3 3 2
1ˆ ˆ 0

2
ik t ik t

t
iU e kF F e U− −⎛ ⎞+ =⎜ ⎟

⎝ ⎠
 

with initial condition ( ) ( ) ( )2 2 2 20, 3 sec 2 3 sec 1
2 2
A Bu x A h x B h x⎛ ⎞ ⎛= + +⎜ ⎟ ⎜

⎝ ⎠ ⎝
⎞+ ⎟
⎠

, composed of two 

solitons.  
 

Prop 3: Recall forth-order Runge-Kutta method for ( ),x f t x′ =  

( ) ( ) ( )1 2 3 4
1 2 2
6

x t h x t F F F F+ = + + + +  

( )1 ,F hf t x= , ( )2 1/ 2, / 2F hf t h x F= + +  

( )3 2/ 2, / 2F hf t h x F= + + , ( )4 3,F hf t h x F= + +  

 
If we apply Runge-Kutta algorithm into (Eq. 18) by setting 

( ) ( )( )3 3 2
1ˆ ˆ,

2
ik t ik tif t U e kF F e U− −⎛ ⎞= − ⎜ ⎟

⎝ ⎠
, then set ( )3expn ik tα = n , then we have 

_______________________________________________________________________ 
Algorithm 1 (directly use Runge-Kutta) 

( )( )( )2
1

1
ˆ

2
n

n n
iF k t F F Uα α−

−
⎛ ⎞ ⎛ ⎞= − ∆ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

( )( )( )( )2
1

2 1/ 2 1/ 2 1
ˆ / 2

2
n

n n
iF k t F F U Fα α−

− − +
⎛ ⎞⎛ ⎞= − ∆ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

( )( )( )( )2
1

3 1/ 2 1/ 2 2
ˆ / 2

2
n

n n
iF k t F F U Fα α−

− − +
⎛ ⎞⎛ ⎞= − ∆ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

( )( )( )( )2
1

3 1 1 3
ˆ

2
n

n n
iF k t F F U Fα α−

− − +
⎛ ⎞⎛ ⎞= − ∆ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

( ) ( ) ( )1
1 2 3

1ˆ ˆ 2 2
6

n nU U F F F F+ = + + + + 4  
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_______________________________________________________________________ 
Under such configuration, stability condition is 20.02t N −∆ <  since we need to compute 

 explicitly, however ( 3expn ik tα = )n ( )3expn ik tα = n  is highly oscillatory when , see 

Figure 16, source code: F:\course\2008spring\spectral_method\matlab\p27_2.m 

1k >>
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If we rewrite Algorithm 1 in ( ) ( )ˆˆ n

nu Uα= n

)

, then  

 
source code: F:\course\2008spring\spectral_method\matlab\p27.m 

Since we have hide  into ( 3expn nik tα = ( )ˆ nu  (we don’t evaluate nα  explicitly), hence we 

expect that  can be larger than t∆ 20.02N − . Numerical simulation is shown in Figure 17, when 
, result is stable, this means Algorithm 2 allows time steps ten times than Algorithm 

1. However result is unstable when 

20.4t N −∆ =
20.45t N −∆ = . 

 

Question 4 (Exercise 10.2): Can you explain unstable of 20.45t N −∆ =  with reference to 
stablility region of Runge-Kutta? 

 

Figure 16: apply Algorithm 1, left panel: 20.02t N −∆ = , unstable. Right panel: , stable.20.01t N −∆ =

Algorithm 2 ( Runge-Kutta + implicit integration factor ) 
( )( )( )2

1
1 1 ˆ

2
n

n
iF F k t F F uα −⎛ ⎞ ⎛ ⎞= = − ∆ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

�  

( )( )( )( )2
1

2 1/ 2 2 1/ 2 1ˆ / 2
2

n
n

iF F k t F F u Fα α−
+

⎛ ⎞⎛ ⎞= = − ∆ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
� �  

( )( )( )2
1

3 1/ 2 3 1/ 2 2ˆ
2

n
n

iF F k t F F u Fα α−
+

⎛ ⎞ ⎛ ⎞= = − ∆ +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
� �  

( )( )( )2
1

4 1 4 1 1/ 2 3ˆ
2

n
n

iF F k t F F u Fα α−
+

⎛ ⎞ ⎛ ⎞= = − ∆ +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
� �α  

( ) ( ) ( )( )1
1 1 1/ 2 2 3 4

1ˆ ˆ 2
6

n nu u F F F Fα α+ = + + + +� � � �  



Figure 17: apply Algorithm 2, left panel: 20.4t N −∆ = , stable. Right panel: , 

unstable. 

20.45t N −∆ =

 

Prop 4: If we apply 4-th Runge Kutta to model problem d u
dt

uλ=  and define hα λ= , and 

( )n nu g=  then 2 31 1 11
2 6 24

g 4α α α= + + + + α . Stability region is ( ){ }: 1S Z gα α= ∈ ≤  

Figure 18: stability region of 4-th order Runge Kutta 

method. 

 
 
Exercise 3 (10.3): Consider the first-order inear initial boundary value problem 
(Eq. 19) , t xu u= [ ]1,1x∈ − , , 0 1t< < ( )1, 0u t =  

with initial data ( ) ( ) ( )2
0 0, exp 60 1/ 2u x u x x⎡ ⎤= = − −⎣ ⎦ . We use Chebyshev spectral discretization 

in space coupled with third-order Adams-Bashforth formula in time, say  

(Eq. 20) ( ) ( ) ( )1 1 123 , 16 , 5 ,
12n n n n n n n n
hy y f t y f t y f t y+ − − 2 2− −⎡ ⎤= + − +⎣ ⎦  

Take  and  for 50N = 2t Nν −∆ = 7,8ν = . Plot pseudospectrumε −  of Chebyshev spectral 
matrix for . 2 310 ,10 , ,10ε − − −= " 6

xIn fact, analytic solution of  is tu u= ( ) ( )0,u t x u x t= +

dt t−

, hence we can use analytic solution to 
give initial condition on  and t d1t− = − 2 2 . = −

 
Experiment: Source code: F:\course\2008spring\spectral_method\matlab\chap10_ex3_v2.m 

Let us set initial condition , ( ) ( )20 exp 60 1/ 2u x⎡ ⎤= − −⎣ ⎦
( ) ( )21 exp 60 1/ 2u x dt⎡ ⎤= − + −⎣ ⎦  and 
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( ) ( )22 exp 60 2 1/ 2u x dt⎡ ⎤= − + −⎣ ⎦  and ( ) ( ) ( ) ( ) ( )1 123 16 5
12

n n n n nh 2A u u u+ − −u u ⎡ ⎤= + − +⎣ ⎦  

where A  is Chebyshev differential matrix deleting first row and column. 

In right panel of Figure 19,  is propagated backward as we expected. But unstable mode 

occurs at boundary  in left panel of Figure 19 since 

( ,u t x)

1x = 28t N −∆ =  is large. 

Figure 19: left panel: , unstable mode occurs at boundary. Right panel: , stable 

traveling wave.  

28t N −∆ = 27t N −∆ =

 

From (Eq. 20), we have 3 2 223 16 5
12
hg g g gλ ⎡ ⎤= + − +⎣ ⎦ , so we sweep all 1g ≤  and plot region 

of hλ  (intersection of all 1g ≤ ), see Figure 20.  
Source code: F:\course\2008spring\spectral_method\matlab\chap10_ex3.m 

Figure 20: stability region of 

Adams-Bashforth 
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Figure 21: 

 
 

pseudospectrumε −  of Chebyshev spectral matrix for 62 310 ,10 , ,10ε − − −= " , 
50N =  
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