
1. So far, one thread is responsible for one data element, can you change
this, say one thread takes care of several data entries ?
test N = 512*10

We only use 512 threads to
do 512*10 addition by for
loop

2. Maximum number of threads per block is 512, when data set is more than
512, we use multi-thread-block to do parallel computing, however Maximum
size of each dimension of a grid of thread blocks is 65535, when data set is
more than 131MB, how can we proceed?

We can use more than one-dimension (either block or thread) to do
parallel computing or we can let each thread do more than one thing as
before .

3. From table 2, data transfer from device to host is about half of CPU
computation, it means that if we can accelerate CPU computation, then GPU
has no advantage, right?

Not exactly, it depends on the comparison of computation between CPU
and GPU. If GPU is much faster than CPU, then maybe the time waste on
data transfer can be paid back . Moreover, if you can accelerate CPU
computation , then maybe there is a way to accelerate the data transfer ,too !

4. measure your video card and fill-in table 2, also try double-precision if your
hardware
supports.

Visual2005 GTX260

of block size GPU (ms) Device Host (ms) CPU (ms)
16 32 KB 1.156013 0.097848 0

32 64 KB 1.137016 0.103924 0

64 128 KB 1.15099 0.148483 0

128 256 KB 1.154407 0.267771 0

256 512 KB 1.135270 0.486165 0

512 1.024 MB 1.534413 1.498584 2

1024 2.048 MB 1.375454 1.523029 3

2048 4.096 MB 1.513810 2.812648 5

4096 8.192 MB 1.721238 6.170896 11

8192 16.384 MB 2.244629 11.330351 21

16384 32.768 MB 3.312502 24.299248 44

32768 65.536 MB 5.324490 43.954819 89

65535 131 MB 9.193068 96.222427 192

C A B= +
Copy C from device to host

Table 2

maximum throughput ≈ 44 GByte/sec

Geforce GTX260

of block size GPU (ms) Device Host (ms) CPU (ms)
16 32 KB 0.057000 0.053000 0

32 64 KB 0.061 0.092 0

64 128 KB 0.065000 0.186000 0

128 256 KB 0.084000 0.335000 0

256 512 KB 0.120000 0.803000 0

512 1.024 MB 0.169000 1.538000 10

1024 2.048 MB 0.254000 2.358000 0

2048 4.096 MB 0.430000 4.511000 10

4096 8.192 MB 0.794000 10.279000 10

8192 16.384 MB 1.505000 17.690001 20

16384 32.768 MB 2.885000 34.956001 60

32768 65.536 MB 5.689000 69.507004 120

65535 131 MB 11.299000 138.901001 240

C A B= +

Linux machine GeForce
9600GT Copy C from device to host

Table 2

maximum throughput ≈ 36 GByte/sec

Geforce 9600GT

Linux machine GTX260

of block size GPU (ms) Device Host (ms) CPU (ms)
16 32 KB 0.050000 0.044000 0

32 64 KB 0.057000 0.074000 0

64 128 KB 0.054000 0.138000 0

128 256 KB 0.059000 0.264000 0

256 512 KB 0.076000 0.528000 0

512 1.024 MB 0.093000 1.040000 0

1024 2.048 MB 0.134000 1.926000 0

2048 4.096 MB 0.196000 3.702000 0

4096 8.192 MB 0.315000 7.295000 10

8192 16.384 MB 0.575000 14.424000 30

16384 32.768 MB 1.033000 28.607000 50

32768 65.536 MB 1.993000 57.006001 90

65535 131 MB 4.046000 113.746002 190

C A B= +
Copy C from device to host

Table 2

maximum throughput ≈ 100 GByte/sec

Geforce GTX260

5. modify code in matrixMul, measure time for computing golden vector , time
for C = A*B under GPU and time for data transfer, compare them.

WA = HA = WB = 250WA = HA = WB = 200

大約 300倍

WA = HA = WB = 200

WA = HA = WB = 250

大約800多倍

Q1 : why the speed of “host to device “ and “device to host” are different in Linux ?
Q2 : why can’t we let WA = HA = WB = 300 ? Do we use all storage ?

6. We have shown you vector addition and matrix-matrix product, which one is
better in GPU computation, why?(you can compute ratio between floating point
operation and
memory fetch operation)

7. modify source code in matrixMul, use column-major index, be careful indexing
rule.

0 6

71

12 18

1913

2 8

93

14 20

2115

4 10

115

16 22

2317

6 4A R ×∈

wA

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

6 4A R ×∈

bx

by

Thread (0,0) Thread (1,0)

Thread (0,1) Thread (1,1)

tx

ty

0

0
0

0

2

1

1
1

1
blocksize by×

blocksize bx× tx

ty

hA

The physical index of first entry in block

e.g. The physical index of first entry in block

byblocksizehAblocksizebxbybx ×+××=)(),(
16412226)21()2,1(=+=×+××=

The physical index of (block index, thread index) is tyhAtxbybxtytxbybx +×+=)(),()),(),,((

e.g. 231)61(16))1,1(),2,1(()),(),,((=+×+==tytxbybx

global index
() ()(), , ,bx by tx ty (), blocksize bx tx blocksize by ty× + × + col-major

(I choose to keep this notation and modify the code
below)

Modify code in matrixMul_kernel.cu

Part 1: copy A (0,1) to As and B (1,0) to Bs

Part 2: add first product term to submatrix of C

Part 3: rewrite Csub to C

Modify code in matrixMul_gold.cpp

][),(ihAjAjiA +×=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

),(jiAi-th row

0 1 j…..

0

i

…..
j-th column

8. We have discussed that matrix-vector product has two versions, one is inner-
product-based, one is outer-product-based, implement these two methods under
GPU

