
2008 summer course C-language midterm
Date : 2008/7/14 ~ 2008/7/27
hand over electronic paper (don’t hand over handwriting paper) on Monday, 28 July.
You can edit your result in this document file directly.

Exercise 1 (Pascal’s triangle): In mathematics, Pascal's triangle is a geometric arrangement of
the binomial coefficients in a triangle. This construction is related to the binomial coefficients by

Pascal's rule, with states if
()

!
! !

n
k

nC
k n k

=
−

 is the k-th binomial coefficinet in the binomial

expansion of (n)x y+ , then for any and 1
1

n n n
k k kC C C−

−= + 1− 0n ≥ 0,1, 2, ,k n= .

Write a C-code to produce Pascal’s triangle like Figure 1 in a file.

Figure 1: Pascal’s triangle of 16n =

Program requirement:
(1) read and output filename from command

[command] [n] –o [output filename]

if user does not match the format, then output correct usage,

n

(2) output file has the format as Figure 2.

 1

Figure 2: Pascal’s triangle when 10n =

(3) you need to test at least 0,1, 2,3, 4n =

Exercise 2 (asymptotic behavior of sorting): in the course, we introduce quick sort (qsort in
stdlib.h) and bubble sort (written by speaker), now we want to evaluate these two sorting
algorithms. We need a timer to record cost of sorting, we use two functions, time and difftime in
time.h, the usage of these two functions are described in Figure 3.

time_t time (time_t *tp)
 time returns the current calendar time or -1 if the time is not available. If tp is not

NULL, the return value is also assigned to *tp
double difftime (time_t time2, time_t time1)
 difftime returns time2 – time1 expressed in seconds.

Figure 3: usage of timer

In order to evaluate worst case, we create an integer array with elements and arrange the array
into descending order and then quick sort (bubble sort) would sort it into ascending order.

n

Figure 4: create an integer array with reverse order

 2

Program requirement:
(1) read from command

[command] [n]
n

(2) report time of quick sort and bubble sort like

(3) find the asymptotic behavior between time and problem size , for example T n ()kT O n=

or ()logkT O n n= , compare asymptotic behavior bewteen quick sort and bubble sort.

Exercise 3 (find filename or directory): in the course, we introduce function system, which can
execute a command, we use system(“ls -al”) to list content of current directory. If we want to find
out all files and subdirectories, then function system can help us.
Step 1: use system(“ls –al > output.txt”) to store information of ls into file output.txt. We take
Figure 5 as an example in the later discussion.

Figure 5: content of directory system

Step 2: open file output.txt and read each line by function getline in page 69 of textbook (note

 3

that function getline in textbook read data from standard input, you need to rewrite it such that
reading data from a file handler). Fro example, in Figure 5 we have
Line 1:
Line 2:
Line 3:
Line 4:
Step 3: for each line we can use space character (空白字元) as delimiter to find a token, for
example. Line 1 has two tokens, “total” and “124”. Line 2 has 9 tokens, token 1 is “drwxr-xr-x”,
token 2 is “3”, token 3 is “imsl”, token 4 is “imsl”, token 5 is “4096”, token 6 is “Jul”, token 7 is
“13”, token 8 is “18:45” and token 9 is “.”.

Remark 1: “.” is current directory and “..” means parent directory (上一層目錄).

Simple observation: for each line. 9-th token is file or sub-directory, hence we propose
pseudo-code as following

system(“ls –al > output.txt”)
open file output.txt
for each line in file output.txt
 read each token of the line and report 9-th token.
endfor
close file output.txt

You need to implement tow functions, one is getline, the other is to extract token from each line.
In this example (Figure 5), the result is in Figure 6

Figure 6: report all files and directories of Figure

5

Exercise 4 (sorting on linked list): in the course, we use linked list to represent keyword of
C-language, see Figure 7. Now we write { keyword, count } in file data.txt (see Figure 8) and
read it to form a linked list, also perform a bubble sort on this liked list. You need
(1) use function fscanf to read keyword and count from data.txt
(2) rewrite bubble sort for this linked list, note that original version is only valid for continuous

 4

array, not for discontinuous linked list.
(3) Can you derive framework of sorting on linked list? Is quick sort possible?
(4) Can you do binary search in a sorted linked list?

Figure 7: keyword of C

Figure 8: write {keyword, count} into file data.txt, each pair occupies a line.

Exercise 5 (multi-dimensional array): in the course, we don’t discuss multi-dimensional array
but focus on pointer array. However these two objects are similar, read section 5.7 in page 110 of
textbook and write a driver to test codes in page 111. What’s the relationship between
multi-dimensional array and pointer array? In other words, can you use pointer array to
implement 2-dimensional double array?

Exercise 6 (union): read section 6.8 in page 147 of textbook, this section introduces another
useful technique, union, which we don’t discuss in the course. Write driver to implement a
union-like data structure (see page 148).

Figure 9: declare symbol table as a structure with union

technique.

 5

Try to show memory information of a union by using debugger.

Exercise 7 (lexical analyzer): given a document (text file), to find its lexical word is very
important. Recall that compiler read a source file and recognize C-keyword, identifier, integer
constant, floating constant and string constant. In page 97 of textbook, the author writes a piece of
code to obtain an integer from standard input (you can also see Figure 10)
(1) write a driver to test function getInt in Figure 10, find all possible form of integer that it can

recognize.
(2) Do exercise 5-1 in page 97 of textbook.
(3) Modify the code such that getInt reads an integer from a character string.
(4) Modify the code such that getInt reads an integer from a file.
(5) Read description A2.3 of identifier in page 192 of textbook and write a function getId to

recognize identifier from either character array or file .

Figure 10: get integer from standard input,

see page 97 of textbook

(6) in C-language, comment is delimited by a pair of /* and */, in C++, comment starts from //, as
you see in Figure 10, write a program to remove all comments of a given file.

Exercise 8 (static variables): read section 4.6 in page 83 of textbook, write a driver to test static
variable for
Case 1: global static variable
Case 2: local static variable
What is life time and scope of static variable?

 6

